mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-17 23:15:52 +00:00
dace145374
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2207 lines
54 KiB
C
2207 lines
54 KiB
C
/*
|
|
* decserial.c: Serial port driver for IOASIC DECstations.
|
|
*
|
|
* Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
|
|
* Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
|
|
*
|
|
* DECstation changes
|
|
* Copyright (C) 1998-2000 Harald Koerfgen
|
|
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Maciej W. Rozycki
|
|
*
|
|
* For the rest of the code the original Copyright applies:
|
|
* Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
|
|
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
|
|
*
|
|
*
|
|
* Note: for IOASIC systems the wiring is as follows:
|
|
*
|
|
* mouse/keyboard:
|
|
* DIN-7 MJ-4 signal SCC
|
|
* 2 1 TxD <- A.TxD
|
|
* 3 4 RxD -> A.RxD
|
|
*
|
|
* EIA-232/EIA-423:
|
|
* DB-25 MMJ-6 signal SCC
|
|
* 2 2 TxD <- B.TxD
|
|
* 3 5 RxD -> B.RxD
|
|
* 4 RTS <- ~A.RTS
|
|
* 5 CTS -> ~B.CTS
|
|
* 6 6 DSR -> ~A.SYNC
|
|
* 8 CD -> ~B.DCD
|
|
* 12 DSRS(DCE) -> ~A.CTS (*)
|
|
* 15 TxC -> B.TxC
|
|
* 17 RxC -> B.RxC
|
|
* 20 1 DTR <- ~A.DTR
|
|
* 22 RI -> ~A.DCD
|
|
* 23 DSRS(DTE) <- ~B.RTS
|
|
*
|
|
* (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
|
|
* is shared with DSRS(DTE) at pin 23.
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_flip.h>
|
|
#include <linux/major.h>
|
|
#include <linux/string.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/spinlock.h>
|
|
#ifdef CONFIG_SERIAL_DEC_CONSOLE
|
|
#include <linux/console.h>
|
|
#endif
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/system.h>
|
|
#include <asm/bootinfo.h>
|
|
|
|
#include <asm/dec/interrupts.h>
|
|
#include <asm/dec/ioasic_addrs.h>
|
|
#include <asm/dec/machtype.h>
|
|
#include <asm/dec/serial.h>
|
|
#include <asm/dec/system.h>
|
|
#include <asm/dec/tc.h>
|
|
|
|
#ifdef CONFIG_KGDB
|
|
#include <asm/kgdb.h>
|
|
#endif
|
|
#ifdef CONFIG_MAGIC_SYSRQ
|
|
#include <linux/sysrq.h>
|
|
#endif
|
|
|
|
#include "zs.h"
|
|
|
|
/*
|
|
* It would be nice to dynamically allocate everything that
|
|
* depends on NUM_SERIAL, so we could support any number of
|
|
* Z8530s, but for now...
|
|
*/
|
|
#define NUM_SERIAL 2 /* Max number of ZS chips supported */
|
|
#define NUM_CHANNELS (NUM_SERIAL * 2) /* 2 channels per chip */
|
|
#define CHANNEL_A_NR (zs_parms->channel_a_offset > zs_parms->channel_b_offset)
|
|
/* Number of channel A in the chip */
|
|
#define ZS_CHAN_IO_SIZE 8
|
|
#define ZS_CLOCK 7372800 /* Z8530 RTxC input clock rate */
|
|
|
|
#define RECOVERY_DELAY udelay(2)
|
|
|
|
struct zs_parms {
|
|
unsigned long scc0;
|
|
unsigned long scc1;
|
|
int channel_a_offset;
|
|
int channel_b_offset;
|
|
int irq0;
|
|
int irq1;
|
|
int clock;
|
|
};
|
|
|
|
static struct zs_parms *zs_parms;
|
|
|
|
#ifdef CONFIG_MACH_DECSTATION
|
|
static struct zs_parms ds_parms = {
|
|
scc0 : IOASIC_SCC0,
|
|
scc1 : IOASIC_SCC1,
|
|
channel_a_offset : 1,
|
|
channel_b_offset : 9,
|
|
irq0 : -1,
|
|
irq1 : -1,
|
|
clock : ZS_CLOCK
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_MACH_DECSTATION
|
|
#define DS_BUS_PRESENT (IOASIC)
|
|
#else
|
|
#define DS_BUS_PRESENT 0
|
|
#endif
|
|
|
|
#define BUS_PRESENT (DS_BUS_PRESENT)
|
|
|
|
DEFINE_SPINLOCK(zs_lock);
|
|
|
|
struct dec_zschannel zs_channels[NUM_CHANNELS];
|
|
struct dec_serial zs_soft[NUM_CHANNELS];
|
|
int zs_channels_found;
|
|
struct dec_serial *zs_chain; /* list of all channels */
|
|
|
|
struct tty_struct zs_ttys[NUM_CHANNELS];
|
|
|
|
#ifdef CONFIG_SERIAL_DEC_CONSOLE
|
|
static struct console sercons;
|
|
#endif
|
|
#if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \
|
|
!defined(MODULE)
|
|
static unsigned long break_pressed; /* break, really ... */
|
|
#endif
|
|
|
|
static unsigned char zs_init_regs[16] __initdata = {
|
|
0, /* write 0 */
|
|
0, /* write 1 */
|
|
0, /* write 2 */
|
|
0, /* write 3 */
|
|
(X16CLK), /* write 4 */
|
|
0, /* write 5 */
|
|
0, 0, 0, /* write 6, 7, 8 */
|
|
(MIE | DLC | NV), /* write 9 */
|
|
(NRZ), /* write 10 */
|
|
(TCBR | RCBR), /* write 11 */
|
|
0, 0, /* BRG time constant, write 12 + 13 */
|
|
(BRSRC | BRENABL), /* write 14 */
|
|
0 /* write 15 */
|
|
};
|
|
|
|
static struct tty_driver *serial_driver;
|
|
|
|
/* serial subtype definitions */
|
|
#define SERIAL_TYPE_NORMAL 1
|
|
|
|
/* number of characters left in xmit buffer before we ask for more */
|
|
#define WAKEUP_CHARS 256
|
|
|
|
/*
|
|
* Debugging.
|
|
*/
|
|
#undef SERIAL_DEBUG_OPEN
|
|
#undef SERIAL_DEBUG_FLOW
|
|
#undef SERIAL_DEBUG_THROTTLE
|
|
#undef SERIAL_PARANOIA_CHECK
|
|
|
|
#undef ZS_DEBUG_REGS
|
|
|
|
#ifdef SERIAL_DEBUG_THROTTLE
|
|
#define _tty_name(tty,buf) tty_name(tty,buf)
|
|
#endif
|
|
|
|
#define RS_STROBE_TIME 10
|
|
#define RS_ISR_PASS_LIMIT 256
|
|
|
|
static void probe_sccs(void);
|
|
static void change_speed(struct dec_serial *info);
|
|
static void rs_wait_until_sent(struct tty_struct *tty, int timeout);
|
|
|
|
static inline int serial_paranoia_check(struct dec_serial *info,
|
|
char *name, const char *routine)
|
|
{
|
|
#ifdef SERIAL_PARANOIA_CHECK
|
|
static const char *badmagic =
|
|
"Warning: bad magic number for serial struct %s in %s\n";
|
|
static const char *badinfo =
|
|
"Warning: null mac_serial for %s in %s\n";
|
|
|
|
if (!info) {
|
|
printk(badinfo, name, routine);
|
|
return 1;
|
|
}
|
|
if (info->magic != SERIAL_MAGIC) {
|
|
printk(badmagic, name, routine);
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is used to figure out the divisor speeds and the timeouts
|
|
*/
|
|
static int baud_table[] = {
|
|
0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
|
|
9600, 19200, 38400, 57600, 115200, 0 };
|
|
|
|
/*
|
|
* Reading and writing Z8530 registers.
|
|
*/
|
|
static inline unsigned char read_zsreg(struct dec_zschannel *channel,
|
|
unsigned char reg)
|
|
{
|
|
unsigned char retval;
|
|
|
|
if (reg != 0) {
|
|
*channel->control = reg & 0xf;
|
|
fast_iob(); RECOVERY_DELAY;
|
|
}
|
|
retval = *channel->control;
|
|
RECOVERY_DELAY;
|
|
return retval;
|
|
}
|
|
|
|
static inline void write_zsreg(struct dec_zschannel *channel,
|
|
unsigned char reg, unsigned char value)
|
|
{
|
|
if (reg != 0) {
|
|
*channel->control = reg & 0xf;
|
|
fast_iob(); RECOVERY_DELAY;
|
|
}
|
|
*channel->control = value;
|
|
fast_iob(); RECOVERY_DELAY;
|
|
return;
|
|
}
|
|
|
|
static inline unsigned char read_zsdata(struct dec_zschannel *channel)
|
|
{
|
|
unsigned char retval;
|
|
|
|
retval = *channel->data;
|
|
RECOVERY_DELAY;
|
|
return retval;
|
|
}
|
|
|
|
static inline void write_zsdata(struct dec_zschannel *channel,
|
|
unsigned char value)
|
|
{
|
|
*channel->data = value;
|
|
fast_iob(); RECOVERY_DELAY;
|
|
return;
|
|
}
|
|
|
|
static inline void load_zsregs(struct dec_zschannel *channel,
|
|
unsigned char *regs)
|
|
{
|
|
/* ZS_CLEARERR(channel);
|
|
ZS_CLEARFIFO(channel); */
|
|
/* Load 'em up */
|
|
write_zsreg(channel, R3, regs[R3] & ~RxENABLE);
|
|
write_zsreg(channel, R5, regs[R5] & ~TxENAB);
|
|
write_zsreg(channel, R4, regs[R4]);
|
|
write_zsreg(channel, R9, regs[R9]);
|
|
write_zsreg(channel, R1, regs[R1]);
|
|
write_zsreg(channel, R2, regs[R2]);
|
|
write_zsreg(channel, R10, regs[R10]);
|
|
write_zsreg(channel, R11, regs[R11]);
|
|
write_zsreg(channel, R12, regs[R12]);
|
|
write_zsreg(channel, R13, regs[R13]);
|
|
write_zsreg(channel, R14, regs[R14]);
|
|
write_zsreg(channel, R15, regs[R15]);
|
|
write_zsreg(channel, R3, regs[R3]);
|
|
write_zsreg(channel, R5, regs[R5]);
|
|
return;
|
|
}
|
|
|
|
/* Sets or clears DTR/RTS on the requested line */
|
|
static inline void zs_rtsdtr(struct dec_serial *info, int which, int set)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
if (info->zs_channel != info->zs_chan_a) {
|
|
if (set) {
|
|
info->zs_chan_a->curregs[5] |= (which & (RTS | DTR));
|
|
} else {
|
|
info->zs_chan_a->curregs[5] &= ~(which & (RTS | DTR));
|
|
}
|
|
write_zsreg(info->zs_chan_a, 5, info->zs_chan_a->curregs[5]);
|
|
}
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
}
|
|
|
|
/* Utility routines for the Zilog */
|
|
static inline int get_zsbaud(struct dec_serial *ss)
|
|
{
|
|
struct dec_zschannel *channel = ss->zs_channel;
|
|
int brg;
|
|
|
|
/* The baud rate is split up between two 8-bit registers in
|
|
* what is termed 'BRG time constant' format in my docs for
|
|
* the chip, it is a function of the clk rate the chip is
|
|
* receiving which happens to be constant.
|
|
*/
|
|
brg = (read_zsreg(channel, 13) << 8);
|
|
brg |= read_zsreg(channel, 12);
|
|
return BRG_TO_BPS(brg, (zs_parms->clock/(ss->clk_divisor)));
|
|
}
|
|
|
|
/* On receive, this clears errors and the receiver interrupts */
|
|
static inline void rs_recv_clear(struct dec_zschannel *zsc)
|
|
{
|
|
write_zsreg(zsc, 0, ERR_RES);
|
|
write_zsreg(zsc, 0, RES_H_IUS); /* XXX this is unnecessary */
|
|
}
|
|
|
|
/*
|
|
* ----------------------------------------------------------------------
|
|
*
|
|
* Here starts the interrupt handling routines. All of the following
|
|
* subroutines are declared as inline and are folded into
|
|
* rs_interrupt(). They were separated out for readability's sake.
|
|
*
|
|
* - Ted Ts'o (tytso@mit.edu), 7-Mar-93
|
|
* -----------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* This routine is used by the interrupt handler to schedule
|
|
* processing in the software interrupt portion of the driver.
|
|
*/
|
|
static void rs_sched_event(struct dec_serial *info, int event)
|
|
{
|
|
info->event |= 1 << event;
|
|
tasklet_schedule(&info->tlet);
|
|
}
|
|
|
|
static void receive_chars(struct dec_serial *info, struct pt_regs *regs)
|
|
{
|
|
struct tty_struct *tty = info->tty;
|
|
unsigned char ch, stat, flag;
|
|
|
|
while ((read_zsreg(info->zs_channel, R0) & Rx_CH_AV) != 0) {
|
|
|
|
stat = read_zsreg(info->zs_channel, R1);
|
|
ch = read_zsdata(info->zs_channel);
|
|
|
|
if (!tty && (!info->hook || !info->hook->rx_char))
|
|
continue;
|
|
|
|
flag = TTY_NORMAL;
|
|
if (info->tty_break) {
|
|
info->tty_break = 0;
|
|
flag = TTY_BREAK;
|
|
if (info->flags & ZILOG_SAK)
|
|
do_SAK(tty);
|
|
/* Ignore the null char got when BREAK is removed. */
|
|
if (ch == 0)
|
|
continue;
|
|
} else {
|
|
if (stat & Rx_OVR) {
|
|
flag = TTY_OVERRUN;
|
|
} else if (stat & FRM_ERR) {
|
|
flag = TTY_FRAME;
|
|
} else if (stat & PAR_ERR) {
|
|
flag = TTY_PARITY;
|
|
}
|
|
if (flag != TTY_NORMAL)
|
|
/* reset the error indication */
|
|
write_zsreg(info->zs_channel, R0, ERR_RES);
|
|
}
|
|
|
|
#if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \
|
|
!defined(MODULE)
|
|
if (break_pressed && info->line == sercons.index) {
|
|
/* Ignore the null char got when BREAK is removed. */
|
|
if (ch == 0)
|
|
continue;
|
|
if (time_before(jiffies, break_pressed + HZ * 5)) {
|
|
handle_sysrq(ch, regs, NULL);
|
|
break_pressed = 0;
|
|
continue;
|
|
}
|
|
break_pressed = 0;
|
|
}
|
|
#endif
|
|
|
|
if (info->hook && info->hook->rx_char) {
|
|
(*info->hook->rx_char)(ch, flag);
|
|
return;
|
|
}
|
|
|
|
tty_insert_flip_char(tty, ch, flag);
|
|
}
|
|
if (tty)
|
|
tty_flip_buffer_push(tty);
|
|
}
|
|
|
|
static void transmit_chars(struct dec_serial *info)
|
|
{
|
|
if ((read_zsreg(info->zs_channel, R0) & Tx_BUF_EMP) == 0)
|
|
return;
|
|
info->tx_active = 0;
|
|
|
|
if (info->x_char) {
|
|
/* Send next char */
|
|
write_zsdata(info->zs_channel, info->x_char);
|
|
info->x_char = 0;
|
|
info->tx_active = 1;
|
|
return;
|
|
}
|
|
|
|
if ((info->xmit_cnt <= 0) || (info->tty && info->tty->stopped)
|
|
|| info->tx_stopped) {
|
|
write_zsreg(info->zs_channel, R0, RES_Tx_P);
|
|
return;
|
|
}
|
|
/* Send char */
|
|
write_zsdata(info->zs_channel, info->xmit_buf[info->xmit_tail++]);
|
|
info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1);
|
|
info->xmit_cnt--;
|
|
info->tx_active = 1;
|
|
|
|
if (info->xmit_cnt < WAKEUP_CHARS)
|
|
rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
|
|
}
|
|
|
|
static void status_handle(struct dec_serial *info)
|
|
{
|
|
unsigned char stat;
|
|
|
|
/* Get status from Read Register 0 */
|
|
stat = read_zsreg(info->zs_channel, R0);
|
|
|
|
if ((stat & BRK_ABRT) && !(info->read_reg_zero & BRK_ABRT)) {
|
|
#if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \
|
|
!defined(MODULE)
|
|
if (info->line == sercons.index) {
|
|
if (!break_pressed)
|
|
break_pressed = jiffies;
|
|
} else
|
|
#endif
|
|
info->tty_break = 1;
|
|
}
|
|
|
|
if (info->zs_channel != info->zs_chan_a) {
|
|
|
|
/* Check for DCD transitions */
|
|
if (info->tty && !C_CLOCAL(info->tty) &&
|
|
((stat ^ info->read_reg_zero) & DCD) != 0 ) {
|
|
if (stat & DCD) {
|
|
wake_up_interruptible(&info->open_wait);
|
|
} else {
|
|
tty_hangup(info->tty);
|
|
}
|
|
}
|
|
|
|
/* Check for CTS transitions */
|
|
if (info->tty && C_CRTSCTS(info->tty)) {
|
|
if ((stat & CTS) != 0) {
|
|
if (info->tx_stopped) {
|
|
info->tx_stopped = 0;
|
|
if (!info->tx_active)
|
|
transmit_chars(info);
|
|
}
|
|
} else {
|
|
info->tx_stopped = 1;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Clear status condition... */
|
|
write_zsreg(info->zs_channel, R0, RES_EXT_INT);
|
|
info->read_reg_zero = stat;
|
|
}
|
|
|
|
/*
|
|
* This is the serial driver's generic interrupt routine
|
|
*/
|
|
static irqreturn_t rs_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *) dev_id;
|
|
irqreturn_t status = IRQ_NONE;
|
|
unsigned char zs_intreg;
|
|
int shift;
|
|
|
|
/* NOTE: The read register 3, which holds the irq status,
|
|
* does so for both channels on each chip. Although
|
|
* the status value itself must be read from the A
|
|
* channel and is only valid when read from channel A.
|
|
* Yes... broken hardware...
|
|
*/
|
|
#define CHAN_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT)
|
|
|
|
if (info->zs_chan_a == info->zs_channel)
|
|
shift = 3; /* Channel A */
|
|
else
|
|
shift = 0; /* Channel B */
|
|
|
|
for (;;) {
|
|
zs_intreg = read_zsreg(info->zs_chan_a, R3) >> shift;
|
|
if ((zs_intreg & CHAN_IRQMASK) == 0)
|
|
break;
|
|
|
|
status = IRQ_HANDLED;
|
|
|
|
if (zs_intreg & CHBRxIP) {
|
|
receive_chars(info, regs);
|
|
}
|
|
if (zs_intreg & CHBTxIP) {
|
|
transmit_chars(info);
|
|
}
|
|
if (zs_intreg & CHBEXT) {
|
|
status_handle(info);
|
|
}
|
|
}
|
|
|
|
/* Why do we need this ? */
|
|
write_zsreg(info->zs_channel, 0, RES_H_IUS);
|
|
|
|
return status;
|
|
}
|
|
|
|
#ifdef ZS_DEBUG_REGS
|
|
void zs_dump (void) {
|
|
int i, j;
|
|
for (i = 0; i < zs_channels_found; i++) {
|
|
struct dec_zschannel *ch = &zs_channels[i];
|
|
if ((long)ch->control == UNI_IO_BASE+UNI_SCC1A_CTRL) {
|
|
for (j = 0; j < 15; j++) {
|
|
printk("W%d = 0x%x\t",
|
|
j, (int)ch->curregs[j]);
|
|
}
|
|
for (j = 0; j < 15; j++) {
|
|
printk("R%d = 0x%x\t",
|
|
j, (int)read_zsreg(ch,j));
|
|
}
|
|
printk("\n\n");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* Here ends the serial interrupt routines.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* rs_stop() and rs_start()
|
|
*
|
|
* This routines are called before setting or resetting tty->stopped.
|
|
* ------------------------------------------------------------
|
|
*/
|
|
static void rs_stop(struct tty_struct *tty)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *)tty->driver_data;
|
|
unsigned long flags;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_stop"))
|
|
return;
|
|
|
|
#if 1
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
if (info->zs_channel->curregs[5] & TxENAB) {
|
|
info->zs_channel->curregs[5] &= ~TxENAB;
|
|
write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]);
|
|
}
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
#endif
|
|
}
|
|
|
|
static void rs_start(struct tty_struct *tty)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *)tty->driver_data;
|
|
unsigned long flags;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_start"))
|
|
return;
|
|
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
#if 1
|
|
if (info->xmit_cnt && info->xmit_buf && !(info->zs_channel->curregs[5] & TxENAB)) {
|
|
info->zs_channel->curregs[5] |= TxENAB;
|
|
write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]);
|
|
}
|
|
#else
|
|
if (info->xmit_cnt && info->xmit_buf && !info->tx_active) {
|
|
transmit_chars(info);
|
|
}
|
|
#endif
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This routine is used to handle the "bottom half" processing for the
|
|
* serial driver, known also the "software interrupt" processing.
|
|
* This processing is done at the kernel interrupt level, after the
|
|
* rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This
|
|
* is where time-consuming activities which can not be done in the
|
|
* interrupt driver proper are done; the interrupt driver schedules
|
|
* them using rs_sched_event(), and they get done here.
|
|
*/
|
|
|
|
static void do_softint(unsigned long private_)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *) private_;
|
|
struct tty_struct *tty;
|
|
|
|
tty = info->tty;
|
|
if (!tty)
|
|
return;
|
|
|
|
if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) {
|
|
tty_wakeup(tty);
|
|
wake_up_interruptible(&tty->write_wait);
|
|
}
|
|
}
|
|
|
|
static int zs_startup(struct dec_serial * info)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (info->flags & ZILOG_INITIALIZED)
|
|
return 0;
|
|
|
|
if (!info->xmit_buf) {
|
|
info->xmit_buf = (unsigned char *) get_zeroed_page(GFP_KERNEL);
|
|
if (!info->xmit_buf)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("starting up ttyS%d (irq %d)...", info->line, info->irq);
|
|
#endif
|
|
|
|
/*
|
|
* Clear the receive FIFO.
|
|
*/
|
|
ZS_CLEARFIFO(info->zs_channel);
|
|
info->xmit_fifo_size = 1;
|
|
|
|
/*
|
|
* Clear the interrupt registers.
|
|
*/
|
|
write_zsreg(info->zs_channel, R0, ERR_RES);
|
|
write_zsreg(info->zs_channel, R0, RES_H_IUS);
|
|
|
|
/*
|
|
* Set the speed of the serial port
|
|
*/
|
|
change_speed(info);
|
|
|
|
/*
|
|
* Turn on RTS and DTR.
|
|
*/
|
|
zs_rtsdtr(info, RTS | DTR, 1);
|
|
|
|
/*
|
|
* Finally, enable sequencing and interrupts
|
|
*/
|
|
info->zs_channel->curregs[R1] &= ~RxINT_MASK;
|
|
info->zs_channel->curregs[R1] |= (RxINT_ALL | TxINT_ENAB |
|
|
EXT_INT_ENAB);
|
|
info->zs_channel->curregs[R3] |= RxENABLE;
|
|
info->zs_channel->curregs[R5] |= TxENAB;
|
|
info->zs_channel->curregs[R15] |= (DCDIE | CTSIE | TxUIE | BRKIE);
|
|
write_zsreg(info->zs_channel, R1, info->zs_channel->curregs[R1]);
|
|
write_zsreg(info->zs_channel, R3, info->zs_channel->curregs[R3]);
|
|
write_zsreg(info->zs_channel, R5, info->zs_channel->curregs[R5]);
|
|
write_zsreg(info->zs_channel, R15, info->zs_channel->curregs[R15]);
|
|
|
|
/*
|
|
* And clear the interrupt registers again for luck.
|
|
*/
|
|
write_zsreg(info->zs_channel, R0, ERR_RES);
|
|
write_zsreg(info->zs_channel, R0, RES_H_IUS);
|
|
|
|
/* Save the current value of RR0 */
|
|
info->read_reg_zero = read_zsreg(info->zs_channel, R0);
|
|
|
|
if (info->tty)
|
|
clear_bit(TTY_IO_ERROR, &info->tty->flags);
|
|
info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
|
|
|
|
info->flags |= ZILOG_INITIALIZED;
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine will shutdown a serial port; interrupts are disabled, and
|
|
* DTR is dropped if the hangup on close termio flag is on.
|
|
*/
|
|
static void shutdown(struct dec_serial * info)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!(info->flags & ZILOG_INITIALIZED))
|
|
return;
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("Shutting down serial port %d (irq %d)....", info->line,
|
|
info->irq);
|
|
#endif
|
|
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
|
|
if (info->xmit_buf) {
|
|
free_page((unsigned long) info->xmit_buf);
|
|
info->xmit_buf = 0;
|
|
}
|
|
|
|
info->zs_channel->curregs[1] = 0;
|
|
write_zsreg(info->zs_channel, 1, info->zs_channel->curregs[1]); /* no interrupts */
|
|
|
|
info->zs_channel->curregs[3] &= ~RxENABLE;
|
|
write_zsreg(info->zs_channel, 3, info->zs_channel->curregs[3]);
|
|
|
|
info->zs_channel->curregs[5] &= ~TxENAB;
|
|
write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]);
|
|
if (!info->tty || C_HUPCL(info->tty)) {
|
|
zs_rtsdtr(info, RTS | DTR, 0);
|
|
}
|
|
|
|
if (info->tty)
|
|
set_bit(TTY_IO_ERROR, &info->tty->flags);
|
|
|
|
info->flags &= ~ZILOG_INITIALIZED;
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This routine is called to set the UART divisor registers to match
|
|
* the specified baud rate for a serial port.
|
|
*/
|
|
static void change_speed(struct dec_serial *info)
|
|
{
|
|
unsigned cflag;
|
|
int i;
|
|
int brg, bits;
|
|
unsigned long flags;
|
|
|
|
if (!info->hook) {
|
|
if (!info->tty || !info->tty->termios)
|
|
return;
|
|
cflag = info->tty->termios->c_cflag;
|
|
if (!info->port)
|
|
return;
|
|
} else {
|
|
cflag = info->hook->cflags;
|
|
}
|
|
|
|
i = cflag & CBAUD;
|
|
if (i & CBAUDEX) {
|
|
i &= ~CBAUDEX;
|
|
if (i < 1 || i > 2) {
|
|
if (!info->hook)
|
|
info->tty->termios->c_cflag &= ~CBAUDEX;
|
|
else
|
|
info->hook->cflags &= ~CBAUDEX;
|
|
} else
|
|
i += 15;
|
|
}
|
|
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
info->zs_baud = baud_table[i];
|
|
if (info->zs_baud) {
|
|
brg = BPS_TO_BRG(info->zs_baud, zs_parms->clock/info->clk_divisor);
|
|
info->zs_channel->curregs[12] = (brg & 255);
|
|
info->zs_channel->curregs[13] = ((brg >> 8) & 255);
|
|
zs_rtsdtr(info, DTR, 1);
|
|
} else {
|
|
zs_rtsdtr(info, RTS | DTR, 0);
|
|
return;
|
|
}
|
|
|
|
/* byte size and parity */
|
|
info->zs_channel->curregs[3] &= ~RxNBITS_MASK;
|
|
info->zs_channel->curregs[5] &= ~TxNBITS_MASK;
|
|
switch (cflag & CSIZE) {
|
|
case CS5:
|
|
bits = 7;
|
|
info->zs_channel->curregs[3] |= Rx5;
|
|
info->zs_channel->curregs[5] |= Tx5;
|
|
break;
|
|
case CS6:
|
|
bits = 8;
|
|
info->zs_channel->curregs[3] |= Rx6;
|
|
info->zs_channel->curregs[5] |= Tx6;
|
|
break;
|
|
case CS7:
|
|
bits = 9;
|
|
info->zs_channel->curregs[3] |= Rx7;
|
|
info->zs_channel->curregs[5] |= Tx7;
|
|
break;
|
|
case CS8:
|
|
default: /* defaults to 8 bits */
|
|
bits = 10;
|
|
info->zs_channel->curregs[3] |= Rx8;
|
|
info->zs_channel->curregs[5] |= Tx8;
|
|
break;
|
|
}
|
|
|
|
info->timeout = ((info->xmit_fifo_size*HZ*bits) / info->zs_baud);
|
|
info->timeout += HZ/50; /* Add .02 seconds of slop */
|
|
|
|
info->zs_channel->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN);
|
|
if (cflag & CSTOPB) {
|
|
info->zs_channel->curregs[4] |= SB2;
|
|
} else {
|
|
info->zs_channel->curregs[4] |= SB1;
|
|
}
|
|
if (cflag & PARENB) {
|
|
info->zs_channel->curregs[4] |= PAR_ENA;
|
|
}
|
|
if (!(cflag & PARODD)) {
|
|
info->zs_channel->curregs[4] |= PAR_EVEN;
|
|
}
|
|
|
|
if (!(cflag & CLOCAL)) {
|
|
if (!(info->zs_channel->curregs[15] & DCDIE))
|
|
info->read_reg_zero = read_zsreg(info->zs_channel, 0);
|
|
info->zs_channel->curregs[15] |= DCDIE;
|
|
} else
|
|
info->zs_channel->curregs[15] &= ~DCDIE;
|
|
if (cflag & CRTSCTS) {
|
|
info->zs_channel->curregs[15] |= CTSIE;
|
|
if ((read_zsreg(info->zs_channel, 0) & CTS) == 0)
|
|
info->tx_stopped = 1;
|
|
} else {
|
|
info->zs_channel->curregs[15] &= ~CTSIE;
|
|
info->tx_stopped = 0;
|
|
}
|
|
|
|
/* Load up the new values */
|
|
load_zsregs(info->zs_channel, info->zs_channel->curregs);
|
|
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
}
|
|
|
|
static void rs_flush_chars(struct tty_struct *tty)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *)tty->driver_data;
|
|
unsigned long flags;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_flush_chars"))
|
|
return;
|
|
|
|
if (info->xmit_cnt <= 0 || tty->stopped || info->tx_stopped ||
|
|
!info->xmit_buf)
|
|
return;
|
|
|
|
/* Enable transmitter */
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
transmit_chars(info);
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
}
|
|
|
|
static int rs_write(struct tty_struct * tty,
|
|
const unsigned char *buf, int count)
|
|
{
|
|
int c, total = 0;
|
|
struct dec_serial *info = (struct dec_serial *)tty->driver_data;
|
|
unsigned long flags;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_write"))
|
|
return 0;
|
|
|
|
if (!tty || !info->xmit_buf)
|
|
return 0;
|
|
|
|
while (1) {
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
c = min(count, min(SERIAL_XMIT_SIZE - info->xmit_cnt - 1,
|
|
SERIAL_XMIT_SIZE - info->xmit_head));
|
|
if (c <= 0)
|
|
break;
|
|
|
|
memcpy(info->xmit_buf + info->xmit_head, buf, c);
|
|
info->xmit_head = (info->xmit_head + c) & (SERIAL_XMIT_SIZE-1);
|
|
info->xmit_cnt += c;
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
buf += c;
|
|
count -= c;
|
|
total += c;
|
|
}
|
|
|
|
if (info->xmit_cnt && !tty->stopped && !info->tx_stopped
|
|
&& !info->tx_active)
|
|
transmit_chars(info);
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
return total;
|
|
}
|
|
|
|
static int rs_write_room(struct tty_struct *tty)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *)tty->driver_data;
|
|
int ret;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_write_room"))
|
|
return 0;
|
|
ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1;
|
|
if (ret < 0)
|
|
ret = 0;
|
|
return ret;
|
|
}
|
|
|
|
static int rs_chars_in_buffer(struct tty_struct *tty)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *)tty->driver_data;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_chars_in_buffer"))
|
|
return 0;
|
|
return info->xmit_cnt;
|
|
}
|
|
|
|
static void rs_flush_buffer(struct tty_struct *tty)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *)tty->driver_data;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_flush_buffer"))
|
|
return;
|
|
spin_lock_irq(&zs_lock);
|
|
info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
|
|
spin_unlock_irq(&zs_lock);
|
|
tty_wakeup(tty);
|
|
}
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* rs_throttle()
|
|
*
|
|
* This routine is called by the upper-layer tty layer to signal that
|
|
* incoming characters should be throttled.
|
|
* ------------------------------------------------------------
|
|
*/
|
|
static void rs_throttle(struct tty_struct * tty)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *)tty->driver_data;
|
|
unsigned long flags;
|
|
|
|
#ifdef SERIAL_DEBUG_THROTTLE
|
|
char buf[64];
|
|
|
|
printk("throttle %s: %d....\n", _tty_name(tty, buf),
|
|
tty->ldisc.chars_in_buffer(tty));
|
|
#endif
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_throttle"))
|
|
return;
|
|
|
|
if (I_IXOFF(tty)) {
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
info->x_char = STOP_CHAR(tty);
|
|
if (!info->tx_active)
|
|
transmit_chars(info);
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
}
|
|
|
|
if (C_CRTSCTS(tty)) {
|
|
zs_rtsdtr(info, RTS, 0);
|
|
}
|
|
}
|
|
|
|
static void rs_unthrottle(struct tty_struct * tty)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *)tty->driver_data;
|
|
unsigned long flags;
|
|
|
|
#ifdef SERIAL_DEBUG_THROTTLE
|
|
char buf[64];
|
|
|
|
printk("unthrottle %s: %d....\n", _tty_name(tty, buf),
|
|
tty->ldisc.chars_in_buffer(tty));
|
|
#endif
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_unthrottle"))
|
|
return;
|
|
|
|
if (I_IXOFF(tty)) {
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
if (info->x_char)
|
|
info->x_char = 0;
|
|
else {
|
|
info->x_char = START_CHAR(tty);
|
|
if (!info->tx_active)
|
|
transmit_chars(info);
|
|
}
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
}
|
|
|
|
if (C_CRTSCTS(tty)) {
|
|
zs_rtsdtr(info, RTS, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* rs_ioctl() and friends
|
|
* ------------------------------------------------------------
|
|
*/
|
|
|
|
static int get_serial_info(struct dec_serial * info,
|
|
struct serial_struct * retinfo)
|
|
{
|
|
struct serial_struct tmp;
|
|
|
|
if (!retinfo)
|
|
return -EFAULT;
|
|
memset(&tmp, 0, sizeof(tmp));
|
|
tmp.type = info->type;
|
|
tmp.line = info->line;
|
|
tmp.port = info->port;
|
|
tmp.irq = info->irq;
|
|
tmp.flags = info->flags;
|
|
tmp.baud_base = info->baud_base;
|
|
tmp.close_delay = info->close_delay;
|
|
tmp.closing_wait = info->closing_wait;
|
|
tmp.custom_divisor = info->custom_divisor;
|
|
return copy_to_user(retinfo,&tmp,sizeof(*retinfo)) ? -EFAULT : 0;
|
|
}
|
|
|
|
static int set_serial_info(struct dec_serial * info,
|
|
struct serial_struct * new_info)
|
|
{
|
|
struct serial_struct new_serial;
|
|
struct dec_serial old_info;
|
|
int retval = 0;
|
|
|
|
if (!new_info)
|
|
return -EFAULT;
|
|
copy_from_user(&new_serial,new_info,sizeof(new_serial));
|
|
old_info = *info;
|
|
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
if ((new_serial.baud_base != info->baud_base) ||
|
|
(new_serial.type != info->type) ||
|
|
(new_serial.close_delay != info->close_delay) ||
|
|
((new_serial.flags & ~ZILOG_USR_MASK) !=
|
|
(info->flags & ~ZILOG_USR_MASK)))
|
|
return -EPERM;
|
|
info->flags = ((info->flags & ~ZILOG_USR_MASK) |
|
|
(new_serial.flags & ZILOG_USR_MASK));
|
|
info->custom_divisor = new_serial.custom_divisor;
|
|
goto check_and_exit;
|
|
}
|
|
|
|
if (info->count > 1)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* OK, past this point, all the error checking has been done.
|
|
* At this point, we start making changes.....
|
|
*/
|
|
|
|
info->baud_base = new_serial.baud_base;
|
|
info->flags = ((info->flags & ~ZILOG_FLAGS) |
|
|
(new_serial.flags & ZILOG_FLAGS));
|
|
info->type = new_serial.type;
|
|
info->close_delay = new_serial.close_delay;
|
|
info->closing_wait = new_serial.closing_wait;
|
|
|
|
check_and_exit:
|
|
retval = zs_startup(info);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* get_lsr_info - get line status register info
|
|
*
|
|
* Purpose: Let user call ioctl() to get info when the UART physically
|
|
* is emptied. On bus types like RS485, the transmitter must
|
|
* release the bus after transmitting. This must be done when
|
|
* the transmit shift register is empty, not be done when the
|
|
* transmit holding register is empty. This functionality
|
|
* allows an RS485 driver to be written in user space.
|
|
*/
|
|
static int get_lsr_info(struct dec_serial * info, unsigned int *value)
|
|
{
|
|
unsigned char status;
|
|
|
|
spin_lock(&zs_lock);
|
|
status = read_zsreg(info->zs_channel, 0);
|
|
spin_unlock_irq(&zs_lock);
|
|
put_user(status,value);
|
|
return 0;
|
|
}
|
|
|
|
static int rs_tiocmget(struct tty_struct *tty, struct file *file)
|
|
{
|
|
struct dec_serial * info = (struct dec_serial *)tty->driver_data;
|
|
unsigned char control, status_a, status_b;
|
|
unsigned int result;
|
|
|
|
if (info->hook)
|
|
return -ENODEV;
|
|
|
|
if (serial_paranoia_check(info, tty->name, __FUNCTION__))
|
|
return -ENODEV;
|
|
|
|
if (tty->flags & (1 << TTY_IO_ERROR))
|
|
return -EIO;
|
|
|
|
if (info->zs_channel == info->zs_chan_a)
|
|
result = 0;
|
|
else {
|
|
spin_lock(&zs_lock);
|
|
control = info->zs_chan_a->curregs[5];
|
|
status_a = read_zsreg(info->zs_chan_a, 0);
|
|
status_b = read_zsreg(info->zs_channel, 0);
|
|
spin_unlock_irq(&zs_lock);
|
|
result = ((control & RTS) ? TIOCM_RTS: 0)
|
|
| ((control & DTR) ? TIOCM_DTR: 0)
|
|
| ((status_b & DCD) ? TIOCM_CAR: 0)
|
|
| ((status_a & DCD) ? TIOCM_RNG: 0)
|
|
| ((status_a & SYNC_HUNT) ? TIOCM_DSR: 0)
|
|
| ((status_b & CTS) ? TIOCM_CTS: 0);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int rs_tiocmset(struct tty_struct *tty, struct file *file,
|
|
unsigned int set, unsigned int clear)
|
|
{
|
|
struct dec_serial * info = (struct dec_serial *)tty->driver_data;
|
|
|
|
if (info->hook)
|
|
return -ENODEV;
|
|
|
|
if (serial_paranoia_check(info, tty->name, __FUNCTION__))
|
|
return -ENODEV;
|
|
|
|
if (tty->flags & (1 << TTY_IO_ERROR))
|
|
return -EIO;
|
|
|
|
if (info->zs_channel == info->zs_chan_a)
|
|
return 0;
|
|
|
|
spin_lock(&zs_lock);
|
|
if (set & TIOCM_RTS)
|
|
info->zs_chan_a->curregs[5] |= RTS;
|
|
if (set & TIOCM_DTR)
|
|
info->zs_chan_a->curregs[5] |= DTR;
|
|
if (clear & TIOCM_RTS)
|
|
info->zs_chan_a->curregs[5] &= ~RTS;
|
|
if (clear & TIOCM_DTR)
|
|
info->zs_chan_a->curregs[5] &= ~DTR;
|
|
write_zsreg(info->zs_chan_a, 5, info->zs_chan_a->curregs[5]);
|
|
spin_unlock_irq(&zs_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* rs_break - turn transmit break condition on/off
|
|
*/
|
|
static void rs_break(struct tty_struct *tty, int break_state)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *) tty->driver_data;
|
|
unsigned long flags;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_break"))
|
|
return;
|
|
if (!info->port)
|
|
return;
|
|
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
if (break_state == -1)
|
|
info->zs_channel->curregs[5] |= SND_BRK;
|
|
else
|
|
info->zs_channel->curregs[5] &= ~SND_BRK;
|
|
write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]);
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
}
|
|
|
|
static int rs_ioctl(struct tty_struct *tty, struct file * file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct dec_serial * info = (struct dec_serial *)tty->driver_data;
|
|
|
|
if (info->hook)
|
|
return -ENODEV;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_ioctl"))
|
|
return -ENODEV;
|
|
|
|
if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
|
|
(cmd != TIOCSERCONFIG) && (cmd != TIOCSERGWILD) &&
|
|
(cmd != TIOCSERSWILD) && (cmd != TIOCSERGSTRUCT)) {
|
|
if (tty->flags & (1 << TTY_IO_ERROR))
|
|
return -EIO;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case TIOCGSERIAL:
|
|
if (!access_ok(VERIFY_WRITE, (void *)arg,
|
|
sizeof(struct serial_struct)))
|
|
return -EFAULT;
|
|
return get_serial_info(info, (struct serial_struct *)arg);
|
|
|
|
case TIOCSSERIAL:
|
|
return set_serial_info(info, (struct serial_struct *)arg);
|
|
|
|
case TIOCSERGETLSR: /* Get line status register */
|
|
if (!access_ok(VERIFY_WRITE, (void *)arg,
|
|
sizeof(unsigned int)))
|
|
return -EFAULT;
|
|
return get_lsr_info(info, (unsigned int *)arg);
|
|
|
|
case TIOCSERGSTRUCT:
|
|
if (!access_ok(VERIFY_WRITE, (void *)arg,
|
|
sizeof(struct dec_serial)))
|
|
return -EFAULT;
|
|
copy_from_user((struct dec_serial *)arg, info,
|
|
sizeof(struct dec_serial));
|
|
return 0;
|
|
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *)tty->driver_data;
|
|
int was_stopped;
|
|
|
|
if (tty->termios->c_cflag == old_termios->c_cflag)
|
|
return;
|
|
was_stopped = info->tx_stopped;
|
|
|
|
change_speed(info);
|
|
|
|
if (was_stopped && !info->tx_stopped)
|
|
rs_start(tty);
|
|
}
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* rs_close()
|
|
*
|
|
* This routine is called when the serial port gets closed.
|
|
* Wait for the last remaining data to be sent.
|
|
* ------------------------------------------------------------
|
|
*/
|
|
static void rs_close(struct tty_struct *tty, struct file * filp)
|
|
{
|
|
struct dec_serial * info = (struct dec_serial *)tty->driver_data;
|
|
unsigned long flags;
|
|
|
|
if (!info || serial_paranoia_check(info, tty->name, "rs_close"))
|
|
return;
|
|
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
|
|
if (tty_hung_up_p(filp)) {
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
return;
|
|
}
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("rs_close ttyS%d, count = %d\n", info->line, info->count);
|
|
#endif
|
|
if ((tty->count == 1) && (info->count != 1)) {
|
|
/*
|
|
* Uh, oh. tty->count is 1, which means that the tty
|
|
* structure will be freed. Info->count should always
|
|
* be one in these conditions. If it's greater than
|
|
* one, we've got real problems, since it means the
|
|
* serial port won't be shutdown.
|
|
*/
|
|
printk("rs_close: bad serial port count; tty->count is 1, "
|
|
"info->count is %d\n", info->count);
|
|
info->count = 1;
|
|
}
|
|
if (--info->count < 0) {
|
|
printk("rs_close: bad serial port count for ttyS%d: %d\n",
|
|
info->line, info->count);
|
|
info->count = 0;
|
|
}
|
|
if (info->count) {
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
return;
|
|
}
|
|
info->flags |= ZILOG_CLOSING;
|
|
/*
|
|
* Now we wait for the transmit buffer to clear; and we notify
|
|
* the line discipline to only process XON/XOFF characters.
|
|
*/
|
|
tty->closing = 1;
|
|
if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE)
|
|
tty_wait_until_sent(tty, info->closing_wait);
|
|
/*
|
|
* At this point we stop accepting input. To do this, we
|
|
* disable the receiver and receive interrupts.
|
|
*/
|
|
info->zs_channel->curregs[3] &= ~RxENABLE;
|
|
write_zsreg(info->zs_channel, 3, info->zs_channel->curregs[3]);
|
|
info->zs_channel->curregs[1] = 0; /* disable any rx ints */
|
|
write_zsreg(info->zs_channel, 1, info->zs_channel->curregs[1]);
|
|
ZS_CLEARFIFO(info->zs_channel);
|
|
if (info->flags & ZILOG_INITIALIZED) {
|
|
/*
|
|
* Before we drop DTR, make sure the SCC transmitter
|
|
* has completely drained.
|
|
*/
|
|
rs_wait_until_sent(tty, info->timeout);
|
|
}
|
|
|
|
shutdown(info);
|
|
if (tty->driver->flush_buffer)
|
|
tty->driver->flush_buffer(tty);
|
|
tty_ldisc_flush(tty);
|
|
tty->closing = 0;
|
|
info->event = 0;
|
|
info->tty = 0;
|
|
if (info->blocked_open) {
|
|
if (info->close_delay) {
|
|
msleep_interruptible(jiffies_to_msecs(info->close_delay));
|
|
}
|
|
wake_up_interruptible(&info->open_wait);
|
|
}
|
|
info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CLOSING);
|
|
wake_up_interruptible(&info->close_wait);
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* rs_wait_until_sent() --- wait until the transmitter is empty
|
|
*/
|
|
static void rs_wait_until_sent(struct tty_struct *tty, int timeout)
|
|
{
|
|
struct dec_serial *info = (struct dec_serial *) tty->driver_data;
|
|
unsigned long orig_jiffies;
|
|
int char_time;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_wait_until_sent"))
|
|
return;
|
|
|
|
orig_jiffies = jiffies;
|
|
/*
|
|
* Set the check interval to be 1/5 of the estimated time to
|
|
* send a single character, and make it at least 1. The check
|
|
* interval should also be less than the timeout.
|
|
*/
|
|
char_time = (info->timeout - HZ/50) / info->xmit_fifo_size;
|
|
char_time = char_time / 5;
|
|
if (char_time == 0)
|
|
char_time = 1;
|
|
if (timeout)
|
|
char_time = min(char_time, timeout);
|
|
while ((read_zsreg(info->zs_channel, 1) & Tx_BUF_EMP) == 0) {
|
|
msleep_interruptible(jiffies_to_msecs(char_time));
|
|
if (signal_pending(current))
|
|
break;
|
|
if (timeout && time_after(jiffies, orig_jiffies + timeout))
|
|
break;
|
|
}
|
|
current->state = TASK_RUNNING;
|
|
}
|
|
|
|
/*
|
|
* rs_hangup() --- called by tty_hangup() when a hangup is signaled.
|
|
*/
|
|
static void rs_hangup(struct tty_struct *tty)
|
|
{
|
|
struct dec_serial * info = (struct dec_serial *)tty->driver_data;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_hangup"))
|
|
return;
|
|
|
|
rs_flush_buffer(tty);
|
|
shutdown(info);
|
|
info->event = 0;
|
|
info->count = 0;
|
|
info->flags &= ~ZILOG_NORMAL_ACTIVE;
|
|
info->tty = 0;
|
|
wake_up_interruptible(&info->open_wait);
|
|
}
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* rs_open() and friends
|
|
* ------------------------------------------------------------
|
|
*/
|
|
static int block_til_ready(struct tty_struct *tty, struct file * filp,
|
|
struct dec_serial *info)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
int retval;
|
|
int do_clocal = 0;
|
|
|
|
/*
|
|
* If the device is in the middle of being closed, then block
|
|
* until it's done, and then try again.
|
|
*/
|
|
if (info->flags & ZILOG_CLOSING) {
|
|
interruptible_sleep_on(&info->close_wait);
|
|
#ifdef SERIAL_DO_RESTART
|
|
return ((info->flags & ZILOG_HUP_NOTIFY) ?
|
|
-EAGAIN : -ERESTARTSYS);
|
|
#else
|
|
return -EAGAIN;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If non-blocking mode is set, or the port is not enabled,
|
|
* then make the check up front and then exit.
|
|
*/
|
|
if ((filp->f_flags & O_NONBLOCK) ||
|
|
(tty->flags & (1 << TTY_IO_ERROR))) {
|
|
info->flags |= ZILOG_NORMAL_ACTIVE;
|
|
return 0;
|
|
}
|
|
|
|
if (tty->termios->c_cflag & CLOCAL)
|
|
do_clocal = 1;
|
|
|
|
/*
|
|
* Block waiting for the carrier detect and the line to become
|
|
* free (i.e., not in use by the callout). While we are in
|
|
* this loop, info->count is dropped by one, so that
|
|
* rs_close() knows when to free things. We restore it upon
|
|
* exit, either normal or abnormal.
|
|
*/
|
|
retval = 0;
|
|
add_wait_queue(&info->open_wait, &wait);
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("block_til_ready before block: ttyS%d, count = %d\n",
|
|
info->line, info->count);
|
|
#endif
|
|
spin_lock(&zs_lock);
|
|
if (!tty_hung_up_p(filp))
|
|
info->count--;
|
|
spin_unlock_irq(&zs_lock);
|
|
info->blocked_open++;
|
|
while (1) {
|
|
spin_lock(&zs_lock);
|
|
if (tty->termios->c_cflag & CBAUD)
|
|
zs_rtsdtr(info, RTS | DTR, 1);
|
|
spin_unlock_irq(&zs_lock);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (tty_hung_up_p(filp) ||
|
|
!(info->flags & ZILOG_INITIALIZED)) {
|
|
#ifdef SERIAL_DO_RESTART
|
|
if (info->flags & ZILOG_HUP_NOTIFY)
|
|
retval = -EAGAIN;
|
|
else
|
|
retval = -ERESTARTSYS;
|
|
#else
|
|
retval = -EAGAIN;
|
|
#endif
|
|
break;
|
|
}
|
|
if (!(info->flags & ZILOG_CLOSING) &&
|
|
(do_clocal || (read_zsreg(info->zs_channel, 0) & DCD)))
|
|
break;
|
|
if (signal_pending(current)) {
|
|
retval = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("block_til_ready blocking: ttyS%d, count = %d\n",
|
|
info->line, info->count);
|
|
#endif
|
|
schedule();
|
|
}
|
|
current->state = TASK_RUNNING;
|
|
remove_wait_queue(&info->open_wait, &wait);
|
|
if (!tty_hung_up_p(filp))
|
|
info->count++;
|
|
info->blocked_open--;
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("block_til_ready after blocking: ttyS%d, count = %d\n",
|
|
info->line, info->count);
|
|
#endif
|
|
if (retval)
|
|
return retval;
|
|
info->flags |= ZILOG_NORMAL_ACTIVE;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine is called whenever a serial port is opened. It
|
|
* enables interrupts for a serial port, linking in its ZILOG structure into
|
|
* the IRQ chain. It also performs the serial-specific
|
|
* initialization for the tty structure.
|
|
*/
|
|
static int rs_open(struct tty_struct *tty, struct file * filp)
|
|
{
|
|
struct dec_serial *info;
|
|
int retval, line;
|
|
|
|
line = tty->index;
|
|
if ((line < 0) || (line >= zs_channels_found))
|
|
return -ENODEV;
|
|
info = zs_soft + line;
|
|
|
|
if (info->hook)
|
|
return -ENODEV;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_open"))
|
|
return -ENODEV;
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("rs_open %s, count = %d\n", tty->name, info->count);
|
|
#endif
|
|
|
|
info->count++;
|
|
tty->driver_data = info;
|
|
info->tty = tty;
|
|
|
|
/*
|
|
* If the port is the middle of closing, bail out now
|
|
*/
|
|
if (tty_hung_up_p(filp) ||
|
|
(info->flags & ZILOG_CLOSING)) {
|
|
if (info->flags & ZILOG_CLOSING)
|
|
interruptible_sleep_on(&info->close_wait);
|
|
#ifdef SERIAL_DO_RESTART
|
|
return ((info->flags & ZILOG_HUP_NOTIFY) ?
|
|
-EAGAIN : -ERESTARTSYS);
|
|
#else
|
|
return -EAGAIN;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Start up serial port
|
|
*/
|
|
retval = zs_startup(info);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = block_til_ready(tty, filp, info);
|
|
if (retval) {
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("rs_open returning after block_til_ready with %d\n",
|
|
retval);
|
|
#endif
|
|
return retval;
|
|
}
|
|
|
|
#ifdef CONFIG_SERIAL_DEC_CONSOLE
|
|
if (sercons.cflag && sercons.index == line) {
|
|
tty->termios->c_cflag = sercons.cflag;
|
|
sercons.cflag = 0;
|
|
change_speed(info);
|
|
}
|
|
#endif
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("rs_open %s successful...", tty->name);
|
|
#endif
|
|
/* tty->low_latency = 1; */
|
|
return 0;
|
|
}
|
|
|
|
/* Finally, routines used to initialize the serial driver. */
|
|
|
|
static void __init show_serial_version(void)
|
|
{
|
|
printk("DECstation Z8530 serial driver version 0.09\n");
|
|
}
|
|
|
|
/* Initialize Z8530s zs_channels
|
|
*/
|
|
|
|
static void __init probe_sccs(void)
|
|
{
|
|
struct dec_serial **pp;
|
|
int i, n, n_chips = 0, n_channels, chip, channel;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* did we get here by accident?
|
|
*/
|
|
if(!BUS_PRESENT) {
|
|
printk("Not on JUNKIO machine, skipping probe_sccs\n");
|
|
return;
|
|
}
|
|
|
|
switch(mips_machtype) {
|
|
#ifdef CONFIG_MACH_DECSTATION
|
|
case MACH_DS5000_2X0:
|
|
case MACH_DS5900:
|
|
n_chips = 2;
|
|
zs_parms = &ds_parms;
|
|
zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0];
|
|
zs_parms->irq1 = dec_interrupt[DEC_IRQ_SCC1];
|
|
break;
|
|
case MACH_DS5000_1XX:
|
|
n_chips = 2;
|
|
zs_parms = &ds_parms;
|
|
zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0];
|
|
zs_parms->irq1 = dec_interrupt[DEC_IRQ_SCC1];
|
|
break;
|
|
case MACH_DS5000_XX:
|
|
n_chips = 1;
|
|
zs_parms = &ds_parms;
|
|
zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0];
|
|
break;
|
|
#endif
|
|
default:
|
|
panic("zs: unsupported bus");
|
|
}
|
|
if (!zs_parms)
|
|
panic("zs: uninitialized parms");
|
|
|
|
pp = &zs_chain;
|
|
|
|
n_channels = 0;
|
|
|
|
for (chip = 0; chip < n_chips; chip++) {
|
|
for (channel = 0; channel <= 1; channel++) {
|
|
/*
|
|
* The sccs reside on the high byte of the 16 bit IOBUS
|
|
*/
|
|
zs_channels[n_channels].control =
|
|
(volatile void *)CKSEG1ADDR(dec_kn_slot_base +
|
|
(0 == chip ? zs_parms->scc0 : zs_parms->scc1) +
|
|
(0 == channel ? zs_parms->channel_a_offset :
|
|
zs_parms->channel_b_offset));
|
|
zs_channels[n_channels].data =
|
|
zs_channels[n_channels].control + 4;
|
|
|
|
#ifndef CONFIG_SERIAL_DEC_CONSOLE
|
|
/*
|
|
* We're called early and memory managment isn't up, yet.
|
|
* Thus request_region would fail.
|
|
*/
|
|
if (!request_region((unsigned long)
|
|
zs_channels[n_channels].control,
|
|
ZS_CHAN_IO_SIZE, "SCC"))
|
|
panic("SCC I/O region is not free");
|
|
#endif
|
|
zs_soft[n_channels].zs_channel = &zs_channels[n_channels];
|
|
/* HACK alert! */
|
|
if (!(chip & 1))
|
|
zs_soft[n_channels].irq = zs_parms->irq0;
|
|
else
|
|
zs_soft[n_channels].irq = zs_parms->irq1;
|
|
|
|
/*
|
|
* Identification of channel A. Location of channel A
|
|
* inside chip depends on mapping of internal address
|
|
* the chip decodes channels by.
|
|
* CHANNEL_A_NR returns either 0 (in case of
|
|
* DECstations) or 1 (in case of Baget).
|
|
*/
|
|
if (CHANNEL_A_NR == channel)
|
|
zs_soft[n_channels].zs_chan_a =
|
|
&zs_channels[n_channels+1-2*CHANNEL_A_NR];
|
|
else
|
|
zs_soft[n_channels].zs_chan_a =
|
|
&zs_channels[n_channels];
|
|
|
|
*pp = &zs_soft[n_channels];
|
|
pp = &zs_soft[n_channels].zs_next;
|
|
n_channels++;
|
|
}
|
|
}
|
|
|
|
*pp = 0;
|
|
zs_channels_found = n_channels;
|
|
|
|
for (n = 0; n < zs_channels_found; n++) {
|
|
for (i = 0; i < 16; i++) {
|
|
zs_soft[n].zs_channel->curregs[i] = zs_init_regs[i];
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
for (n = 0; n < zs_channels_found; n++) {
|
|
if (n % 2 == 0) {
|
|
write_zsreg(zs_soft[n].zs_chan_a, R9, FHWRES);
|
|
udelay(10);
|
|
write_zsreg(zs_soft[n].zs_chan_a, R9, 0);
|
|
}
|
|
load_zsregs(zs_soft[n].zs_channel,
|
|
zs_soft[n].zs_channel->curregs);
|
|
}
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
}
|
|
|
|
static struct tty_operations serial_ops = {
|
|
.open = rs_open,
|
|
.close = rs_close,
|
|
.write = rs_write,
|
|
.flush_chars = rs_flush_chars,
|
|
.write_room = rs_write_room,
|
|
.chars_in_buffer = rs_chars_in_buffer,
|
|
.flush_buffer = rs_flush_buffer,
|
|
.ioctl = rs_ioctl,
|
|
.throttle = rs_throttle,
|
|
.unthrottle = rs_unthrottle,
|
|
.set_termios = rs_set_termios,
|
|
.stop = rs_stop,
|
|
.start = rs_start,
|
|
.hangup = rs_hangup,
|
|
.break_ctl = rs_break,
|
|
.wait_until_sent = rs_wait_until_sent,
|
|
.tiocmget = rs_tiocmget,
|
|
.tiocmset = rs_tiocmset,
|
|
};
|
|
|
|
/* zs_init inits the driver */
|
|
int __init zs_init(void)
|
|
{
|
|
int channel, i;
|
|
struct dec_serial *info;
|
|
|
|
if(!BUS_PRESENT)
|
|
return -ENODEV;
|
|
|
|
/* Find out how many Z8530 SCCs we have */
|
|
if (zs_chain == 0)
|
|
probe_sccs();
|
|
serial_driver = alloc_tty_driver(zs_channels_found);
|
|
if (!serial_driver)
|
|
return -ENOMEM;
|
|
|
|
show_serial_version();
|
|
|
|
/* Initialize the tty_driver structure */
|
|
/* Not all of this is exactly right for us. */
|
|
|
|
serial_driver->owner = THIS_MODULE;
|
|
serial_driver->name = "ttyS";
|
|
serial_driver->major = TTY_MAJOR;
|
|
serial_driver->minor_start = 64;
|
|
serial_driver->type = TTY_DRIVER_TYPE_SERIAL;
|
|
serial_driver->subtype = SERIAL_TYPE_NORMAL;
|
|
serial_driver->init_termios = tty_std_termios;
|
|
serial_driver->init_termios.c_cflag =
|
|
B9600 | CS8 | CREAD | HUPCL | CLOCAL;
|
|
serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
|
|
tty_set_operations(serial_driver, &serial_ops);
|
|
|
|
if (tty_register_driver(serial_driver))
|
|
panic("Couldn't register serial driver");
|
|
|
|
for (info = zs_chain, i = 0; info; info = info->zs_next, i++) {
|
|
|
|
/* Needed before interrupts are enabled. */
|
|
info->tty = 0;
|
|
info->x_char = 0;
|
|
|
|
if (info->hook && info->hook->init_info) {
|
|
(*info->hook->init_info)(info);
|
|
continue;
|
|
}
|
|
|
|
info->magic = SERIAL_MAGIC;
|
|
info->port = (int) info->zs_channel->control;
|
|
info->line = i;
|
|
info->custom_divisor = 16;
|
|
info->close_delay = 50;
|
|
info->closing_wait = 3000;
|
|
info->event = 0;
|
|
info->count = 0;
|
|
info->blocked_open = 0;
|
|
tasklet_init(&info->tlet, do_softint, (unsigned long)info);
|
|
init_waitqueue_head(&info->open_wait);
|
|
init_waitqueue_head(&info->close_wait);
|
|
printk("ttyS%02d at 0x%08x (irq = %d) is a Z85C30 SCC\n",
|
|
info->line, info->port, info->irq);
|
|
tty_register_device(serial_driver, info->line, NULL);
|
|
|
|
}
|
|
|
|
for (channel = 0; channel < zs_channels_found; ++channel) {
|
|
zs_soft[channel].clk_divisor = 16;
|
|
zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]);
|
|
|
|
if (request_irq(zs_soft[channel].irq, rs_interrupt, IRQF_SHARED,
|
|
"scc", &zs_soft[channel]))
|
|
printk(KERN_ERR "decserial: can't get irq %d\n",
|
|
zs_soft[channel].irq);
|
|
|
|
if (zs_soft[channel].hook) {
|
|
zs_startup(&zs_soft[channel]);
|
|
if (zs_soft[channel].hook->init_channel)
|
|
(*zs_soft[channel].hook->init_channel)
|
|
(&zs_soft[channel]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* polling I/O routines
|
|
*/
|
|
static int zs_poll_tx_char(void *handle, unsigned char ch)
|
|
{
|
|
struct dec_serial *info = handle;
|
|
struct dec_zschannel *chan = info->zs_channel;
|
|
int ret;
|
|
|
|
if(chan) {
|
|
int loops = 10000;
|
|
|
|
while (loops && !(read_zsreg(chan, 0) & Tx_BUF_EMP))
|
|
loops--;
|
|
|
|
if (loops) {
|
|
write_zsdata(chan, ch);
|
|
ret = 0;
|
|
} else
|
|
ret = -EAGAIN;
|
|
|
|
return ret;
|
|
} else
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int zs_poll_rx_char(void *handle)
|
|
{
|
|
struct dec_serial *info = handle;
|
|
struct dec_zschannel *chan = info->zs_channel;
|
|
int ret;
|
|
|
|
if(chan) {
|
|
int loops = 10000;
|
|
|
|
while (loops && !(read_zsreg(chan, 0) & Rx_CH_AV))
|
|
loops--;
|
|
|
|
if (loops)
|
|
ret = read_zsdata(chan);
|
|
else
|
|
ret = -EAGAIN;
|
|
|
|
return ret;
|
|
} else
|
|
return -ENODEV;
|
|
}
|
|
|
|
int register_zs_hook(unsigned int channel, struct dec_serial_hook *hook)
|
|
{
|
|
struct dec_serial *info = &zs_soft[channel];
|
|
|
|
if (info->hook) {
|
|
printk("%s: line %d has already a hook registered\n",
|
|
__FUNCTION__, channel);
|
|
|
|
return 0;
|
|
} else {
|
|
hook->poll_rx_char = zs_poll_rx_char;
|
|
hook->poll_tx_char = zs_poll_tx_char;
|
|
info->hook = hook;
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int unregister_zs_hook(unsigned int channel)
|
|
{
|
|
struct dec_serial *info = &zs_soft[channel];
|
|
|
|
if (info->hook) {
|
|
info->hook = NULL;
|
|
return 1;
|
|
} else {
|
|
printk("%s: trying to unregister hook on line %d,"
|
|
" but none is registered\n", __FUNCTION__, channel);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* Serial console driver
|
|
* ------------------------------------------------------------
|
|
*/
|
|
#ifdef CONFIG_SERIAL_DEC_CONSOLE
|
|
|
|
|
|
/*
|
|
* Print a string to the serial port trying not to disturb
|
|
* any possible real use of the port...
|
|
*/
|
|
static void serial_console_write(struct console *co, const char *s,
|
|
unsigned count)
|
|
{
|
|
struct dec_serial *info;
|
|
int i;
|
|
|
|
info = zs_soft + co->index;
|
|
|
|
for (i = 0; i < count; i++, s++) {
|
|
if(*s == '\n')
|
|
zs_poll_tx_char(info, '\r');
|
|
zs_poll_tx_char(info, *s);
|
|
}
|
|
}
|
|
|
|
static struct tty_driver *serial_console_device(struct console *c, int *index)
|
|
{
|
|
*index = c->index;
|
|
return serial_driver;
|
|
}
|
|
|
|
/*
|
|
* Setup initial baud/bits/parity. We do two things here:
|
|
* - construct a cflag setting for the first rs_open()
|
|
* - initialize the serial port
|
|
* Return non-zero if we didn't find a serial port.
|
|
*/
|
|
static int __init serial_console_setup(struct console *co, char *options)
|
|
{
|
|
struct dec_serial *info;
|
|
int baud = 9600;
|
|
int bits = 8;
|
|
int parity = 'n';
|
|
int cflag = CREAD | HUPCL | CLOCAL;
|
|
int clk_divisor = 16;
|
|
int brg;
|
|
char *s;
|
|
unsigned long flags;
|
|
|
|
if(!BUS_PRESENT)
|
|
return -ENODEV;
|
|
|
|
info = zs_soft + co->index;
|
|
|
|
if (zs_chain == 0)
|
|
probe_sccs();
|
|
|
|
info->is_cons = 1;
|
|
|
|
if (options) {
|
|
baud = simple_strtoul(options, NULL, 10);
|
|
s = options;
|
|
while(*s >= '0' && *s <= '9')
|
|
s++;
|
|
if (*s)
|
|
parity = *s++;
|
|
if (*s)
|
|
bits = *s - '0';
|
|
}
|
|
|
|
/*
|
|
* Now construct a cflag setting.
|
|
*/
|
|
switch(baud) {
|
|
case 1200:
|
|
cflag |= B1200;
|
|
break;
|
|
case 2400:
|
|
cflag |= B2400;
|
|
break;
|
|
case 4800:
|
|
cflag |= B4800;
|
|
break;
|
|
case 19200:
|
|
cflag |= B19200;
|
|
break;
|
|
case 38400:
|
|
cflag |= B38400;
|
|
break;
|
|
case 57600:
|
|
cflag |= B57600;
|
|
break;
|
|
case 115200:
|
|
cflag |= B115200;
|
|
break;
|
|
case 9600:
|
|
default:
|
|
cflag |= B9600;
|
|
/*
|
|
* Set this to a sane value to prevent a divide error.
|
|
*/
|
|
baud = 9600;
|
|
break;
|
|
}
|
|
switch(bits) {
|
|
case 7:
|
|
cflag |= CS7;
|
|
break;
|
|
default:
|
|
case 8:
|
|
cflag |= CS8;
|
|
break;
|
|
}
|
|
switch(parity) {
|
|
case 'o': case 'O':
|
|
cflag |= PARODD;
|
|
break;
|
|
case 'e': case 'E':
|
|
cflag |= PARENB;
|
|
break;
|
|
}
|
|
co->cflag = cflag;
|
|
|
|
spin_lock_irqsave(&zs_lock, flags);
|
|
|
|
/*
|
|
* Set up the baud rate generator.
|
|
*/
|
|
brg = BPS_TO_BRG(baud, zs_parms->clock / clk_divisor);
|
|
info->zs_channel->curregs[R12] = (brg & 255);
|
|
info->zs_channel->curregs[R13] = ((brg >> 8) & 255);
|
|
|
|
/*
|
|
* Set byte size and parity.
|
|
*/
|
|
if (bits == 7) {
|
|
info->zs_channel->curregs[R3] |= Rx7;
|
|
info->zs_channel->curregs[R5] |= Tx7;
|
|
} else {
|
|
info->zs_channel->curregs[R3] |= Rx8;
|
|
info->zs_channel->curregs[R5] |= Tx8;
|
|
}
|
|
if (cflag & PARENB) {
|
|
info->zs_channel->curregs[R4] |= PAR_ENA;
|
|
}
|
|
if (!(cflag & PARODD)) {
|
|
info->zs_channel->curregs[R4] |= PAR_EVEN;
|
|
}
|
|
info->zs_channel->curregs[R4] |= SB1;
|
|
|
|
/*
|
|
* Turn on RTS and DTR.
|
|
*/
|
|
zs_rtsdtr(info, RTS | DTR, 1);
|
|
|
|
/*
|
|
* Finally, enable sequencing.
|
|
*/
|
|
info->zs_channel->curregs[R3] |= RxENABLE;
|
|
info->zs_channel->curregs[R5] |= TxENAB;
|
|
|
|
/*
|
|
* Clear the interrupt registers.
|
|
*/
|
|
write_zsreg(info->zs_channel, R0, ERR_RES);
|
|
write_zsreg(info->zs_channel, R0, RES_H_IUS);
|
|
|
|
/*
|
|
* Load up the new values.
|
|
*/
|
|
load_zsregs(info->zs_channel, info->zs_channel->curregs);
|
|
|
|
/* Save the current value of RR0 */
|
|
info->read_reg_zero = read_zsreg(info->zs_channel, R0);
|
|
|
|
zs_soft[co->index].clk_divisor = clk_divisor;
|
|
zs_soft[co->index].zs_baud = get_zsbaud(&zs_soft[co->index]);
|
|
|
|
spin_unlock_irqrestore(&zs_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct console sercons = {
|
|
.name = "ttyS",
|
|
.write = serial_console_write,
|
|
.device = serial_console_device,
|
|
.setup = serial_console_setup,
|
|
.flags = CON_PRINTBUFFER,
|
|
.index = -1,
|
|
};
|
|
|
|
/*
|
|
* Register console.
|
|
*/
|
|
void __init zs_serial_console_init(void)
|
|
{
|
|
register_console(&sercons);
|
|
}
|
|
#endif /* ifdef CONFIG_SERIAL_DEC_CONSOLE */
|
|
|
|
#ifdef CONFIG_KGDB
|
|
struct dec_zschannel *zs_kgdbchan;
|
|
static unsigned char scc_inittab[] = {
|
|
9, 0x80, /* reset A side (CHRA) */
|
|
13, 0, /* set baud rate divisor */
|
|
12, 1,
|
|
14, 1, /* baud rate gen enable, src=rtxc (BRENABL) */
|
|
11, 0x50, /* clocks = br gen (RCBR | TCBR) */
|
|
5, 0x6a, /* tx 8 bits, assert RTS (Tx8 | TxENAB | RTS) */
|
|
4, 0x44, /* x16 clock, 1 stop (SB1 | X16CLK)*/
|
|
3, 0xc1, /* rx enable, 8 bits (RxENABLE | Rx8)*/
|
|
};
|
|
|
|
/* These are for receiving and sending characters under the kgdb
|
|
* source level kernel debugger.
|
|
*/
|
|
void putDebugChar(char kgdb_char)
|
|
{
|
|
struct dec_zschannel *chan = zs_kgdbchan;
|
|
while ((read_zsreg(chan, 0) & Tx_BUF_EMP) == 0)
|
|
RECOVERY_DELAY;
|
|
write_zsdata(chan, kgdb_char);
|
|
}
|
|
char getDebugChar(void)
|
|
{
|
|
struct dec_zschannel *chan = zs_kgdbchan;
|
|
while((read_zsreg(chan, 0) & Rx_CH_AV) == 0)
|
|
eieio(); /*barrier();*/
|
|
return read_zsdata(chan);
|
|
}
|
|
void kgdb_interruptible(int yes)
|
|
{
|
|
struct dec_zschannel *chan = zs_kgdbchan;
|
|
int one, nine;
|
|
nine = read_zsreg(chan, 9);
|
|
if (yes == 1) {
|
|
one = EXT_INT_ENAB|RxINT_ALL;
|
|
nine |= MIE;
|
|
printk("turning serial ints on\n");
|
|
} else {
|
|
one = RxINT_DISAB;
|
|
nine &= ~MIE;
|
|
printk("turning serial ints off\n");
|
|
}
|
|
write_zsreg(chan, 1, one);
|
|
write_zsreg(chan, 9, nine);
|
|
}
|
|
|
|
static int kgdbhook_init_channel(void *handle)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void kgdbhook_init_info(void *handle)
|
|
{
|
|
}
|
|
|
|
static void kgdbhook_rx_char(void *handle, unsigned char ch, unsigned char fl)
|
|
{
|
|
struct dec_serial *info = handle;
|
|
|
|
if (fl != TTY_NORMAL)
|
|
return;
|
|
if (ch == 0x03 || ch == '$')
|
|
breakpoint();
|
|
}
|
|
|
|
/* This sets up the serial port we're using, and turns on
|
|
* interrupts for that channel, so kgdb is usable once we're done.
|
|
*/
|
|
static inline void kgdb_chaninit(struct dec_zschannel *ms, int intson, int bps)
|
|
{
|
|
int brg;
|
|
int i, x;
|
|
volatile char *sccc = ms->control;
|
|
brg = BPS_TO_BRG(bps, zs_parms->clock/16);
|
|
printk("setting bps on kgdb line to %d [brg=%x]\n", bps, brg);
|
|
for (i = 20000; i != 0; --i) {
|
|
x = *sccc; eieio();
|
|
}
|
|
for (i = 0; i < sizeof(scc_inittab); ++i) {
|
|
write_zsreg(ms, scc_inittab[i], scc_inittab[i+1]);
|
|
i++;
|
|
}
|
|
}
|
|
/* This is called at boot time to prime the kgdb serial debugging
|
|
* serial line. The 'tty_num' argument is 0 for /dev/ttya and 1
|
|
* for /dev/ttyb which is determined in setup_arch() from the
|
|
* boot command line flags.
|
|
*/
|
|
struct dec_serial_hook zs_kgdbhook = {
|
|
.init_channel = kgdbhook_init_channel,
|
|
.init_info = kgdbhook_init_info,
|
|
.rx_char = kgdbhook_rx_char,
|
|
.cflags = B38400 | CS8 | CLOCAL,
|
|
}
|
|
|
|
void __init zs_kgdb_hook(int tty_num)
|
|
{
|
|
/* Find out how many Z8530 SCCs we have */
|
|
if (zs_chain == 0)
|
|
probe_sccs();
|
|
zs_soft[tty_num].zs_channel = &zs_channels[tty_num];
|
|
zs_kgdbchan = zs_soft[tty_num].zs_channel;
|
|
zs_soft[tty_num].change_needed = 0;
|
|
zs_soft[tty_num].clk_divisor = 16;
|
|
zs_soft[tty_num].zs_baud = 38400;
|
|
zs_soft[tty_num].hook = &zs_kgdbhook; /* This runs kgdb */
|
|
/* Turn on transmitter/receiver at 8-bits/char */
|
|
kgdb_chaninit(zs_soft[tty_num].zs_channel, 1, 38400);
|
|
printk("KGDB: on channel %d initialized\n", tty_num);
|
|
set_debug_traps(); /* init stub */
|
|
}
|
|
#endif /* ifdef CONFIG_KGDB */
|