mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-18 07:27:20 +00:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
658 lines
18 KiB
C
658 lines
18 KiB
C
/*
|
|
* arch/sh/kernel/time.c
|
|
*
|
|
* Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
|
|
* Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
|
|
* Copyright (C) 2002, 2003, 2004 Paul Mundt
|
|
* Copyright (C) 2002 M. R. Brown <mrbrown@linux-sh.org>
|
|
*
|
|
* Some code taken from i386 version.
|
|
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/time.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/profile.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/rtc.h>
|
|
#include <asm/freq.h>
|
|
#include <asm/cpu/timer.h>
|
|
#ifdef CONFIG_SH_KGDB
|
|
#include <asm/kgdb.h>
|
|
#endif
|
|
|
|
#include <linux/timex.h>
|
|
#include <linux/irq.h>
|
|
|
|
#define TMU_TOCR_INIT 0x00
|
|
#define TMU0_TCR_INIT 0x0020
|
|
#define TMU_TSTR_INIT 1
|
|
|
|
#define TMU0_TCR_CALIB 0x0000
|
|
|
|
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
|
|
#define CLOCKGEN_MEMCLKCR 0xbb040038
|
|
#define MEMCLKCR_RATIO_MASK 0x7
|
|
#endif /* CONFIG_CPU_SUBTYPE_ST40STB1 */
|
|
|
|
extern unsigned long wall_jiffies;
|
|
#define TICK_SIZE (tick_nsec / 1000)
|
|
DEFINE_SPINLOCK(tmu0_lock);
|
|
|
|
u64 jiffies_64 = INITIAL_JIFFIES;
|
|
|
|
EXPORT_SYMBOL(jiffies_64);
|
|
|
|
/* XXX: Can we initialize this in a routine somewhere? Dreamcast doesn't want
|
|
* these routines anywhere... */
|
|
#ifdef CONFIG_SH_RTC
|
|
void (*rtc_get_time)(struct timespec *) = sh_rtc_gettimeofday;
|
|
int (*rtc_set_time)(const time_t) = sh_rtc_settimeofday;
|
|
#else
|
|
void (*rtc_get_time)(struct timespec *);
|
|
int (*rtc_set_time)(const time_t);
|
|
#endif
|
|
|
|
#if defined(CONFIG_CPU_SUBTYPE_SH7300)
|
|
static int md_table[] = { 1, 2, 3, 4, 6, 8, 12 };
|
|
#endif
|
|
#if defined(CONFIG_CPU_SH3)
|
|
static int stc_multipliers[] = { 1, 2, 3, 4, 6, 1, 1, 1 };
|
|
static int stc_values[] = { 0, 1, 4, 2, 5, 0, 0, 0 };
|
|
#define bfc_divisors stc_multipliers
|
|
#define bfc_values stc_values
|
|
static int ifc_divisors[] = { 1, 2, 3, 4, 1, 1, 1, 1 };
|
|
static int ifc_values[] = { 0, 1, 4, 2, 0, 0, 0, 0 };
|
|
static int pfc_divisors[] = { 1, 2, 3, 4, 6, 1, 1, 1 };
|
|
static int pfc_values[] = { 0, 1, 4, 2, 5, 0, 0, 0 };
|
|
#elif defined(CONFIG_CPU_SH4)
|
|
#if defined(CONFIG_CPU_SUBTYPE_SH73180)
|
|
static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 12, 16 };
|
|
static int ifc_values[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
|
|
#define bfc_divisors ifc_divisors /* Same */
|
|
#define bfc_values ifc_values
|
|
#define pfc_divisors ifc_divisors /* Same */
|
|
#define pfc_values ifc_values
|
|
#else
|
|
static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 1, 1 };
|
|
static int ifc_values[] = { 0, 1, 2, 3, 0, 4, 0, 5 };
|
|
#define bfc_divisors ifc_divisors /* Same */
|
|
#define bfc_values ifc_values
|
|
static int pfc_divisors[] = { 2, 3, 4, 6, 8, 2, 2, 2 };
|
|
static int pfc_values[] = { 0, 0, 1, 2, 0, 3, 0, 4 };
|
|
#endif
|
|
#else
|
|
#error "Unknown ifc/bfc/pfc/stc values for this processor"
|
|
#endif
|
|
|
|
/*
|
|
* Scheduler clock - returns current time in nanosec units.
|
|
*/
|
|
unsigned long long sched_clock(void)
|
|
{
|
|
return (unsigned long long)jiffies * (1000000000 / HZ);
|
|
}
|
|
|
|
static unsigned long do_gettimeoffset(void)
|
|
{
|
|
int count;
|
|
unsigned long flags;
|
|
|
|
static int count_p = 0x7fffffff; /* for the first call after boot */
|
|
static unsigned long jiffies_p = 0;
|
|
|
|
/*
|
|
* cache volatile jiffies temporarily; we have IRQs turned off.
|
|
*/
|
|
unsigned long jiffies_t;
|
|
|
|
spin_lock_irqsave(&tmu0_lock, flags);
|
|
/* timer count may underflow right here */
|
|
count = ctrl_inl(TMU0_TCNT); /* read the latched count */
|
|
|
|
jiffies_t = jiffies;
|
|
|
|
/*
|
|
* avoiding timer inconsistencies (they are rare, but they happen)...
|
|
* there is one kind of problem that must be avoided here:
|
|
* 1. the timer counter underflows
|
|
*/
|
|
|
|
if( jiffies_t == jiffies_p ) {
|
|
if( count > count_p ) {
|
|
/* the nutcase */
|
|
|
|
if(ctrl_inw(TMU0_TCR) & 0x100) { /* Check UNF bit */
|
|
/*
|
|
* We cannot detect lost timer interrupts ...
|
|
* well, that's why we call them lost, don't we? :)
|
|
* [hmm, on the Pentium and Alpha we can ... sort of]
|
|
*/
|
|
count -= LATCH;
|
|
} else {
|
|
printk("do_slow_gettimeoffset(): hardware timer problem?\n");
|
|
}
|
|
}
|
|
} else
|
|
jiffies_p = jiffies_t;
|
|
|
|
count_p = count;
|
|
spin_unlock_irqrestore(&tmu0_lock, flags);
|
|
|
|
count = ((LATCH-1) - count) * TICK_SIZE;
|
|
count = (count + LATCH/2) / LATCH;
|
|
|
|
return count;
|
|
}
|
|
|
|
void do_gettimeofday(struct timeval *tv)
|
|
{
|
|
unsigned long seq;
|
|
unsigned long usec, sec;
|
|
unsigned long lost;
|
|
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
usec = do_gettimeoffset();
|
|
|
|
lost = jiffies - wall_jiffies;
|
|
if (lost)
|
|
usec += lost * (1000000 / HZ);
|
|
|
|
sec = xtime.tv_sec;
|
|
usec += xtime.tv_nsec / 1000;
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
while (usec >= 1000000) {
|
|
usec -= 1000000;
|
|
sec++;
|
|
}
|
|
|
|
tv->tv_sec = sec;
|
|
tv->tv_usec = usec;
|
|
}
|
|
|
|
EXPORT_SYMBOL(do_gettimeofday);
|
|
|
|
int do_settimeofday(struct timespec *tv)
|
|
{
|
|
time_t wtm_sec, sec = tv->tv_sec;
|
|
long wtm_nsec, nsec = tv->tv_nsec;
|
|
|
|
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
|
|
return -EINVAL;
|
|
|
|
write_seqlock_irq(&xtime_lock);
|
|
/*
|
|
* This is revolting. We need to set "xtime" correctly. However, the
|
|
* value in this location is the value at the most recent update of
|
|
* wall time. Discover what correction gettimeofday() would have
|
|
* made, and then undo it!
|
|
*/
|
|
nsec -= 1000 * (do_gettimeoffset() +
|
|
(jiffies - wall_jiffies) * (1000000 / HZ));
|
|
|
|
wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
|
|
wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
|
|
|
|
set_normalized_timespec(&xtime, sec, nsec);
|
|
set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
|
|
|
|
time_adjust = 0; /* stop active adjtime() */
|
|
time_status |= STA_UNSYNC;
|
|
time_maxerror = NTP_PHASE_LIMIT;
|
|
time_esterror = NTP_PHASE_LIMIT;
|
|
write_sequnlock_irq(&xtime_lock);
|
|
clock_was_set();
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(do_settimeofday);
|
|
|
|
/* last time the RTC clock got updated */
|
|
static long last_rtc_update;
|
|
|
|
/*
|
|
* timer_interrupt() needs to keep up the real-time clock,
|
|
* as well as call the "do_timer()" routine every clocktick
|
|
*/
|
|
static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
do_timer(regs);
|
|
#ifndef CONFIG_SMP
|
|
update_process_times(user_mode(regs));
|
|
#endif
|
|
profile_tick(CPU_PROFILING, regs);
|
|
|
|
#ifdef CONFIG_HEARTBEAT
|
|
if (sh_mv.mv_heartbeat != NULL)
|
|
sh_mv.mv_heartbeat();
|
|
#endif
|
|
|
|
/*
|
|
* If we have an externally synchronized Linux clock, then update
|
|
* RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
|
|
* called as close as possible to 500 ms before the new second starts.
|
|
*/
|
|
if ((time_status & STA_UNSYNC) == 0 &&
|
|
xtime.tv_sec > last_rtc_update + 660 &&
|
|
(xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
|
|
(xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
|
|
if (rtc_set_time(xtime.tv_sec) == 0)
|
|
last_rtc_update = xtime.tv_sec;
|
|
else
|
|
last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is the same as the above, except we _also_ save the current
|
|
* Time Stamp Counter value at the time of the timer interrupt, so that
|
|
* we later on can estimate the time of day more exactly.
|
|
*/
|
|
static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
unsigned long timer_status;
|
|
|
|
/* Clear UNF bit */
|
|
timer_status = ctrl_inw(TMU0_TCR);
|
|
timer_status &= ~0x100;
|
|
ctrl_outw(timer_status, TMU0_TCR);
|
|
|
|
/*
|
|
* Here we are in the timer irq handler. We just have irqs locally
|
|
* disabled but we don't know if the timer_bh is running on the other
|
|
* CPU. We need to avoid to SMP race with it. NOTE: we don' t need
|
|
* the irq version of write_lock because as just said we have irq
|
|
* locally disabled. -arca
|
|
*/
|
|
write_seqlock(&xtime_lock);
|
|
do_timer_interrupt(irq, NULL, regs);
|
|
write_sequnlock(&xtime_lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Hah! We'll see if this works (switching from usecs to nsecs).
|
|
*/
|
|
static unsigned int __init get_timer_frequency(void)
|
|
{
|
|
u32 freq;
|
|
struct timespec ts1, ts2;
|
|
unsigned long diff_nsec;
|
|
unsigned long factor;
|
|
|
|
/* Setup the timer: We don't want to generate interrupts, just
|
|
* have it count down at its natural rate.
|
|
*/
|
|
ctrl_outb(0, TMU_TSTR);
|
|
#if !defined(CONFIG_CPU_SUBTYPE_SH7300)
|
|
ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
|
|
#endif
|
|
ctrl_outw(TMU0_TCR_CALIB, TMU0_TCR);
|
|
ctrl_outl(0xffffffff, TMU0_TCOR);
|
|
ctrl_outl(0xffffffff, TMU0_TCNT);
|
|
|
|
rtc_get_time(&ts2);
|
|
|
|
do {
|
|
rtc_get_time(&ts1);
|
|
} while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec);
|
|
|
|
/* actually start the timer */
|
|
ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
|
|
|
|
do {
|
|
rtc_get_time(&ts2);
|
|
} while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec);
|
|
|
|
freq = 0xffffffff - ctrl_inl(TMU0_TCNT);
|
|
if (ts2.tv_nsec < ts1.tv_nsec) {
|
|
ts2.tv_nsec += 1000000000;
|
|
ts2.tv_sec--;
|
|
}
|
|
|
|
diff_nsec = (ts2.tv_sec - ts1.tv_sec) * 1000000000 + (ts2.tv_nsec - ts1.tv_nsec);
|
|
|
|
/* this should work well if the RTC has a precision of n Hz, where
|
|
* n is an integer. I don't think we have to worry about the other
|
|
* cases. */
|
|
factor = (1000000000 + diff_nsec/2) / diff_nsec;
|
|
|
|
if (factor * diff_nsec > 1100000000 ||
|
|
factor * diff_nsec < 900000000)
|
|
panic("weird RTC (diff_nsec %ld)", diff_nsec);
|
|
|
|
return freq * factor;
|
|
}
|
|
|
|
void (*board_time_init)(void);
|
|
void (*board_timer_setup)(struct irqaction *irq);
|
|
|
|
static unsigned int sh_pclk_freq __initdata = CONFIG_SH_PCLK_FREQ;
|
|
|
|
static int __init sh_pclk_setup(char *str)
|
|
{
|
|
unsigned int freq;
|
|
|
|
if (get_option(&str, &freq))
|
|
sh_pclk_freq = freq;
|
|
|
|
return 1;
|
|
}
|
|
__setup("sh_pclk=", sh_pclk_setup);
|
|
|
|
static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL};
|
|
|
|
void get_current_frequency_divisors(unsigned int *ifc, unsigned int *bfc, unsigned int *pfc)
|
|
{
|
|
unsigned int frqcr = ctrl_inw(FRQCR);
|
|
|
|
#if defined(CONFIG_CPU_SH3)
|
|
#if defined(CONFIG_CPU_SUBTYPE_SH7300)
|
|
*ifc = md_table[((frqcr & 0x0070) >> 4)];
|
|
*bfc = md_table[((frqcr & 0x0700) >> 8)];
|
|
*pfc = md_table[frqcr & 0x0007];
|
|
#elif defined(CONFIG_CPU_SUBTYPE_SH7705)
|
|
*bfc = stc_multipliers[(frqcr & 0x0300) >> 8];
|
|
*ifc = ifc_divisors[(frqcr & 0x0030) >> 4];
|
|
*pfc = pfc_divisors[frqcr & 0x0003];
|
|
#else
|
|
unsigned int tmp;
|
|
|
|
tmp = (frqcr & 0x8000) >> 13;
|
|
tmp |= (frqcr & 0x0030) >> 4;
|
|
*bfc = stc_multipliers[tmp];
|
|
tmp = (frqcr & 0x4000) >> 12;
|
|
tmp |= (frqcr & 0x000c) >> 2;
|
|
*ifc = ifc_divisors[tmp];
|
|
tmp = (frqcr & 0x2000) >> 11;
|
|
tmp |= frqcr & 0x0003;
|
|
*pfc = pfc_divisors[tmp];
|
|
#endif
|
|
#elif defined(CONFIG_CPU_SH4)
|
|
#if defined(CONFIG_CPU_SUBTYPE_SH73180)
|
|
*ifc = ifc_divisors[(frqcr>> 20) & 0x0007];
|
|
*bfc = bfc_divisors[(frqcr>> 12) & 0x0007];
|
|
*pfc = pfc_divisors[frqcr & 0x0007];
|
|
#else
|
|
*ifc = ifc_divisors[(frqcr >> 6) & 0x0007];
|
|
*bfc = bfc_divisors[(frqcr >> 3) & 0x0007];
|
|
*pfc = pfc_divisors[frqcr & 0x0007];
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This bit of ugliness builds up accessor routines to get at both
|
|
* the divisors and the physical values.
|
|
*/
|
|
#define _FREQ_TABLE(x) \
|
|
unsigned int get_##x##_divisor(unsigned int value) \
|
|
{ return x##_divisors[value]; } \
|
|
\
|
|
unsigned int get_##x##_value(unsigned int divisor) \
|
|
{ return x##_values[(divisor - 1)]; }
|
|
|
|
_FREQ_TABLE(ifc);
|
|
_FREQ_TABLE(bfc);
|
|
_FREQ_TABLE(pfc);
|
|
|
|
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
|
|
|
|
/*
|
|
* The ST40 divisors are totally different so we set the cpu data
|
|
* clocks using a different algorithm
|
|
*
|
|
* I've just plugged this from the 2.4 code
|
|
* - Alex Bennee <kernel-hacker@bennee.com>
|
|
*/
|
|
#define CCN_PVR_CHIP_SHIFT 24
|
|
#define CCN_PVR_CHIP_MASK 0xff
|
|
#define CCN_PVR_CHIP_ST40STB1 0x4
|
|
|
|
|
|
struct frqcr_data {
|
|
unsigned short frqcr;
|
|
|
|
struct {
|
|
unsigned char multiplier;
|
|
unsigned char divisor;
|
|
} factor[3];
|
|
};
|
|
|
|
static struct frqcr_data st40_frqcr_table[] = {
|
|
{ 0x000, {{1,1}, {1,1}, {1,2}}},
|
|
{ 0x002, {{1,1}, {1,1}, {1,4}}},
|
|
{ 0x004, {{1,1}, {1,1}, {1,8}}},
|
|
{ 0x008, {{1,1}, {1,2}, {1,2}}},
|
|
{ 0x00A, {{1,1}, {1,2}, {1,4}}},
|
|
{ 0x00C, {{1,1}, {1,2}, {1,8}}},
|
|
{ 0x011, {{1,1}, {2,3}, {1,6}}},
|
|
{ 0x013, {{1,1}, {2,3}, {1,3}}},
|
|
{ 0x01A, {{1,1}, {1,2}, {1,4}}},
|
|
{ 0x01C, {{1,1}, {1,2}, {1,8}}},
|
|
{ 0x023, {{1,1}, {2,3}, {1,3}}},
|
|
{ 0x02C, {{1,1}, {1,2}, {1,8}}},
|
|
{ 0x048, {{1,2}, {1,2}, {1,4}}},
|
|
{ 0x04A, {{1,2}, {1,2}, {1,6}}},
|
|
{ 0x04C, {{1,2}, {1,2}, {1,8}}},
|
|
{ 0x05A, {{1,2}, {1,3}, {1,6}}},
|
|
{ 0x05C, {{1,2}, {1,3}, {1,6}}},
|
|
{ 0x063, {{1,2}, {1,4}, {1,4}}},
|
|
{ 0x06C, {{1,2}, {1,4}, {1,8}}},
|
|
{ 0x091, {{1,3}, {1,3}, {1,6}}},
|
|
{ 0x093, {{1,3}, {1,3}, {1,6}}},
|
|
{ 0x0A3, {{1,3}, {1,6}, {1,6}}},
|
|
{ 0x0DA, {{1,4}, {1,4}, {1,8}}},
|
|
{ 0x0DC, {{1,4}, {1,4}, {1,8}}},
|
|
{ 0x0EC, {{1,4}, {1,8}, {1,8}}},
|
|
{ 0x123, {{1,4}, {1,4}, {1,8}}},
|
|
{ 0x16C, {{1,4}, {1,8}, {1,8}}},
|
|
};
|
|
|
|
struct memclk_data {
|
|
unsigned char multiplier;
|
|
unsigned char divisor;
|
|
};
|
|
|
|
static struct memclk_data st40_memclk_table[8] = {
|
|
{1,1}, // 000
|
|
{1,2}, // 001
|
|
{1,3}, // 010
|
|
{2,3}, // 011
|
|
{1,4}, // 100
|
|
{1,6}, // 101
|
|
{1,8}, // 110
|
|
{1,8} // 111
|
|
};
|
|
|
|
static void st40_specific_time_init(unsigned int module_clock, unsigned short frqcr)
|
|
{
|
|
unsigned int cpu_clock, master_clock, bus_clock, memory_clock;
|
|
struct frqcr_data *d;
|
|
int a;
|
|
unsigned long memclkcr;
|
|
struct memclk_data *e;
|
|
|
|
for (a = 0; a < ARRAY_SIZE(st40_frqcr_table); a++) {
|
|
d = &st40_frqcr_table[a];
|
|
|
|
if (d->frqcr == (frqcr & 0x1ff))
|
|
break;
|
|
}
|
|
|
|
if (a == ARRAY_SIZE(st40_frqcr_table)) {
|
|
d = st40_frqcr_table;
|
|
|
|
printk("ERROR: Unrecognised FRQCR value (0x%x), "
|
|
"using default multipliers\n", frqcr);
|
|
}
|
|
|
|
memclkcr = ctrl_inl(CLOCKGEN_MEMCLKCR);
|
|
e = &st40_memclk_table[memclkcr & MEMCLKCR_RATIO_MASK];
|
|
|
|
printk(KERN_INFO "Clock multipliers: CPU: %d/%d Bus: %d/%d "
|
|
"Mem: %d/%d Periph: %d/%d\n",
|
|
d->factor[0].multiplier, d->factor[0].divisor,
|
|
d->factor[1].multiplier, d->factor[1].divisor,
|
|
e->multiplier, e->divisor,
|
|
d->factor[2].multiplier, d->factor[2].divisor);
|
|
|
|
master_clock = module_clock * d->factor[2].divisor
|
|
/ d->factor[2].multiplier;
|
|
bus_clock = master_clock * d->factor[1].multiplier
|
|
/ d->factor[1].divisor;
|
|
memory_clock = master_clock * e->multiplier
|
|
/ e->divisor;
|
|
cpu_clock = master_clock * d->factor[0].multiplier
|
|
/ d->factor[0].divisor;
|
|
|
|
current_cpu_data.cpu_clock = cpu_clock;
|
|
current_cpu_data.master_clock = master_clock;
|
|
current_cpu_data.bus_clock = bus_clock;
|
|
current_cpu_data.memory_clock = memory_clock;
|
|
current_cpu_data.module_clock = module_clock;
|
|
}
|
|
#endif
|
|
|
|
void __init time_init(void)
|
|
{
|
|
unsigned int timer_freq = 0;
|
|
unsigned int ifc, pfc, bfc;
|
|
unsigned long interval;
|
|
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
|
|
unsigned long pvr;
|
|
unsigned short frqcr;
|
|
#endif
|
|
|
|
if (board_time_init)
|
|
board_time_init();
|
|
|
|
/*
|
|
* If we don't have an RTC (such as with the SH7300), don't attempt to
|
|
* probe the timer frequency. Rely on an either hardcoded peripheral
|
|
* clock value, or on the sh_pclk command line option. Note that we
|
|
* still need to have CONFIG_SH_PCLK_FREQ set in order for things like
|
|
* CLOCK_TICK_RATE to be sane.
|
|
*/
|
|
current_cpu_data.module_clock = sh_pclk_freq;
|
|
|
|
#ifdef CONFIG_SH_PCLK_CALC
|
|
/* XXX: Switch this over to a more generic test. */
|
|
{
|
|
unsigned int freq;
|
|
|
|
/*
|
|
* If we've specified a peripheral clock frequency, and we have
|
|
* an RTC, compare it against the autodetected value. Complain
|
|
* if there's a mismatch.
|
|
*/
|
|
timer_freq = get_timer_frequency();
|
|
freq = timer_freq * 4;
|
|
|
|
if (sh_pclk_freq && (sh_pclk_freq/100*99 > freq || sh_pclk_freq/100*101 < freq)) {
|
|
printk(KERN_NOTICE "Calculated peripheral clock value "
|
|
"%d differs from sh_pclk value %d, fixing..\n",
|
|
freq, sh_pclk_freq);
|
|
current_cpu_data.module_clock = freq;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
|
|
/* XXX: Update ST40 code to use board_time_init() */
|
|
pvr = ctrl_inl(CCN_PVR);
|
|
frqcr = ctrl_inw(FRQCR);
|
|
printk("time.c ST40 Probe: PVR %08lx, FRQCR %04hx\n", pvr, frqcr);
|
|
|
|
if (((pvr >> CCN_PVR_CHIP_SHIFT) & CCN_PVR_CHIP_MASK) == CCN_PVR_CHIP_ST40STB1)
|
|
st40_specific_time_init(current_cpu_data.module_clock, frqcr);
|
|
else
|
|
#endif
|
|
get_current_frequency_divisors(&ifc, &bfc, &pfc);
|
|
|
|
if (rtc_get_time) {
|
|
rtc_get_time(&xtime);
|
|
} else {
|
|
xtime.tv_sec = mktime(2000, 1, 1, 0, 0, 0);
|
|
xtime.tv_nsec = 0;
|
|
}
|
|
|
|
set_normalized_timespec(&wall_to_monotonic,
|
|
-xtime.tv_sec, -xtime.tv_nsec);
|
|
|
|
if (board_timer_setup) {
|
|
board_timer_setup(&irq0);
|
|
} else {
|
|
setup_irq(TIMER_IRQ, &irq0);
|
|
}
|
|
|
|
/*
|
|
* for ST40 chips the current_cpu_data should already be set
|
|
* so not having valid pfc/bfc/ifc shouldn't be a problem
|
|
*/
|
|
if (!current_cpu_data.master_clock)
|
|
current_cpu_data.master_clock = current_cpu_data.module_clock * pfc;
|
|
if (!current_cpu_data.bus_clock)
|
|
current_cpu_data.bus_clock = current_cpu_data.master_clock / bfc;
|
|
if (!current_cpu_data.cpu_clock)
|
|
current_cpu_data.cpu_clock = current_cpu_data.master_clock / ifc;
|
|
|
|
printk("CPU clock: %d.%02dMHz\n",
|
|
(current_cpu_data.cpu_clock / 1000000),
|
|
(current_cpu_data.cpu_clock % 1000000)/10000);
|
|
printk("Bus clock: %d.%02dMHz\n",
|
|
(current_cpu_data.bus_clock / 1000000),
|
|
(current_cpu_data.bus_clock % 1000000)/10000);
|
|
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
|
|
printk("Memory clock: %d.%02dMHz\n",
|
|
(current_cpu_data.memory_clock / 1000000),
|
|
(current_cpu_data.memory_clock % 1000000)/10000);
|
|
#endif
|
|
printk("Module clock: %d.%02dMHz\n",
|
|
(current_cpu_data.module_clock / 1000000),
|
|
(current_cpu_data.module_clock % 1000000)/10000);
|
|
|
|
interval = (current_cpu_data.module_clock/4 + HZ/2) / HZ;
|
|
|
|
printk("Interval = %ld\n", interval);
|
|
|
|
/* Start TMU0 */
|
|
ctrl_outb(0, TMU_TSTR);
|
|
#if !defined(CONFIG_CPU_SUBTYPE_SH7300)
|
|
ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
|
|
#endif
|
|
ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
|
|
ctrl_outl(interval, TMU0_TCOR);
|
|
ctrl_outl(interval, TMU0_TCNT);
|
|
ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
|
|
|
|
#if defined(CONFIG_SH_KGDB)
|
|
/*
|
|
* Set up kgdb as requested. We do it here because the serial
|
|
* init uses the timer vars we just set up for figuring baud.
|
|
*/
|
|
kgdb_init();
|
|
#endif
|
|
}
|