mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-01 23:01:29 +00:00
948882f6b7
Hmm, it looks like the conversion to resource_size_t usage
(3776541d8a
) requires some additional
fixups to cleanup the structure-pointer castings used during IO mapped
accesses to the chip.
There's only a small number of locations, where the driver uses IO
mapped accesses to the hardware, the patch below should take care of
it without introducing to many structural changes to code flow.
Signed-off-by: Andrew Vasquez <andrew.vasquez@qlogic.com>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2224 lines
56 KiB
C
2224 lines
56 KiB
C
/*
|
|
* QLogic Fibre Channel HBA Driver
|
|
* Copyright (c) 2003-2005 QLogic Corporation
|
|
*
|
|
* See LICENSE.qla2xxx for copyright and licensing details.
|
|
*/
|
|
#include "qla_def.h"
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
|
|
static void qla2x00_nv_deselect(scsi_qla_host_t *);
|
|
static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
|
|
|
|
/*
|
|
* NVRAM support routines
|
|
*/
|
|
|
|
/**
|
|
* qla2x00_lock_nvram_access() -
|
|
* @ha: HA context
|
|
*/
|
|
static void
|
|
qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
|
|
{
|
|
uint16_t data;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
|
|
data = RD_REG_WORD(®->nvram);
|
|
while (data & NVR_BUSY) {
|
|
udelay(100);
|
|
data = RD_REG_WORD(®->nvram);
|
|
}
|
|
|
|
/* Lock resource */
|
|
WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1);
|
|
RD_REG_WORD(®->u.isp2300.host_semaphore);
|
|
udelay(5);
|
|
data = RD_REG_WORD(®->u.isp2300.host_semaphore);
|
|
while ((data & BIT_0) == 0) {
|
|
/* Lock failed */
|
|
udelay(100);
|
|
WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1);
|
|
RD_REG_WORD(®->u.isp2300.host_semaphore);
|
|
udelay(5);
|
|
data = RD_REG_WORD(®->u.isp2300.host_semaphore);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* qla2x00_unlock_nvram_access() -
|
|
* @ha: HA context
|
|
*/
|
|
static void
|
|
qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
|
|
{
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
|
|
WRT_REG_WORD(®->u.isp2300.host_semaphore, 0);
|
|
RD_REG_WORD(®->u.isp2300.host_semaphore);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
|
|
* request routine to get the word from NVRAM.
|
|
* @ha: HA context
|
|
* @addr: Address in NVRAM to read
|
|
*
|
|
* Returns the word read from nvram @addr.
|
|
*/
|
|
static uint16_t
|
|
qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
|
|
{
|
|
uint16_t data;
|
|
uint32_t nv_cmd;
|
|
|
|
nv_cmd = addr << 16;
|
|
nv_cmd |= NV_READ_OP;
|
|
data = qla2x00_nvram_request(ha, nv_cmd);
|
|
|
|
return (data);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_write_nvram_word() - Write NVRAM data.
|
|
* @ha: HA context
|
|
* @addr: Address in NVRAM to write
|
|
* @data: word to program
|
|
*/
|
|
static void
|
|
qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
|
|
{
|
|
int count;
|
|
uint16_t word;
|
|
uint32_t nv_cmd, wait_cnt;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, 0);
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Write data */
|
|
nv_cmd = (addr << 16) | NV_WRITE_OP;
|
|
nv_cmd |= data;
|
|
nv_cmd <<= 5;
|
|
for (count = 0; count < 27; count++) {
|
|
if (nv_cmd & BIT_31)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
else
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
nv_cmd <<= 1;
|
|
}
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Wait for NVRAM to become ready */
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
wait_cnt = NVR_WAIT_CNT;
|
|
do {
|
|
if (!--wait_cnt) {
|
|
DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
|
|
__func__, ha->host_no));
|
|
break;
|
|
}
|
|
NVRAM_DELAY();
|
|
word = RD_REG_WORD(®->nvram);
|
|
} while ((word & NVR_DATA_IN) == 0);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Disable writes */
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
for (count = 0; count < 10; count++)
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
}
|
|
|
|
static int
|
|
qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
|
|
uint32_t tmo)
|
|
{
|
|
int ret, count;
|
|
uint16_t word;
|
|
uint32_t nv_cmd;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
ret = QLA_SUCCESS;
|
|
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, 0);
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Write data */
|
|
nv_cmd = (addr << 16) | NV_WRITE_OP;
|
|
nv_cmd |= data;
|
|
nv_cmd <<= 5;
|
|
for (count = 0; count < 27; count++) {
|
|
if (nv_cmd & BIT_31)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
else
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
nv_cmd <<= 1;
|
|
}
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Wait for NVRAM to become ready */
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
do {
|
|
NVRAM_DELAY();
|
|
word = RD_REG_WORD(®->nvram);
|
|
if (!--tmo) {
|
|
ret = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
} while ((word & NVR_DATA_IN) == 0);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Disable writes */
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
for (count = 0; count < 10; count++)
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
|
|
* NVRAM.
|
|
* @ha: HA context
|
|
* @nv_cmd: NVRAM command
|
|
*
|
|
* Bit definitions for NVRAM command:
|
|
*
|
|
* Bit 26 = start bit
|
|
* Bit 25, 24 = opcode
|
|
* Bit 23-16 = address
|
|
* Bit 15-0 = write data
|
|
*
|
|
* Returns the word read from nvram @addr.
|
|
*/
|
|
static uint16_t
|
|
qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
|
|
{
|
|
uint8_t cnt;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
uint16_t data = 0;
|
|
uint16_t reg_data;
|
|
|
|
/* Send command to NVRAM. */
|
|
nv_cmd <<= 5;
|
|
for (cnt = 0; cnt < 11; cnt++) {
|
|
if (nv_cmd & BIT_31)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
else
|
|
qla2x00_nv_write(ha, 0);
|
|
nv_cmd <<= 1;
|
|
}
|
|
|
|
/* Read data from NVRAM. */
|
|
for (cnt = 0; cnt < 16; cnt++) {
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT | NVR_CLOCK);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
data <<= 1;
|
|
reg_data = RD_REG_WORD(®->nvram);
|
|
if (reg_data & NVR_DATA_IN)
|
|
data |= BIT_0;
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
}
|
|
|
|
/* Deselect chip. */
|
|
WRT_REG_WORD(®->nvram, NVR_DESELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
|
|
return (data);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_nv_write() - Clean NVRAM operations.
|
|
* @ha: HA context
|
|
*/
|
|
static void
|
|
qla2x00_nv_deselect(scsi_qla_host_t *ha)
|
|
{
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
WRT_REG_WORD(®->nvram, NVR_DESELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
}
|
|
|
|
/**
|
|
* qla2x00_nv_write() - Prepare for NVRAM read/write operation.
|
|
* @ha: HA context
|
|
* @data: Serial interface selector
|
|
*/
|
|
static void
|
|
qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
|
|
{
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
WRT_REG_WORD(®->nvram, data | NVR_SELECT| NVR_CLOCK |
|
|
NVR_WRT_ENABLE);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
}
|
|
|
|
/**
|
|
* qla2x00_clear_nvram_protection() -
|
|
* @ha: HA context
|
|
*/
|
|
static int
|
|
qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
|
|
{
|
|
int ret, stat;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
uint32_t word, wait_cnt;
|
|
uint16_t wprot, wprot_old;
|
|
|
|
/* Clear NVRAM write protection. */
|
|
ret = QLA_FUNCTION_FAILED;
|
|
|
|
wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
|
|
stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
|
|
__constant_cpu_to_le16(0x1234), 100000);
|
|
wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
|
|
if (stat != QLA_SUCCESS || wprot != 0x1234) {
|
|
/* Write enable. */
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, 0);
|
|
qla2x00_nv_write(ha, 0);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Enable protection register. */
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Clear protection register (ffff is cleared). */
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Wait for NVRAM to become ready. */
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
wait_cnt = NVR_WAIT_CNT;
|
|
do {
|
|
if (!--wait_cnt) {
|
|
DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
|
|
"ready...\n", __func__,
|
|
ha->host_no));
|
|
break;
|
|
}
|
|
NVRAM_DELAY();
|
|
word = RD_REG_WORD(®->nvram);
|
|
} while ((word & NVR_DATA_IN) == 0);
|
|
|
|
if (wait_cnt)
|
|
ret = QLA_SUCCESS;
|
|
} else
|
|
qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
|
|
{
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
uint32_t word, wait_cnt;
|
|
|
|
if (stat != QLA_SUCCESS)
|
|
return;
|
|
|
|
/* Set NVRAM write protection. */
|
|
/* Write enable. */
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, 0);
|
|
qla2x00_nv_write(ha, 0);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Enable protection register. */
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Enable protection register. */
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Wait for NVRAM to become ready. */
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
wait_cnt = NVR_WAIT_CNT;
|
|
do {
|
|
if (!--wait_cnt) {
|
|
DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
|
|
__func__, ha->host_no));
|
|
break;
|
|
}
|
|
NVRAM_DELAY();
|
|
word = RD_REG_WORD(®->nvram);
|
|
} while ((word & NVR_DATA_IN) == 0);
|
|
}
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Flash Manipulation Routines */
|
|
/*****************************************************************************/
|
|
|
|
#define OPTROM_BURST_SIZE 0x1000
|
|
#define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4)
|
|
|
|
static inline uint32_t
|
|
flash_conf_to_access_addr(uint32_t faddr)
|
|
{
|
|
return FARX_ACCESS_FLASH_CONF | faddr;
|
|
}
|
|
|
|
static inline uint32_t
|
|
flash_data_to_access_addr(uint32_t faddr)
|
|
{
|
|
return FARX_ACCESS_FLASH_DATA | faddr;
|
|
}
|
|
|
|
static inline uint32_t
|
|
nvram_conf_to_access_addr(uint32_t naddr)
|
|
{
|
|
return FARX_ACCESS_NVRAM_CONF | naddr;
|
|
}
|
|
|
|
static inline uint32_t
|
|
nvram_data_to_access_addr(uint32_t naddr)
|
|
{
|
|
return FARX_ACCESS_NVRAM_DATA | naddr;
|
|
}
|
|
|
|
static uint32_t
|
|
qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
|
|
{
|
|
int rval;
|
|
uint32_t cnt, data;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
WRT_REG_DWORD(®->flash_addr, addr & ~FARX_DATA_FLAG);
|
|
/* Wait for READ cycle to complete. */
|
|
rval = QLA_SUCCESS;
|
|
for (cnt = 3000;
|
|
(RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) == 0 &&
|
|
rval == QLA_SUCCESS; cnt--) {
|
|
if (cnt)
|
|
udelay(10);
|
|
else
|
|
rval = QLA_FUNCTION_TIMEOUT;
|
|
cond_resched();
|
|
}
|
|
|
|
/* TODO: What happens if we time out? */
|
|
data = 0xDEADDEAD;
|
|
if (rval == QLA_SUCCESS)
|
|
data = RD_REG_DWORD(®->flash_data);
|
|
|
|
return data;
|
|
}
|
|
|
|
uint32_t *
|
|
qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
|
|
uint32_t dwords)
|
|
{
|
|
uint32_t i;
|
|
|
|
/* Dword reads to flash. */
|
|
for (i = 0; i < dwords; i++, faddr++)
|
|
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
|
|
flash_data_to_access_addr(faddr)));
|
|
|
|
return dwptr;
|
|
}
|
|
|
|
static int
|
|
qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
|
|
{
|
|
int rval;
|
|
uint32_t cnt;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
WRT_REG_DWORD(®->flash_data, data);
|
|
RD_REG_DWORD(®->flash_data); /* PCI Posting. */
|
|
WRT_REG_DWORD(®->flash_addr, addr | FARX_DATA_FLAG);
|
|
/* Wait for Write cycle to complete. */
|
|
rval = QLA_SUCCESS;
|
|
for (cnt = 500000; (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) &&
|
|
rval == QLA_SUCCESS; cnt--) {
|
|
if (cnt)
|
|
udelay(10);
|
|
else
|
|
rval = QLA_FUNCTION_TIMEOUT;
|
|
cond_resched();
|
|
}
|
|
return rval;
|
|
}
|
|
|
|
static void
|
|
qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
|
|
uint8_t *flash_id)
|
|
{
|
|
uint32_t ids;
|
|
|
|
ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
|
|
*man_id = LSB(ids);
|
|
*flash_id = MSB(ids);
|
|
|
|
/* Check if man_id and flash_id are valid. */
|
|
if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
|
|
/* Read information using 0x9f opcode
|
|
* Device ID, Mfg ID would be read in the format:
|
|
* <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
|
|
* Example: ATMEL 0x00 01 45 1F
|
|
* Extract MFG and Dev ID from last two bytes.
|
|
*/
|
|
ids = qla24xx_read_flash_dword(ha,
|
|
flash_data_to_access_addr(0xd009f));
|
|
*man_id = LSB(ids);
|
|
*flash_id = MSB(ids);
|
|
}
|
|
}
|
|
|
|
static int
|
|
qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
|
|
uint32_t dwords)
|
|
{
|
|
int ret;
|
|
uint32_t liter, miter;
|
|
uint32_t sec_mask, rest_addr, conf_addr;
|
|
uint32_t fdata, findex, cnt;
|
|
uint8_t man_id, flash_id;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
dma_addr_t optrom_dma;
|
|
void *optrom = NULL;
|
|
uint32_t *s, *d;
|
|
|
|
ret = QLA_SUCCESS;
|
|
|
|
/* Prepare burst-capable write on supported ISPs. */
|
|
if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
|
|
dwords > OPTROM_BURST_DWORDS) {
|
|
optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
|
|
&optrom_dma, GFP_KERNEL);
|
|
if (!optrom) {
|
|
qla_printk(KERN_DEBUG, ha,
|
|
"Unable to allocate memory for optrom burst write "
|
|
"(%x KB).\n", OPTROM_BURST_SIZE / 1024);
|
|
}
|
|
}
|
|
|
|
qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
|
|
DEBUG9(printk("%s(%ld): Flash man_id=%d flash_id=%d\n", __func__,
|
|
ha->host_no, man_id, flash_id));
|
|
|
|
conf_addr = flash_conf_to_access_addr(0x03d8);
|
|
switch (man_id) {
|
|
case 0xbf: /* STT flash. */
|
|
if (flash_id == 0x8e) {
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x7c000;
|
|
} else {
|
|
rest_addr = 0x1fff;
|
|
sec_mask = 0x7e000;
|
|
}
|
|
if (flash_id == 0x80)
|
|
conf_addr = flash_conf_to_access_addr(0x0352);
|
|
break;
|
|
case 0x13: /* ST M25P80. */
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x7c000;
|
|
break;
|
|
case 0x1f: // Atmel 26DF081A
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x7c000;
|
|
conf_addr = flash_conf_to_access_addr(0x0320);
|
|
break;
|
|
default:
|
|
/* Default to 64 kb sector size. */
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x7c000;
|
|
break;
|
|
}
|
|
|
|
/* Enable flash write. */
|
|
WRT_REG_DWORD(®->ctrl_status,
|
|
RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE);
|
|
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
/* Disable flash write-protection. */
|
|
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
|
|
/* Some flash parts need an additional zero-write to clear bits.*/
|
|
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
|
|
|
|
for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
|
|
if (man_id == 0x1f) {
|
|
findex = faddr << 2;
|
|
fdata = findex & sec_mask;
|
|
} else {
|
|
findex = faddr;
|
|
fdata = (findex & sec_mask) << 2;
|
|
}
|
|
|
|
/* Are we at the beginning of a sector? */
|
|
if ((findex & rest_addr) == 0) {
|
|
/* Do sector unprotect at 4K boundry for Atmel part. */
|
|
if (man_id == 0x1f)
|
|
qla24xx_write_flash_dword(ha,
|
|
flash_conf_to_access_addr(0x0339),
|
|
(fdata & 0xff00) | ((fdata << 16) &
|
|
0xff0000) | ((fdata >> 16) & 0xff));
|
|
ret = qla24xx_write_flash_dword(ha, conf_addr,
|
|
(fdata & 0xff00) |((fdata << 16) &
|
|
0xff0000) | ((fdata >> 16) & 0xff));
|
|
if (ret != QLA_SUCCESS) {
|
|
DEBUG9(printk("%s(%ld) Unable to flash "
|
|
"sector: address=%x.\n", __func__,
|
|
ha->host_no, faddr));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Go with burst-write. */
|
|
if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
|
|
/* Copy data to DMA'ble buffer. */
|
|
for (miter = 0, s = optrom, d = dwptr;
|
|
miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
|
|
*s = cpu_to_le32(*d);
|
|
|
|
ret = qla2x00_load_ram(ha, optrom_dma,
|
|
flash_data_to_access_addr(faddr),
|
|
OPTROM_BURST_DWORDS);
|
|
if (ret != QLA_SUCCESS) {
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to burst-write optrom segment "
|
|
"(%x/%x/%llx).\n", ret,
|
|
flash_data_to_access_addr(faddr),
|
|
(unsigned long long)optrom_dma);
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Reverting to slow-write.\n");
|
|
|
|
dma_free_coherent(&ha->pdev->dev,
|
|
OPTROM_BURST_SIZE, optrom, optrom_dma);
|
|
optrom = NULL;
|
|
} else {
|
|
liter += OPTROM_BURST_DWORDS - 1;
|
|
faddr += OPTROM_BURST_DWORDS - 1;
|
|
dwptr += OPTROM_BURST_DWORDS - 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ret = qla24xx_write_flash_dword(ha,
|
|
flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
|
|
if (ret != QLA_SUCCESS) {
|
|
DEBUG9(printk("%s(%ld) Unable to program flash "
|
|
"address=%x data=%x.\n", __func__,
|
|
ha->host_no, faddr, *dwptr));
|
|
break;
|
|
}
|
|
|
|
/* Do sector protect at 4K boundry for Atmel part. */
|
|
if (man_id == 0x1f &&
|
|
((faddr & rest_addr) == rest_addr))
|
|
qla24xx_write_flash_dword(ha,
|
|
flash_conf_to_access_addr(0x0336),
|
|
(fdata & 0xff00) | ((fdata << 16) &
|
|
0xff0000) | ((fdata >> 16) & 0xff));
|
|
}
|
|
|
|
/* Enable flash write-protection and wait for completion. */
|
|
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0x9c);
|
|
for (cnt = 300; cnt &&
|
|
qla24xx_read_flash_dword(ha,
|
|
flash_conf_to_access_addr(0x005)) & BIT_0;
|
|
cnt--) {
|
|
udelay(10);
|
|
}
|
|
|
|
/* Disable flash write. */
|
|
WRT_REG_DWORD(®->ctrl_status,
|
|
RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE);
|
|
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
if (optrom)
|
|
dma_free_coherent(&ha->pdev->dev,
|
|
OPTROM_BURST_SIZE, optrom, optrom_dma);
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint8_t *
|
|
qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
|
|
uint32_t bytes)
|
|
{
|
|
uint32_t i;
|
|
uint16_t *wptr;
|
|
|
|
/* Word reads to NVRAM via registers. */
|
|
wptr = (uint16_t *)buf;
|
|
qla2x00_lock_nvram_access(ha);
|
|
for (i = 0; i < bytes >> 1; i++, naddr++)
|
|
wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
|
|
naddr));
|
|
qla2x00_unlock_nvram_access(ha);
|
|
|
|
return buf;
|
|
}
|
|
|
|
uint8_t *
|
|
qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
|
|
uint32_t bytes)
|
|
{
|
|
uint32_t i;
|
|
uint32_t *dwptr;
|
|
|
|
/* Dword reads to flash. */
|
|
dwptr = (uint32_t *)buf;
|
|
for (i = 0; i < bytes >> 2; i++, naddr++)
|
|
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
|
|
nvram_data_to_access_addr(naddr)));
|
|
|
|
return buf;
|
|
}
|
|
|
|
int
|
|
qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
|
|
uint32_t bytes)
|
|
{
|
|
int ret, stat;
|
|
uint32_t i;
|
|
uint16_t *wptr;
|
|
unsigned long flags;
|
|
|
|
ret = QLA_SUCCESS;
|
|
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
qla2x00_lock_nvram_access(ha);
|
|
|
|
/* Disable NVRAM write-protection. */
|
|
stat = qla2x00_clear_nvram_protection(ha);
|
|
|
|
wptr = (uint16_t *)buf;
|
|
for (i = 0; i < bytes >> 1; i++, naddr++) {
|
|
qla2x00_write_nvram_word(ha, naddr,
|
|
cpu_to_le16(*wptr));
|
|
wptr++;
|
|
}
|
|
|
|
/* Enable NVRAM write-protection. */
|
|
qla2x00_set_nvram_protection(ha, stat);
|
|
|
|
qla2x00_unlock_nvram_access(ha);
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
|
|
uint32_t bytes)
|
|
{
|
|
int ret;
|
|
uint32_t i;
|
|
uint32_t *dwptr;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
unsigned long flags;
|
|
|
|
ret = QLA_SUCCESS;
|
|
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
/* Enable flash write. */
|
|
WRT_REG_DWORD(®->ctrl_status,
|
|
RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE);
|
|
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
/* Disable NVRAM write-protection. */
|
|
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
|
|
0);
|
|
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
|
|
0);
|
|
|
|
/* Dword writes to flash. */
|
|
dwptr = (uint32_t *)buf;
|
|
for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
|
|
ret = qla24xx_write_flash_dword(ha,
|
|
nvram_data_to_access_addr(naddr),
|
|
cpu_to_le32(*dwptr));
|
|
if (ret != QLA_SUCCESS) {
|
|
DEBUG9(printk("%s(%ld) Unable to program "
|
|
"nvram address=%x data=%x.\n", __func__,
|
|
ha->host_no, naddr, *dwptr));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Enable NVRAM write-protection. */
|
|
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
|
|
0x8c);
|
|
|
|
/* Disable flash write. */
|
|
WRT_REG_DWORD(®->ctrl_status,
|
|
RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE);
|
|
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint8_t *
|
|
qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
|
|
uint32_t bytes)
|
|
{
|
|
uint32_t i;
|
|
uint32_t *dwptr;
|
|
|
|
/* Dword reads to flash. */
|
|
dwptr = (uint32_t *)buf;
|
|
for (i = 0; i < bytes >> 2; i++, naddr++)
|
|
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
|
|
flash_data_to_access_addr(FA_VPD_NVRAM_ADDR | naddr)));
|
|
|
|
return buf;
|
|
}
|
|
|
|
int
|
|
qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
|
|
uint32_t bytes)
|
|
{
|
|
#define RMW_BUFFER_SIZE (64 * 1024)
|
|
uint8_t *dbuf;
|
|
|
|
dbuf = vmalloc(RMW_BUFFER_SIZE);
|
|
if (!dbuf)
|
|
return QLA_MEMORY_ALLOC_FAILED;
|
|
ha->isp_ops->read_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
|
|
RMW_BUFFER_SIZE);
|
|
memcpy(dbuf + (naddr << 2), buf, bytes);
|
|
ha->isp_ops->write_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
|
|
RMW_BUFFER_SIZE);
|
|
vfree(dbuf);
|
|
|
|
return QLA_SUCCESS;
|
|
}
|
|
|
|
static inline void
|
|
qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
|
|
{
|
|
if (IS_QLA2322(ha)) {
|
|
/* Flip all colors. */
|
|
if (ha->beacon_color_state == QLA_LED_ALL_ON) {
|
|
/* Turn off. */
|
|
ha->beacon_color_state = 0;
|
|
*pflags = GPIO_LED_ALL_OFF;
|
|
} else {
|
|
/* Turn on. */
|
|
ha->beacon_color_state = QLA_LED_ALL_ON;
|
|
*pflags = GPIO_LED_RGA_ON;
|
|
}
|
|
} else {
|
|
/* Flip green led only. */
|
|
if (ha->beacon_color_state == QLA_LED_GRN_ON) {
|
|
/* Turn off. */
|
|
ha->beacon_color_state = 0;
|
|
*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
|
|
} else {
|
|
/* Turn on. */
|
|
ha->beacon_color_state = QLA_LED_GRN_ON;
|
|
*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
|
|
|
|
void
|
|
qla2x00_beacon_blink(struct scsi_qla_host *ha)
|
|
{
|
|
uint16_t gpio_enable;
|
|
uint16_t gpio_data;
|
|
uint16_t led_color = 0;
|
|
unsigned long flags;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
|
|
/* Save the Original GPIOE. */
|
|
if (ha->pio_address) {
|
|
gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
|
|
gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
|
|
} else {
|
|
gpio_enable = RD_REG_WORD(®->gpioe);
|
|
gpio_data = RD_REG_WORD(®->gpiod);
|
|
}
|
|
|
|
/* Set the modified gpio_enable values */
|
|
gpio_enable |= GPIO_LED_MASK;
|
|
|
|
if (ha->pio_address) {
|
|
WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
|
|
} else {
|
|
WRT_REG_WORD(®->gpioe, gpio_enable);
|
|
RD_REG_WORD(®->gpioe);
|
|
}
|
|
|
|
qla2x00_flip_colors(ha, &led_color);
|
|
|
|
/* Clear out any previously set LED color. */
|
|
gpio_data &= ~GPIO_LED_MASK;
|
|
|
|
/* Set the new input LED color to GPIOD. */
|
|
gpio_data |= led_color;
|
|
|
|
/* Set the modified gpio_data values */
|
|
if (ha->pio_address) {
|
|
WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
|
|
} else {
|
|
WRT_REG_WORD(®->gpiod, gpio_data);
|
|
RD_REG_WORD(®->gpiod);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
}
|
|
|
|
int
|
|
qla2x00_beacon_on(struct scsi_qla_host *ha)
|
|
{
|
|
uint16_t gpio_enable;
|
|
uint16_t gpio_data;
|
|
unsigned long flags;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
|
|
ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
|
|
|
|
if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to update fw options (beacon on).\n");
|
|
return QLA_FUNCTION_FAILED;
|
|
}
|
|
|
|
/* Turn off LEDs. */
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
if (ha->pio_address) {
|
|
gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
|
|
gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
|
|
} else {
|
|
gpio_enable = RD_REG_WORD(®->gpioe);
|
|
gpio_data = RD_REG_WORD(®->gpiod);
|
|
}
|
|
gpio_enable |= GPIO_LED_MASK;
|
|
|
|
/* Set the modified gpio_enable values. */
|
|
if (ha->pio_address) {
|
|
WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
|
|
} else {
|
|
WRT_REG_WORD(®->gpioe, gpio_enable);
|
|
RD_REG_WORD(®->gpioe);
|
|
}
|
|
|
|
/* Clear out previously set LED colour. */
|
|
gpio_data &= ~GPIO_LED_MASK;
|
|
if (ha->pio_address) {
|
|
WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
|
|
} else {
|
|
WRT_REG_WORD(®->gpiod, gpio_data);
|
|
RD_REG_WORD(®->gpiod);
|
|
}
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
|
|
/*
|
|
* Let the per HBA timer kick off the blinking process based on
|
|
* the following flags. No need to do anything else now.
|
|
*/
|
|
ha->beacon_blink_led = 1;
|
|
ha->beacon_color_state = 0;
|
|
|
|
return QLA_SUCCESS;
|
|
}
|
|
|
|
int
|
|
qla2x00_beacon_off(struct scsi_qla_host *ha)
|
|
{
|
|
int rval = QLA_SUCCESS;
|
|
|
|
ha->beacon_blink_led = 0;
|
|
|
|
/* Set the on flag so when it gets flipped it will be off. */
|
|
if (IS_QLA2322(ha))
|
|
ha->beacon_color_state = QLA_LED_ALL_ON;
|
|
else
|
|
ha->beacon_color_state = QLA_LED_GRN_ON;
|
|
|
|
ha->isp_ops->beacon_blink(ha); /* This turns green LED off */
|
|
|
|
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
|
|
ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
|
|
|
|
rval = qla2x00_set_fw_options(ha, ha->fw_options);
|
|
if (rval != QLA_SUCCESS)
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to update fw options (beacon off).\n");
|
|
return rval;
|
|
}
|
|
|
|
|
|
static inline void
|
|
qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
|
|
{
|
|
/* Flip all colors. */
|
|
if (ha->beacon_color_state == QLA_LED_ALL_ON) {
|
|
/* Turn off. */
|
|
ha->beacon_color_state = 0;
|
|
*pflags = 0;
|
|
} else {
|
|
/* Turn on. */
|
|
ha->beacon_color_state = QLA_LED_ALL_ON;
|
|
*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
|
|
}
|
|
}
|
|
|
|
void
|
|
qla24xx_beacon_blink(struct scsi_qla_host *ha)
|
|
{
|
|
uint16_t led_color = 0;
|
|
uint32_t gpio_data;
|
|
unsigned long flags;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
/* Save the Original GPIOD. */
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
gpio_data = RD_REG_DWORD(®->gpiod);
|
|
|
|
/* Enable the gpio_data reg for update. */
|
|
gpio_data |= GPDX_LED_UPDATE_MASK;
|
|
|
|
WRT_REG_DWORD(®->gpiod, gpio_data);
|
|
gpio_data = RD_REG_DWORD(®->gpiod);
|
|
|
|
/* Set the color bits. */
|
|
qla24xx_flip_colors(ha, &led_color);
|
|
|
|
/* Clear out any previously set LED color. */
|
|
gpio_data &= ~GPDX_LED_COLOR_MASK;
|
|
|
|
/* Set the new input LED color to GPIOD. */
|
|
gpio_data |= led_color;
|
|
|
|
/* Set the modified gpio_data values. */
|
|
WRT_REG_DWORD(®->gpiod, gpio_data);
|
|
gpio_data = RD_REG_DWORD(®->gpiod);
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
}
|
|
|
|
int
|
|
qla24xx_beacon_on(struct scsi_qla_host *ha)
|
|
{
|
|
uint32_t gpio_data;
|
|
unsigned long flags;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
if (ha->beacon_blink_led == 0) {
|
|
/* Enable firmware for update */
|
|
ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
|
|
|
|
if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
|
|
return QLA_FUNCTION_FAILED;
|
|
|
|
if (qla2x00_get_fw_options(ha, ha->fw_options) !=
|
|
QLA_SUCCESS) {
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to update fw options (beacon on).\n");
|
|
return QLA_FUNCTION_FAILED;
|
|
}
|
|
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
gpio_data = RD_REG_DWORD(®->gpiod);
|
|
|
|
/* Enable the gpio_data reg for update. */
|
|
gpio_data |= GPDX_LED_UPDATE_MASK;
|
|
WRT_REG_DWORD(®->gpiod, gpio_data);
|
|
RD_REG_DWORD(®->gpiod);
|
|
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
}
|
|
|
|
/* So all colors blink together. */
|
|
ha->beacon_color_state = 0;
|
|
|
|
/* Let the per HBA timer kick off the blinking process. */
|
|
ha->beacon_blink_led = 1;
|
|
|
|
return QLA_SUCCESS;
|
|
}
|
|
|
|
int
|
|
qla24xx_beacon_off(struct scsi_qla_host *ha)
|
|
{
|
|
uint32_t gpio_data;
|
|
unsigned long flags;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
ha->beacon_blink_led = 0;
|
|
ha->beacon_color_state = QLA_LED_ALL_ON;
|
|
|
|
ha->isp_ops->beacon_blink(ha); /* Will flip to all off. */
|
|
|
|
/* Give control back to firmware. */
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
gpio_data = RD_REG_DWORD(®->gpiod);
|
|
|
|
/* Disable the gpio_data reg for update. */
|
|
gpio_data &= ~GPDX_LED_UPDATE_MASK;
|
|
WRT_REG_DWORD(®->gpiod, gpio_data);
|
|
RD_REG_DWORD(®->gpiod);
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
|
|
ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
|
|
|
|
if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to update fw options (beacon off).\n");
|
|
return QLA_FUNCTION_FAILED;
|
|
}
|
|
|
|
if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to get fw options (beacon off).\n");
|
|
return QLA_FUNCTION_FAILED;
|
|
}
|
|
|
|
return QLA_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* Flash support routines
|
|
*/
|
|
|
|
/**
|
|
* qla2x00_flash_enable() - Setup flash for reading and writing.
|
|
* @ha: HA context
|
|
*/
|
|
static void
|
|
qla2x00_flash_enable(scsi_qla_host_t *ha)
|
|
{
|
|
uint16_t data;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
data = RD_REG_WORD(®->ctrl_status);
|
|
data |= CSR_FLASH_ENABLE;
|
|
WRT_REG_WORD(®->ctrl_status, data);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
}
|
|
|
|
/**
|
|
* qla2x00_flash_disable() - Disable flash and allow RISC to run.
|
|
* @ha: HA context
|
|
*/
|
|
static void
|
|
qla2x00_flash_disable(scsi_qla_host_t *ha)
|
|
{
|
|
uint16_t data;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
data = RD_REG_WORD(®->ctrl_status);
|
|
data &= ~(CSR_FLASH_ENABLE);
|
|
WRT_REG_WORD(®->ctrl_status, data);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
}
|
|
|
|
/**
|
|
* qla2x00_read_flash_byte() - Reads a byte from flash
|
|
* @ha: HA context
|
|
* @addr: Address in flash to read
|
|
*
|
|
* A word is read from the chip, but, only the lower byte is valid.
|
|
*
|
|
* Returns the byte read from flash @addr.
|
|
*/
|
|
static uint8_t
|
|
qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
|
|
{
|
|
uint16_t data;
|
|
uint16_t bank_select;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
bank_select = RD_REG_WORD(®->ctrl_status);
|
|
|
|
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
|
|
/* Specify 64K address range: */
|
|
/* clear out Module Select and Flash Address bits [19:16]. */
|
|
bank_select &= ~0xf8;
|
|
bank_select |= addr >> 12 & 0xf0;
|
|
bank_select |= CSR_FLASH_64K_BANK;
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
|
|
data = RD_REG_WORD(®->flash_data);
|
|
|
|
return (uint8_t)data;
|
|
}
|
|
|
|
/* Setup bit 16 of flash address. */
|
|
if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
|
|
bank_select |= CSR_FLASH_64K_BANK;
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
} else if (((addr & BIT_16) == 0) &&
|
|
(bank_select & CSR_FLASH_64K_BANK)) {
|
|
bank_select &= ~(CSR_FLASH_64K_BANK);
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
}
|
|
|
|
/* Always perform IO mapped accesses to the FLASH registers. */
|
|
if (ha->pio_address) {
|
|
uint16_t data2;
|
|
|
|
WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
|
|
do {
|
|
data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
|
|
barrier();
|
|
cpu_relax();
|
|
data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
|
|
} while (data != data2);
|
|
} else {
|
|
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
|
|
data = qla2x00_debounce_register(®->flash_data);
|
|
}
|
|
|
|
return (uint8_t)data;
|
|
}
|
|
|
|
/**
|
|
* qla2x00_write_flash_byte() - Write a byte to flash
|
|
* @ha: HA context
|
|
* @addr: Address in flash to write
|
|
* @data: Data to write
|
|
*/
|
|
static void
|
|
qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
|
|
{
|
|
uint16_t bank_select;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
bank_select = RD_REG_WORD(®->ctrl_status);
|
|
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
|
|
/* Specify 64K address range: */
|
|
/* clear out Module Select and Flash Address bits [19:16]. */
|
|
bank_select &= ~0xf8;
|
|
bank_select |= addr >> 12 & 0xf0;
|
|
bank_select |= CSR_FLASH_64K_BANK;
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
WRT_REG_WORD(®->flash_data, (uint16_t)data);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
return;
|
|
}
|
|
|
|
/* Setup bit 16 of flash address. */
|
|
if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
|
|
bank_select |= CSR_FLASH_64K_BANK;
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
} else if (((addr & BIT_16) == 0) &&
|
|
(bank_select & CSR_FLASH_64K_BANK)) {
|
|
bank_select &= ~(CSR_FLASH_64K_BANK);
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
}
|
|
|
|
/* Always perform IO mapped accesses to the FLASH registers. */
|
|
if (ha->pio_address) {
|
|
WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
|
|
WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
|
|
} else {
|
|
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
WRT_REG_WORD(®->flash_data, (uint16_t)data);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* qla2x00_poll_flash() - Polls flash for completion.
|
|
* @ha: HA context
|
|
* @addr: Address in flash to poll
|
|
* @poll_data: Data to be polled
|
|
* @man_id: Flash manufacturer ID
|
|
* @flash_id: Flash ID
|
|
*
|
|
* This function polls the device until bit 7 of what is read matches data
|
|
* bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
|
|
* out (a fatal error). The flash book recommeds reading bit 7 again after
|
|
* reading bit 5 as a 1.
|
|
*
|
|
* Returns 0 on success, else non-zero.
|
|
*/
|
|
static int
|
|
qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
|
|
uint8_t man_id, uint8_t flash_id)
|
|
{
|
|
int status;
|
|
uint8_t flash_data;
|
|
uint32_t cnt;
|
|
|
|
status = 1;
|
|
|
|
/* Wait for 30 seconds for command to finish. */
|
|
poll_data &= BIT_7;
|
|
for (cnt = 3000000; cnt; cnt--) {
|
|
flash_data = qla2x00_read_flash_byte(ha, addr);
|
|
if ((flash_data & BIT_7) == poll_data) {
|
|
status = 0;
|
|
break;
|
|
}
|
|
|
|
if (man_id != 0x40 && man_id != 0xda) {
|
|
if ((flash_data & BIT_5) && cnt > 2)
|
|
cnt = 2;
|
|
}
|
|
udelay(10);
|
|
barrier();
|
|
cond_resched();
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* qla2x00_program_flash_address() - Programs a flash address
|
|
* @ha: HA context
|
|
* @addr: Address in flash to program
|
|
* @data: Data to be written in flash
|
|
* @man_id: Flash manufacturer ID
|
|
* @flash_id: Flash ID
|
|
*
|
|
* Returns 0 on success, else non-zero.
|
|
*/
|
|
static int
|
|
qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
|
|
uint8_t man_id, uint8_t flash_id)
|
|
{
|
|
/* Write Program Command Sequence. */
|
|
if (IS_OEM_001(ha)) {
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x555, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
|
|
qla2x00_write_flash_byte(ha, addr, data);
|
|
} else {
|
|
if (man_id == 0xda && flash_id == 0xc1) {
|
|
qla2x00_write_flash_byte(ha, addr, data);
|
|
if (addr & 0x7e)
|
|
return 0;
|
|
} else {
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
|
|
qla2x00_write_flash_byte(ha, addr, data);
|
|
}
|
|
}
|
|
|
|
udelay(150);
|
|
|
|
/* Wait for write to complete. */
|
|
return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_erase_flash() - Erase the flash.
|
|
* @ha: HA context
|
|
* @man_id: Flash manufacturer ID
|
|
* @flash_id: Flash ID
|
|
*
|
|
* Returns 0 on success, else non-zero.
|
|
*/
|
|
static int
|
|
qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
|
|
{
|
|
/* Individual Sector Erase Command Sequence */
|
|
if (IS_OEM_001(ha)) {
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x555, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x555, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
|
|
} else {
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0x80);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0x10);
|
|
}
|
|
|
|
udelay(150);
|
|
|
|
/* Wait for erase to complete. */
|
|
return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_erase_flash_sector() - Erase a flash sector.
|
|
* @ha: HA context
|
|
* @addr: Flash sector to erase
|
|
* @sec_mask: Sector address mask
|
|
* @man_id: Flash manufacturer ID
|
|
* @flash_id: Flash ID
|
|
*
|
|
* Returns 0 on success, else non-zero.
|
|
*/
|
|
static int
|
|
qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
|
|
uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
|
|
{
|
|
/* Individual Sector Erase Command Sequence */
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0x80);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
if (man_id == 0x1f && flash_id == 0x13)
|
|
qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
|
|
else
|
|
qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
|
|
|
|
udelay(150);
|
|
|
|
/* Wait for erase to complete. */
|
|
return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
|
|
* @man_id: Flash manufacturer ID
|
|
* @flash_id: Flash ID
|
|
*/
|
|
static void
|
|
qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
|
|
uint8_t *flash_id)
|
|
{
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0x90);
|
|
*man_id = qla2x00_read_flash_byte(ha, 0x0000);
|
|
*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
|
|
}
|
|
|
|
static void
|
|
qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
|
|
uint32_t length)
|
|
{
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
uint32_t midpoint, ilength;
|
|
uint8_t data;
|
|
|
|
midpoint = length / 2;
|
|
|
|
WRT_REG_WORD(®->nvram, 0);
|
|
RD_REG_WORD(®->nvram);
|
|
for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
|
|
if (ilength == midpoint) {
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram);
|
|
}
|
|
data = qla2x00_read_flash_byte(ha, saddr);
|
|
if (saddr % 100)
|
|
udelay(10);
|
|
*tmp_buf = data;
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
qla2x00_suspend_hba(struct scsi_qla_host *ha)
|
|
{
|
|
int cnt;
|
|
unsigned long flags;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
/* Suspend HBA. */
|
|
scsi_block_requests(ha->host);
|
|
ha->isp_ops->disable_intrs(ha);
|
|
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
|
|
/* Pause RISC. */
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC);
|
|
RD_REG_WORD(®->hccr);
|
|
if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
|
|
for (cnt = 0; cnt < 30000; cnt++) {
|
|
if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0)
|
|
break;
|
|
udelay(100);
|
|
}
|
|
} else {
|
|
udelay(10);
|
|
}
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
}
|
|
|
|
static inline void
|
|
qla2x00_resume_hba(struct scsi_qla_host *ha)
|
|
{
|
|
/* Resume HBA. */
|
|
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
|
|
qla2xxx_wake_dpc(ha);
|
|
qla2x00_wait_for_hba_online(ha);
|
|
scsi_unblock_requests(ha->host);
|
|
}
|
|
|
|
uint8_t *
|
|
qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
|
|
uint32_t offset, uint32_t length)
|
|
{
|
|
uint32_t addr, midpoint;
|
|
uint8_t *data;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
/* Suspend HBA. */
|
|
qla2x00_suspend_hba(ha);
|
|
|
|
/* Go with read. */
|
|
midpoint = ha->optrom_size / 2;
|
|
|
|
qla2x00_flash_enable(ha);
|
|
WRT_REG_WORD(®->nvram, 0);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
for (addr = offset, data = buf; addr < length; addr++, data++) {
|
|
if (addr == midpoint) {
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
}
|
|
|
|
*data = qla2x00_read_flash_byte(ha, addr);
|
|
}
|
|
qla2x00_flash_disable(ha);
|
|
|
|
/* Resume HBA. */
|
|
qla2x00_resume_hba(ha);
|
|
|
|
return buf;
|
|
}
|
|
|
|
int
|
|
qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
|
|
uint32_t offset, uint32_t length)
|
|
{
|
|
|
|
int rval;
|
|
uint8_t man_id, flash_id, sec_number, data;
|
|
uint16_t wd;
|
|
uint32_t addr, liter, sec_mask, rest_addr;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
/* Suspend HBA. */
|
|
qla2x00_suspend_hba(ha);
|
|
|
|
rval = QLA_SUCCESS;
|
|
sec_number = 0;
|
|
|
|
/* Reset ISP chip. */
|
|
WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET);
|
|
pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
|
|
|
|
/* Go with write. */
|
|
qla2x00_flash_enable(ha);
|
|
do { /* Loop once to provide quick error exit */
|
|
/* Structure of flash memory based on manufacturer */
|
|
if (IS_OEM_001(ha)) {
|
|
/* OEM variant with special flash part. */
|
|
man_id = flash_id = 0;
|
|
rest_addr = 0xffff;
|
|
sec_mask = 0x10000;
|
|
goto update_flash;
|
|
}
|
|
qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
|
|
switch (man_id) {
|
|
case 0x20: /* ST flash. */
|
|
if (flash_id == 0xd2 || flash_id == 0xe3) {
|
|
/*
|
|
* ST m29w008at part - 64kb sector size with
|
|
* 32kb,8kb,8kb,16kb sectors at memory address
|
|
* 0xf0000.
|
|
*/
|
|
rest_addr = 0xffff;
|
|
sec_mask = 0x10000;
|
|
break;
|
|
}
|
|
/*
|
|
* ST m29w010b part - 16kb sector size
|
|
* Default to 16kb sectors
|
|
*/
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x1c000;
|
|
break;
|
|
case 0x40: /* Mostel flash. */
|
|
/* Mostel v29c51001 part - 512 byte sector size. */
|
|
rest_addr = 0x1ff;
|
|
sec_mask = 0x1fe00;
|
|
break;
|
|
case 0xbf: /* SST flash. */
|
|
/* SST39sf10 part - 4kb sector size. */
|
|
rest_addr = 0xfff;
|
|
sec_mask = 0x1f000;
|
|
break;
|
|
case 0xda: /* Winbond flash. */
|
|
/* Winbond W29EE011 part - 256 byte sector size. */
|
|
rest_addr = 0x7f;
|
|
sec_mask = 0x1ff80;
|
|
break;
|
|
case 0xc2: /* Macronix flash. */
|
|
/* 64k sector size. */
|
|
if (flash_id == 0x38 || flash_id == 0x4f) {
|
|
rest_addr = 0xffff;
|
|
sec_mask = 0x10000;
|
|
break;
|
|
}
|
|
/* Fall through... */
|
|
|
|
case 0x1f: /* Atmel flash. */
|
|
/* 512k sector size. */
|
|
if (flash_id == 0x13) {
|
|
rest_addr = 0x7fffffff;
|
|
sec_mask = 0x80000000;
|
|
break;
|
|
}
|
|
/* Fall through... */
|
|
|
|
case 0x01: /* AMD flash. */
|
|
if (flash_id == 0x38 || flash_id == 0x40 ||
|
|
flash_id == 0x4f) {
|
|
/* Am29LV081 part - 64kb sector size. */
|
|
/* Am29LV002BT part - 64kb sector size. */
|
|
rest_addr = 0xffff;
|
|
sec_mask = 0x10000;
|
|
break;
|
|
} else if (flash_id == 0x3e) {
|
|
/*
|
|
* Am29LV008b part - 64kb sector size with
|
|
* 32kb,8kb,8kb,16kb sector at memory address
|
|
* h0xf0000.
|
|
*/
|
|
rest_addr = 0xffff;
|
|
sec_mask = 0x10000;
|
|
break;
|
|
} else if (flash_id == 0x20 || flash_id == 0x6e) {
|
|
/*
|
|
* Am29LV010 part or AM29f010 - 16kb sector
|
|
* size.
|
|
*/
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x1c000;
|
|
break;
|
|
} else if (flash_id == 0x6d) {
|
|
/* Am29LV001 part - 8kb sector size. */
|
|
rest_addr = 0x1fff;
|
|
sec_mask = 0x1e000;
|
|
break;
|
|
}
|
|
default:
|
|
/* Default to 16 kb sector size. */
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x1c000;
|
|
break;
|
|
}
|
|
|
|
update_flash:
|
|
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
|
|
if (qla2x00_erase_flash(ha, man_id, flash_id)) {
|
|
rval = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (addr = offset, liter = 0; liter < length; liter++,
|
|
addr++) {
|
|
data = buf[liter];
|
|
/* Are we at the beginning of a sector? */
|
|
if ((addr & rest_addr) == 0) {
|
|
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
|
|
if (addr >= 0x10000UL) {
|
|
if (((addr >> 12) & 0xf0) &&
|
|
((man_id == 0x01 &&
|
|
flash_id == 0x3e) ||
|
|
(man_id == 0x20 &&
|
|
flash_id == 0xd2))) {
|
|
sec_number++;
|
|
if (sec_number == 1) {
|
|
rest_addr =
|
|
0x7fff;
|
|
sec_mask =
|
|
0x18000;
|
|
} else if (
|
|
sec_number == 2 ||
|
|
sec_number == 3) {
|
|
rest_addr =
|
|
0x1fff;
|
|
sec_mask =
|
|
0x1e000;
|
|
} else if (
|
|
sec_number == 4) {
|
|
rest_addr =
|
|
0x3fff;
|
|
sec_mask =
|
|
0x1c000;
|
|
}
|
|
}
|
|
}
|
|
} else if (addr == ha->optrom_size / 2) {
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram);
|
|
}
|
|
|
|
if (flash_id == 0xda && man_id == 0xc1) {
|
|
qla2x00_write_flash_byte(ha, 0x5555,
|
|
0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa,
|
|
0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555,
|
|
0xa0);
|
|
} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
|
|
/* Then erase it */
|
|
if (qla2x00_erase_flash_sector(ha,
|
|
addr, sec_mask, man_id,
|
|
flash_id)) {
|
|
rval = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
if (man_id == 0x01 && flash_id == 0x6d)
|
|
sec_number++;
|
|
}
|
|
}
|
|
|
|
if (man_id == 0x01 && flash_id == 0x6d) {
|
|
if (sec_number == 1 &&
|
|
addr == (rest_addr - 1)) {
|
|
rest_addr = 0x0fff;
|
|
sec_mask = 0x1f000;
|
|
} else if (sec_number == 3 && (addr & 0x7ffe)) {
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x1c000;
|
|
}
|
|
}
|
|
|
|
if (qla2x00_program_flash_address(ha, addr, data,
|
|
man_id, flash_id)) {
|
|
rval = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
cond_resched();
|
|
}
|
|
} while (0);
|
|
qla2x00_flash_disable(ha);
|
|
|
|
/* Resume HBA. */
|
|
qla2x00_resume_hba(ha);
|
|
|
|
return rval;
|
|
}
|
|
|
|
uint8_t *
|
|
qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
|
|
uint32_t offset, uint32_t length)
|
|
{
|
|
/* Suspend HBA. */
|
|
scsi_block_requests(ha->host);
|
|
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
|
|
/* Go with read. */
|
|
qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
|
|
|
|
/* Resume HBA. */
|
|
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
scsi_unblock_requests(ha->host);
|
|
|
|
return buf;
|
|
}
|
|
|
|
int
|
|
qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
|
|
uint32_t offset, uint32_t length)
|
|
{
|
|
int rval;
|
|
|
|
/* Suspend HBA. */
|
|
scsi_block_requests(ha->host);
|
|
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
|
|
/* Go with write. */
|
|
rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
|
|
length >> 2);
|
|
|
|
/* Resume HBA -- RISC reset needed. */
|
|
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
|
|
qla2xxx_wake_dpc(ha);
|
|
qla2x00_wait_for_hba_online(ha);
|
|
scsi_unblock_requests(ha->host);
|
|
|
|
return rval;
|
|
}
|
|
|
|
uint8_t *
|
|
qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
|
|
uint32_t offset, uint32_t length)
|
|
{
|
|
int rval;
|
|
dma_addr_t optrom_dma;
|
|
void *optrom;
|
|
uint8_t *pbuf;
|
|
uint32_t faddr, left, burst;
|
|
|
|
if (offset & 0xfff)
|
|
goto slow_read;
|
|
if (length < OPTROM_BURST_SIZE)
|
|
goto slow_read;
|
|
|
|
optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
|
|
&optrom_dma, GFP_KERNEL);
|
|
if (!optrom) {
|
|
qla_printk(KERN_DEBUG, ha,
|
|
"Unable to allocate memory for optrom burst read "
|
|
"(%x KB).\n", OPTROM_BURST_SIZE / 1024);
|
|
|
|
goto slow_read;
|
|
}
|
|
|
|
pbuf = buf;
|
|
faddr = offset >> 2;
|
|
left = length >> 2;
|
|
burst = OPTROM_BURST_DWORDS;
|
|
while (left != 0) {
|
|
if (burst > left)
|
|
burst = left;
|
|
|
|
rval = qla2x00_dump_ram(ha, optrom_dma,
|
|
flash_data_to_access_addr(faddr), burst);
|
|
if (rval) {
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to burst-read optrom segment "
|
|
"(%x/%x/%llx).\n", rval,
|
|
flash_data_to_access_addr(faddr),
|
|
(unsigned long long)optrom_dma);
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Reverting to slow-read.\n");
|
|
|
|
dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
|
|
optrom, optrom_dma);
|
|
goto slow_read;
|
|
}
|
|
|
|
memcpy(pbuf, optrom, burst * 4);
|
|
|
|
left -= burst;
|
|
faddr += burst;
|
|
pbuf += burst * 4;
|
|
}
|
|
|
|
dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
|
|
optrom_dma);
|
|
|
|
return buf;
|
|
|
|
slow_read:
|
|
return qla24xx_read_optrom_data(ha, buf, offset, length);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_get_fcode_version() - Determine an FCODE image's version.
|
|
* @ha: HA context
|
|
* @pcids: Pointer to the FCODE PCI data structure
|
|
*
|
|
* The process of retrieving the FCODE version information is at best
|
|
* described as interesting.
|
|
*
|
|
* Within the first 100h bytes of the image an ASCII string is present
|
|
* which contains several pieces of information including the FCODE
|
|
* version. Unfortunately it seems the only reliable way to retrieve
|
|
* the version is by scanning for another sentinel within the string,
|
|
* the FCODE build date:
|
|
*
|
|
* ... 2.00.02 10/17/02 ...
|
|
*
|
|
* Returns QLA_SUCCESS on successful retrieval of version.
|
|
*/
|
|
static void
|
|
qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
|
|
{
|
|
int ret = QLA_FUNCTION_FAILED;
|
|
uint32_t istart, iend, iter, vend;
|
|
uint8_t do_next, rbyte, *vbyte;
|
|
|
|
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
|
|
|
|
/* Skip the PCI data structure. */
|
|
istart = pcids +
|
|
((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
|
|
qla2x00_read_flash_byte(ha, pcids + 0x0A));
|
|
iend = istart + 0x100;
|
|
do {
|
|
/* Scan for the sentinel date string...eeewww. */
|
|
do_next = 0;
|
|
iter = istart;
|
|
while ((iter < iend) && !do_next) {
|
|
iter++;
|
|
if (qla2x00_read_flash_byte(ha, iter) == '/') {
|
|
if (qla2x00_read_flash_byte(ha, iter + 2) ==
|
|
'/')
|
|
do_next++;
|
|
else if (qla2x00_read_flash_byte(ha,
|
|
iter + 3) == '/')
|
|
do_next++;
|
|
}
|
|
}
|
|
if (!do_next)
|
|
break;
|
|
|
|
/* Backtrack to previous ' ' (space). */
|
|
do_next = 0;
|
|
while ((iter > istart) && !do_next) {
|
|
iter--;
|
|
if (qla2x00_read_flash_byte(ha, iter) == ' ')
|
|
do_next++;
|
|
}
|
|
if (!do_next)
|
|
break;
|
|
|
|
/*
|
|
* Mark end of version tag, and find previous ' ' (space) or
|
|
* string length (recent FCODE images -- major hack ahead!!!).
|
|
*/
|
|
vend = iter - 1;
|
|
do_next = 0;
|
|
while ((iter > istart) && !do_next) {
|
|
iter--;
|
|
rbyte = qla2x00_read_flash_byte(ha, iter);
|
|
if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
|
|
do_next++;
|
|
}
|
|
if (!do_next)
|
|
break;
|
|
|
|
/* Mark beginning of version tag, and copy data. */
|
|
iter++;
|
|
if ((vend - iter) &&
|
|
((vend - iter) < sizeof(ha->fcode_revision))) {
|
|
vbyte = ha->fcode_revision;
|
|
while (iter <= vend) {
|
|
*vbyte++ = qla2x00_read_flash_byte(ha, iter);
|
|
iter++;
|
|
}
|
|
ret = QLA_SUCCESS;
|
|
}
|
|
} while (0);
|
|
|
|
if (ret != QLA_SUCCESS)
|
|
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
|
|
}
|
|
|
|
int
|
|
qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
|
|
{
|
|
int ret = QLA_SUCCESS;
|
|
uint8_t code_type, last_image;
|
|
uint32_t pcihdr, pcids;
|
|
uint8_t *dbyte;
|
|
uint16_t *dcode;
|
|
|
|
if (!ha->pio_address || !mbuf)
|
|
return QLA_FUNCTION_FAILED;
|
|
|
|
memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
|
|
memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
|
|
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
|
|
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
|
|
|
|
qla2x00_flash_enable(ha);
|
|
|
|
/* Begin with first PCI expansion ROM header. */
|
|
pcihdr = 0;
|
|
last_image = 1;
|
|
do {
|
|
/* Verify PCI expansion ROM header. */
|
|
if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
|
|
qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
|
|
/* No signature */
|
|
DEBUG2(printk("scsi(%ld): No matching ROM "
|
|
"signature.\n", ha->host_no));
|
|
ret = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
|
|
/* Locate PCI data structure. */
|
|
pcids = pcihdr +
|
|
((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
|
|
qla2x00_read_flash_byte(ha, pcihdr + 0x18));
|
|
|
|
/* Validate signature of PCI data structure. */
|
|
if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
|
|
qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
|
|
qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
|
|
qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
|
|
/* Incorrect header. */
|
|
DEBUG2(printk("%s(): PCI data struct not found "
|
|
"pcir_adr=%x.\n", __func__, pcids));
|
|
ret = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
|
|
/* Read version */
|
|
code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
|
|
switch (code_type) {
|
|
case ROM_CODE_TYPE_BIOS:
|
|
/* Intel x86, PC-AT compatible. */
|
|
ha->bios_revision[0] =
|
|
qla2x00_read_flash_byte(ha, pcids + 0x12);
|
|
ha->bios_revision[1] =
|
|
qla2x00_read_flash_byte(ha, pcids + 0x13);
|
|
DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
|
|
ha->bios_revision[1], ha->bios_revision[0]));
|
|
break;
|
|
case ROM_CODE_TYPE_FCODE:
|
|
/* Open Firmware standard for PCI (FCode). */
|
|
/* Eeeewww... */
|
|
qla2x00_get_fcode_version(ha, pcids);
|
|
break;
|
|
case ROM_CODE_TYPE_EFI:
|
|
/* Extensible Firmware Interface (EFI). */
|
|
ha->efi_revision[0] =
|
|
qla2x00_read_flash_byte(ha, pcids + 0x12);
|
|
ha->efi_revision[1] =
|
|
qla2x00_read_flash_byte(ha, pcids + 0x13);
|
|
DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
|
|
ha->efi_revision[1], ha->efi_revision[0]));
|
|
break;
|
|
default:
|
|
DEBUG2(printk("%s(): Unrecognized code type %x at "
|
|
"pcids %x.\n", __func__, code_type, pcids));
|
|
break;
|
|
}
|
|
|
|
last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
|
|
|
|
/* Locate next PCI expansion ROM. */
|
|
pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
|
|
qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
|
|
} while (!last_image);
|
|
|
|
if (IS_QLA2322(ha)) {
|
|
/* Read firmware image information. */
|
|
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
|
|
dbyte = mbuf;
|
|
memset(dbyte, 0, 8);
|
|
dcode = (uint16_t *)dbyte;
|
|
|
|
qla2x00_read_flash_data(ha, dbyte, FA_RISC_CODE_ADDR * 4 + 10,
|
|
8);
|
|
DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
|
|
__func__, ha->host_no));
|
|
DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
|
|
|
|
if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
|
|
dcode[2] == 0xffff && dcode[3] == 0xffff) ||
|
|
(dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
|
|
dcode[3] == 0)) {
|
|
DEBUG2(printk("%s(): Unrecognized fw revision at "
|
|
"%x.\n", __func__, FA_RISC_CODE_ADDR * 4));
|
|
} else {
|
|
/* values are in big endian */
|
|
ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
|
|
ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
|
|
ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
|
|
}
|
|
}
|
|
|
|
qla2x00_flash_disable(ha);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
|
|
{
|
|
int ret = QLA_SUCCESS;
|
|
uint32_t pcihdr, pcids;
|
|
uint32_t *dcode;
|
|
uint8_t *bcode;
|
|
uint8_t code_type, last_image;
|
|
int i;
|
|
|
|
if (!mbuf)
|
|
return QLA_FUNCTION_FAILED;
|
|
|
|
memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
|
|
memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
|
|
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
|
|
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
|
|
|
|
dcode = mbuf;
|
|
|
|
/* Begin with first PCI expansion ROM header. */
|
|
pcihdr = 0;
|
|
last_image = 1;
|
|
do {
|
|
/* Verify PCI expansion ROM header. */
|
|
qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
|
|
bcode = mbuf + (pcihdr % 4);
|
|
if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
|
|
/* No signature */
|
|
DEBUG2(printk("scsi(%ld): No matching ROM "
|
|
"signature.\n", ha->host_no));
|
|
ret = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
|
|
/* Locate PCI data structure. */
|
|
pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
|
|
|
|
qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
|
|
bcode = mbuf + (pcihdr % 4);
|
|
|
|
/* Validate signature of PCI data structure. */
|
|
if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
|
|
bcode[0x2] != 'I' || bcode[0x3] != 'R') {
|
|
/* Incorrect header. */
|
|
DEBUG2(printk("%s(): PCI data struct not found "
|
|
"pcir_adr=%x.\n", __func__, pcids));
|
|
ret = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
|
|
/* Read version */
|
|
code_type = bcode[0x14];
|
|
switch (code_type) {
|
|
case ROM_CODE_TYPE_BIOS:
|
|
/* Intel x86, PC-AT compatible. */
|
|
ha->bios_revision[0] = bcode[0x12];
|
|
ha->bios_revision[1] = bcode[0x13];
|
|
DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
|
|
ha->bios_revision[1], ha->bios_revision[0]));
|
|
break;
|
|
case ROM_CODE_TYPE_FCODE:
|
|
/* Open Firmware standard for PCI (FCode). */
|
|
ha->fcode_revision[0] = bcode[0x12];
|
|
ha->fcode_revision[1] = bcode[0x13];
|
|
DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
|
|
ha->fcode_revision[1], ha->fcode_revision[0]));
|
|
break;
|
|
case ROM_CODE_TYPE_EFI:
|
|
/* Extensible Firmware Interface (EFI). */
|
|
ha->efi_revision[0] = bcode[0x12];
|
|
ha->efi_revision[1] = bcode[0x13];
|
|
DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
|
|
ha->efi_revision[1], ha->efi_revision[0]));
|
|
break;
|
|
default:
|
|
DEBUG2(printk("%s(): Unrecognized code type %x at "
|
|
"pcids %x.\n", __func__, code_type, pcids));
|
|
break;
|
|
}
|
|
|
|
last_image = bcode[0x15] & BIT_7;
|
|
|
|
/* Locate next PCI expansion ROM. */
|
|
pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
|
|
} while (!last_image);
|
|
|
|
/* Read firmware image information. */
|
|
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
|
|
dcode = mbuf;
|
|
|
|
qla24xx_read_flash_data(ha, dcode, FA_RISC_CODE_ADDR + 4, 4);
|
|
for (i = 0; i < 4; i++)
|
|
dcode[i] = be32_to_cpu(dcode[i]);
|
|
|
|
if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
|
|
dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
|
|
(dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
|
|
dcode[3] == 0)) {
|
|
DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
|
|
__func__, FA_RISC_CODE_ADDR));
|
|
} else {
|
|
ha->fw_revision[0] = dcode[0];
|
|
ha->fw_revision[1] = dcode[1];
|
|
ha->fw_revision[2] = dcode[2];
|
|
ha->fw_revision[3] = dcode[3];
|
|
}
|
|
|
|
return ret;
|
|
}
|