mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-25 12:05:31 +00:00
17c1033d33
The function ide_timing_compute() fails to *actually* take drive's specified minimum PIO/DMA cycle times into account -- when doing this, it calls ide_timing_merge() on the 'struct ide_timing' argument which contains garbage at the moment, and then ultimately destroys the read cycle time by quantizing the ide_timing[] entry, instead of copying from that entry to the argument structure, and only then doing a merge/quantize. Cc: Bartlomiej Zolnierkiewicz <B.Zolnierkiewicz@elka.pw.edu.pl> Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
287 lines
8.6 KiB
C
287 lines
8.6 KiB
C
#ifndef _IDE_TIMING_H
|
|
#define _IDE_TIMING_H
|
|
|
|
/*
|
|
* $Id: ide-timing.h,v 1.6 2001/12/23 22:47:56 vojtech Exp $
|
|
*
|
|
* Copyright (c) 1999-2001 Vojtech Pavlik
|
|
*/
|
|
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Should you need to contact me, the author, you can do so either by
|
|
* e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
|
|
* Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/hdreg.h>
|
|
|
|
#define XFER_PIO_5 0x0d
|
|
#define XFER_UDMA_SLOW 0x4f
|
|
|
|
struct ide_timing {
|
|
short mode;
|
|
short setup; /* t1 */
|
|
short act8b; /* t2 for 8-bit io */
|
|
short rec8b; /* t2i for 8-bit io */
|
|
short cyc8b; /* t0 for 8-bit io */
|
|
short active; /* t2 or tD */
|
|
short recover; /* t2i or tK */
|
|
short cycle; /* t0 */
|
|
short udma; /* t2CYCTYP/2 */
|
|
};
|
|
|
|
/*
|
|
* PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
|
|
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
|
|
* for PIO 5, which is a nonstandard extension and UDMA6, which
|
|
* is currently supported only by Maxtor drives.
|
|
*/
|
|
|
|
static struct ide_timing ide_timing[] = {
|
|
|
|
{ XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
|
|
{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
|
|
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
|
|
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
|
|
|
|
{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
|
|
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
|
|
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
|
|
|
|
{ XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 },
|
|
|
|
{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
|
|
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
|
|
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
|
|
|
|
{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
|
|
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
|
|
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
|
|
|
|
{ XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 },
|
|
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
|
|
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
|
|
|
|
{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
|
|
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
|
|
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
|
|
|
|
{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },
|
|
|
|
{ -1 }
|
|
};
|
|
|
|
#define IDE_TIMING_SETUP 0x01
|
|
#define IDE_TIMING_ACT8B 0x02
|
|
#define IDE_TIMING_REC8B 0x04
|
|
#define IDE_TIMING_CYC8B 0x08
|
|
#define IDE_TIMING_8BIT 0x0e
|
|
#define IDE_TIMING_ACTIVE 0x10
|
|
#define IDE_TIMING_RECOVER 0x20
|
|
#define IDE_TIMING_CYCLE 0x40
|
|
#define IDE_TIMING_UDMA 0x80
|
|
#define IDE_TIMING_ALL 0xff
|
|
|
|
#define FIT(v,vmin,vmax) max_t(short,min_t(short,v,vmax),vmin)
|
|
#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
|
|
#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
|
|
|
|
#define XFER_MODE 0xf0
|
|
#define XFER_UDMA_133 0x48
|
|
#define XFER_UDMA_100 0x44
|
|
#define XFER_UDMA_66 0x42
|
|
#define XFER_UDMA 0x40
|
|
#define XFER_MWDMA 0x20
|
|
#define XFER_SWDMA 0x10
|
|
#define XFER_EPIO 0x01
|
|
#define XFER_PIO 0x00
|
|
|
|
static short ide_find_best_mode(ide_drive_t *drive, int map)
|
|
{
|
|
struct hd_driveid *id = drive->id;
|
|
short best = 0;
|
|
|
|
if (!id)
|
|
return XFER_PIO_SLOW;
|
|
|
|
if ((map & XFER_UDMA) && (id->field_valid & 4)) { /* Want UDMA and UDMA bitmap valid */
|
|
|
|
if ((map & XFER_UDMA_133) == XFER_UDMA_133)
|
|
if ((best = (id->dma_ultra & 0x0040) ? XFER_UDMA_6 : 0)) return best;
|
|
|
|
if ((map & XFER_UDMA_100) == XFER_UDMA_100)
|
|
if ((best = (id->dma_ultra & 0x0020) ? XFER_UDMA_5 : 0)) return best;
|
|
|
|
if ((map & XFER_UDMA_66) == XFER_UDMA_66)
|
|
if ((best = (id->dma_ultra & 0x0010) ? XFER_UDMA_4 :
|
|
(id->dma_ultra & 0x0008) ? XFER_UDMA_3 : 0)) return best;
|
|
|
|
if ((best = (id->dma_ultra & 0x0004) ? XFER_UDMA_2 :
|
|
(id->dma_ultra & 0x0002) ? XFER_UDMA_1 :
|
|
(id->dma_ultra & 0x0001) ? XFER_UDMA_0 : 0)) return best;
|
|
}
|
|
|
|
if ((map & XFER_MWDMA) && (id->field_valid & 2)) { /* Want MWDMA and drive has EIDE fields */
|
|
|
|
if ((best = (id->dma_mword & 0x0004) ? XFER_MW_DMA_2 :
|
|
(id->dma_mword & 0x0002) ? XFER_MW_DMA_1 :
|
|
(id->dma_mword & 0x0001) ? XFER_MW_DMA_0 : 0)) return best;
|
|
}
|
|
|
|
if (map & XFER_SWDMA) { /* Want SWDMA */
|
|
|
|
if (id->field_valid & 2) { /* EIDE SWDMA */
|
|
|
|
if ((best = (id->dma_1word & 0x0004) ? XFER_SW_DMA_2 :
|
|
(id->dma_1word & 0x0002) ? XFER_SW_DMA_1 :
|
|
(id->dma_1word & 0x0001) ? XFER_SW_DMA_0 : 0)) return best;
|
|
}
|
|
|
|
if (id->capability & 1) { /* Pre-EIDE style SWDMA */
|
|
|
|
if ((best = (id->tDMA == 2) ? XFER_SW_DMA_2 :
|
|
(id->tDMA == 1) ? XFER_SW_DMA_1 :
|
|
(id->tDMA == 0) ? XFER_SW_DMA_0 : 0)) return best;
|
|
}
|
|
}
|
|
|
|
|
|
if ((map & XFER_EPIO) && (id->field_valid & 2)) { /* EIDE PIO modes */
|
|
|
|
if ((best = (drive->id->eide_pio_modes & 4) ? XFER_PIO_5 :
|
|
(drive->id->eide_pio_modes & 2) ? XFER_PIO_4 :
|
|
(drive->id->eide_pio_modes & 1) ? XFER_PIO_3 : 0)) return best;
|
|
}
|
|
|
|
return (drive->id->tPIO == 2) ? XFER_PIO_2 :
|
|
(drive->id->tPIO == 1) ? XFER_PIO_1 :
|
|
(drive->id->tPIO == 0) ? XFER_PIO_0 : XFER_PIO_SLOW;
|
|
}
|
|
|
|
static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q, int T, int UT)
|
|
{
|
|
q->setup = EZ(t->setup * 1000, T);
|
|
q->act8b = EZ(t->act8b * 1000, T);
|
|
q->rec8b = EZ(t->rec8b * 1000, T);
|
|
q->cyc8b = EZ(t->cyc8b * 1000, T);
|
|
q->active = EZ(t->active * 1000, T);
|
|
q->recover = EZ(t->recover * 1000, T);
|
|
q->cycle = EZ(t->cycle * 1000, T);
|
|
q->udma = EZ(t->udma * 1000, UT);
|
|
}
|
|
|
|
static void ide_timing_merge(struct ide_timing *a, struct ide_timing *b, struct ide_timing *m, unsigned int what)
|
|
{
|
|
if (what & IDE_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
|
|
if (what & IDE_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
|
|
if (what & IDE_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
|
|
if (what & IDE_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
|
|
if (what & IDE_TIMING_ACTIVE ) m->active = max(a->active, b->active);
|
|
if (what & IDE_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
|
|
if (what & IDE_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
|
|
if (what & IDE_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
|
|
}
|
|
|
|
static struct ide_timing* ide_timing_find_mode(short speed)
|
|
{
|
|
struct ide_timing *t;
|
|
|
|
for (t = ide_timing; t->mode != speed; t++)
|
|
if (t->mode < 0)
|
|
return NULL;
|
|
return t;
|
|
}
|
|
|
|
static int ide_timing_compute(ide_drive_t *drive, short speed, struct ide_timing *t, int T, int UT)
|
|
{
|
|
struct hd_driveid *id = drive->id;
|
|
struct ide_timing *s, p;
|
|
|
|
/*
|
|
* Find the mode.
|
|
*/
|
|
|
|
if (!(s = ide_timing_find_mode(speed)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Copy the timing from the table.
|
|
*/
|
|
|
|
*t = *s;
|
|
|
|
/*
|
|
* If the drive is an EIDE drive, it can tell us it needs extended
|
|
* PIO/MWDMA cycle timing.
|
|
*/
|
|
|
|
if (id && id->field_valid & 2) { /* EIDE drive */
|
|
|
|
memset(&p, 0, sizeof(p));
|
|
|
|
switch (speed & XFER_MODE) {
|
|
|
|
case XFER_PIO:
|
|
if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id->eide_pio;
|
|
else p.cycle = p.cyc8b = id->eide_pio_iordy;
|
|
break;
|
|
|
|
case XFER_MWDMA:
|
|
p.cycle = id->eide_dma_min;
|
|
break;
|
|
}
|
|
|
|
ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
|
|
}
|
|
|
|
/*
|
|
* Convert the timing to bus clock counts.
|
|
*/
|
|
|
|
ide_timing_quantize(t, t, T, UT);
|
|
|
|
/*
|
|
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
|
|
* and some other commands. We have to ensure that the DMA cycle timing is
|
|
* slower/equal than the fastest PIO timing.
|
|
*/
|
|
|
|
if ((speed & XFER_MODE) != XFER_PIO) {
|
|
ide_timing_compute(drive, ide_find_best_mode(drive, XFER_PIO | XFER_EPIO), &p, T, UT);
|
|
ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
|
|
}
|
|
|
|
/*
|
|
* Lenghten active & recovery time so that cycle time is correct.
|
|
*/
|
|
|
|
if (t->act8b + t->rec8b < t->cyc8b) {
|
|
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
|
|
t->rec8b = t->cyc8b - t->act8b;
|
|
}
|
|
|
|
if (t->active + t->recover < t->cycle) {
|
|
t->active += (t->cycle - (t->active + t->recover)) / 2;
|
|
t->recover = t->cycle - t->active;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|