412 lines
14 KiB
Plaintext

#
# Generic thermal sysfs drivers configuration
#
menuconfig THERMAL
tristate "Generic Thermal sysfs driver"
help
Generic Thermal Sysfs driver offers a generic mechanism for
thermal management. Usually it's made up of one or more thermal
zone and cooling device.
Each thermal zone contains its own temperature, trip points,
cooling devices.
All platforms with ACPI thermal support can use this driver.
If you want this support, you should say Y or M here.
if THERMAL
config THERMAL_HWMON
bool
prompt "Expose thermal sensors as hwmon device"
depends on HWMON=y || HWMON=THERMAL
default y
help
In case a sensor is registered with the thermal
framework, this option will also register it
as a hwmon. The sensor will then have the common
hwmon sysfs interface.
Say 'Y' here if you want all thermal sensors to
have hwmon sysfs interface too.
config THERMAL_OF
bool
prompt "APIs to parse thermal data out of device tree"
depends on OF
default y
help
This options provides helpers to add the support to
read and parse thermal data definitions out of the
device tree blob.
Say 'Y' here if you need to build thermal infrastructure
based on device tree.
config THERMAL_WRITABLE_TRIPS
bool "Enable writable trip points"
help
This option allows the system integrator to choose whether
trip temperatures can be changed from userspace. The
writable trips need to be specified when setting up the
thermal zone but the choice here takes precedence.
Say 'Y' here if you would like to allow userspace tools to
change trip temperatures.
choice
prompt "Default Thermal governor"
default THERMAL_DEFAULT_GOV_STEP_WISE
help
This option sets which thermal governor shall be loaded at
startup. If in doubt, select 'step_wise'.
config THERMAL_DEFAULT_GOV_STEP_WISE
bool "step_wise"
select THERMAL_GOV_STEP_WISE
help
Use the step_wise governor as default. This throttles the
devices one step at a time.
config THERMAL_DEFAULT_GOV_FAIR_SHARE
bool "fair_share"
select THERMAL_GOV_FAIR_SHARE
help
Use the fair_share governor as default. This throttles the
devices based on their 'contribution' to a zone. The
contribution should be provided through platform data.
config THERMAL_DEFAULT_GOV_USER_SPACE
bool "user_space"
select THERMAL_GOV_USER_SPACE
help
Select this if you want to let the user space manage the
platform thermals.
config THERMAL_DEFAULT_GOV_POWER_ALLOCATOR
bool "power_allocator"
select THERMAL_GOV_POWER_ALLOCATOR
help
Select this if you want to control temperature based on
system and device power allocation. This governor can only
operate on cooling devices that implement the power API.
endchoice
config THERMAL_GOV_FAIR_SHARE
bool "Fair-share thermal governor"
help
Enable this to manage platform thermals using fair-share governor.
config THERMAL_GOV_STEP_WISE
bool "Step_wise thermal governor"
help
Enable this to manage platform thermals using a simple linear
governor.
config THERMAL_GOV_BANG_BANG
bool "Bang Bang thermal governor"
default n
help
Enable this to manage platform thermals using bang bang governor.
Say 'Y' here if you want to use two point temperature regulation
used for fans without throttling. Some fan drivers depend on this
governor to be enabled (e.g. acerhdf).
config THERMAL_GOV_USER_SPACE
bool "User_space thermal governor"
help
Enable this to let the user space manage the platform thermals.
config THERMAL_GOV_POWER_ALLOCATOR
bool "Power allocator thermal governor"
help
Enable this to manage platform thermals by dynamically
allocating and limiting power to devices.
config CPU_THERMAL
bool "generic cpu cooling support"
depends on CPU_FREQ
depends on THERMAL_OF
help
This implements the generic cpu cooling mechanism through frequency
reduction. An ACPI version of this already exists
(drivers/acpi/processor_thermal.c).
This will be useful for platforms using the generic thermal interface
and not the ACPI interface.
If you want this support, you should say Y here.
config CLOCK_THERMAL
bool "Generic clock cooling support"
depends on COMMON_CLK
depends on PM_OPP
help
This entry implements the generic clock cooling mechanism through
frequency clipping. Typically used to cool off co-processors. The
device that is configured to use this cooling mechanism will be
controlled to reduce clock frequency whenever temperature is high.
config DEVFREQ_THERMAL
bool "Generic device cooling support"
depends on PM_DEVFREQ
depends on PM_OPP
help
This implements the generic devfreq cooling mechanism through
frequency reduction for devices using devfreq.
This will throttle the device by limiting the maximum allowed DVFS
frequency corresponding to the cooling level.
In order to use the power extensions of the cooling device,
devfreq should use the simple_ondemand governor.
If you want this support, you should say Y here.
config THERMAL_EMULATION
bool "Thermal emulation mode support"
help
Enable this option to make a emul_temp sysfs node in thermal zone
directory to support temperature emulation. With emulation sysfs node,
user can manually input temperature and test the different trip
threshold behaviour for simulation purpose.
WARNING: Be careful while enabling this option on production systems,
because userland can easily disable the thermal policy by simply
flooding this sysfs node with low temperature values.
config HISI_THERMAL
tristate "Hisilicon thermal driver"
depends on (ARCH_HISI && CPU_THERMAL && OF) || COMPILE_TEST
depends on HAS_IOMEM
help
Enable this to plug hisilicon's thermal sensor driver into the Linux
thermal framework. cpufreq is used as the cooling device to throttle
CPUs when the passive trip is crossed.
config IMX_THERMAL
tristate "Temperature sensor driver for Freescale i.MX SoCs"
depends on CPU_THERMAL
depends on MFD_SYSCON
depends on OF
help
Support for Temperature Monitor (TEMPMON) found on Freescale i.MX SoCs.
It supports one critical trip point and one passive trip point. The
cpufreq is used as the cooling device to throttle CPUs when the
passive trip is crossed.
config SPEAR_THERMAL
tristate "SPEAr thermal sensor driver"
depends on PLAT_SPEAR || COMPILE_TEST
depends on HAS_IOMEM
depends on OF
help
Enable this to plug the SPEAr thermal sensor driver into the Linux
thermal framework.
config ROCKCHIP_THERMAL
tristate "Rockchip thermal driver"
depends on ARCH_ROCKCHIP || COMPILE_TEST
depends on RESET_CONTROLLER
depends on HAS_IOMEM
help
Rockchip thermal driver provides support for Temperature sensor
ADC (TS-ADC) found on Rockchip SoCs. It supports one critical
trip point. Cpufreq is used as the cooling device and will throttle
CPUs when the Temperature crosses the passive trip point.
config RCAR_THERMAL
tristate "Renesas R-Car thermal driver"
depends on ARCH_RENESAS || COMPILE_TEST
depends on HAS_IOMEM
help
Enable this to plug the R-Car thermal sensor driver into the Linux
thermal framework.
config KIRKWOOD_THERMAL
tristate "Temperature sensor on Marvell Kirkwood SoCs"
depends on MACH_KIRKWOOD || COMPILE_TEST
depends on HAS_IOMEM
depends on OF
help
Support for the Kirkwood thermal sensor driver into the Linux thermal
framework. Only kirkwood 88F6282 and 88F6283 have this sensor.
config DOVE_THERMAL
tristate "Temperature sensor on Marvell Dove SoCs"
depends on ARCH_DOVE || MACH_DOVE || COMPILE_TEST
depends on HAS_IOMEM
depends on OF
help
Support for the Dove thermal sensor driver in the Linux thermal
framework.
config DB8500_THERMAL
tristate "DB8500 thermal management"
depends on MFD_DB8500_PRCMU
default y
help
Adds DB8500 thermal management implementation according to the thermal
management framework. A thermal zone with several trip points will be
created. Cooling devices can be bound to the trip points to cool this
thermal zone if trip points reached.
config ARMADA_THERMAL
tristate "Armada 370/XP thermal management"
depends on ARCH_MVEBU || COMPILE_TEST
depends on HAS_IOMEM
depends on OF
help
Enable this option if you want to have support for thermal management
controller present in Armada 370 and Armada XP SoC.
config TEGRA_SOCTHERM
tristate "Tegra SOCTHERM thermal management"
depends on ARCH_TEGRA
help
Enable this option for integrated thermal management support on NVIDIA
Tegra124 systems-on-chip. The driver supports four thermal zones
(CPU, GPU, MEM, PLLX). Cooling devices can be bound to the thermal
zones to manage temperatures. This option is also required for the
emergency thermal reset (thermtrip) feature to function.
config DB8500_CPUFREQ_COOLING
tristate "DB8500 cpufreq cooling"
depends on ARCH_U8500 || COMPILE_TEST
depends on HAS_IOMEM
depends on CPU_THERMAL
default y
help
Adds DB8500 cpufreq cooling devices, and these cooling devices can be
bound to thermal zone trip points. When a trip point reached, the
bound cpufreq cooling device turns active to set CPU frequency low to
cool down the CPU.
config INTEL_POWERCLAMP
tristate "Intel PowerClamp idle injection driver"
depends on THERMAL
depends on X86
depends on CPU_SUP_INTEL
help
Enable this to enable Intel PowerClamp idle injection driver. This
enforce idle time which results in more package C-state residency. The
user interface is exposed via generic thermal framework.
config X86_PKG_TEMP_THERMAL
tristate "X86 package temperature thermal driver"
depends on X86_THERMAL_VECTOR
select THERMAL_GOV_USER_SPACE
select THERMAL_WRITABLE_TRIPS
default m
help
Enable this to register CPU digital sensor for package temperature as
thermal zone. Each package will have its own thermal zone. There are
two trip points which can be set by user to get notifications via thermal
notification methods.
config INTEL_SOC_DTS_IOSF_CORE
tristate
depends on X86
select IOSF_MBI
help
This is becoming a common feature for Intel SoCs to expose the additional
digital temperature sensors (DTSs) using side band interface (IOSF). This
implements the common set of helper functions to register, get temperature
and get/set thresholds on DTSs.
config INTEL_SOC_DTS_THERMAL
tristate "Intel SoCs DTS thermal driver"
depends on X86
select INTEL_SOC_DTS_IOSF_CORE
select THERMAL_WRITABLE_TRIPS
help
Enable this to register Intel SoCs (e.g. Bay Trail) platform digital
temperature sensor (DTS). These SoCs have two additional DTSs in
addition to DTSs on CPU cores. Each DTS will be registered as a
thermal zone. There are two trip points. One of the trip point can
be set by user mode programs to get notifications via Linux thermal
notification methods.The other trip is a critical trip point, which
was set by the driver based on the TJ MAX temperature.
config INTEL_QUARK_DTS_THERMAL
tristate "Intel Quark DTS thermal driver"
depends on X86_INTEL_QUARK
help
Enable this to register Intel Quark SoC (e.g. X1000) platform digital
temperature sensor (DTS). For X1000 SoC, it has one on-die DTS.
The DTS will be registered as a thermal zone. There are two trip points:
hot & critical. The critical trip point default value is set by
underlying BIOS/Firmware.
config INT340X_THERMAL
tristate "ACPI INT340X thermal drivers"
depends on X86 && ACPI
select THERMAL_GOV_USER_SPACE
select ACPI_THERMAL_REL
select ACPI_FAN
select INTEL_SOC_DTS_IOSF_CORE
select THERMAL_WRITABLE_TRIPS
help
Newer laptops and tablets that use ACPI may have thermal sensors and
other devices with thermal control capabilities outside the core
CPU/SOC, for thermal safety reasons.
They are exposed for the OS to use via the INT3400 ACPI device object
as the master, and INT3401~INT340B ACPI device objects as the slaves.
Enable this to expose the temperature information and cooling ability
from these objects to userspace via the normal thermal framework.
This means that a wide range of applications and GUI widgets can show
the information to the user or use this information for making
decisions. For example, the Intel Thermal Daemon can use this
information to allow the user to select his laptop to run without
turning on the fans.
config ACPI_THERMAL_REL
tristate
depends on ACPI
config INTEL_PCH_THERMAL
tristate "Intel PCH Thermal Reporting Driver"
depends on X86 && PCI
help
Enable this to support thermal reporting on certain intel PCHs.
Thermal reporting device will provide temperature reading,
programmable trip points and other information.
config MTK_THERMAL
tristate "Temperature sensor driver for mediatek SoCs"
depends on ARCH_MEDIATEK || COMPILE_TEST
depends on HAS_IOMEM
default y
help
Enable this option if you want to have support for thermal management
controller present in Mediatek SoCs
menu "Texas Instruments thermal drivers"
depends on ARCH_HAS_BANDGAP || COMPILE_TEST
depends on HAS_IOMEM
source "drivers/thermal/ti-soc-thermal/Kconfig"
endmenu
menu "Samsung thermal drivers"
depends on ARCH_EXYNOS || COMPILE_TEST
source "drivers/thermal/samsung/Kconfig"
endmenu
menu "STMicroelectronics thermal drivers"
depends on ARCH_STI && OF
source "drivers/thermal/st/Kconfig"
endmenu
config QCOM_SPMI_TEMP_ALARM
tristate "Qualcomm SPMI PMIC Temperature Alarm"
depends on OF && SPMI && IIO
select REGMAP_SPMI
help
This enables a thermal sysfs driver for Qualcomm plug-and-play (QPNP)
PMIC devices. It shows up in sysfs as a thermal sensor with multiple
trip points. The temperature reported by the thermal sensor reflects the
real time die temperature if an ADC is present or an estimate of the
temperature based upon the over temperature stage value.
endif