mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 20:31:49 +00:00
281ff33b7c
We currently enforce the !RW mapping for the kernel mapping that maps holes between different text, rodata and data sections. However, kernel identity mappings will have different RWX permissions to the pages mapping to text and to the pages padding (which are freed) the text, rodata sections. Hence kernel identity mappings will be broken to smaller pages. For 64-bit, kernel text and kernel identity mappings are different, so we can enable protection checks that come with CONFIG_DEBUG_RODATA, as well as retain 2MB large page mappings for kernel text. Konrad reported a boot failure with the Linux Xen paravirt guest because of this. In this paravirt guest case, the kernel text mapping and the kernel identity mapping share the same page-table pages. Thus forcing the !RW mapping for some of the kernel mappings also cause the kernel identity mappings to be read-only resulting in the boot failure. Linux Xen paravirt guest also uses 4k mappings and don't use 2M mapping. Fix this issue and retain large page performance advantage for native kernels by not working hard and not enforcing !RW for the kernel text mapping, if the current mapping is already using small page mapping. Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> LKML-Reference: <1266522700.2909.34.camel@sbs-t61.sc.intel.com> Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: stable@kernel.org [2.6.32, 2.6.33] Signed-off-by: H. Peter Anvin <hpa@zytor.com>
1346 lines
32 KiB
C
1346 lines
32 KiB
C
/*
|
|
* Copyright 2002 Andi Kleen, SuSE Labs.
|
|
* Thanks to Ben LaHaise for precious feedback.
|
|
*/
|
|
#include <linux/highmem.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/percpu.h>
|
|
|
|
#include <asm/e820.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/pat.h>
|
|
|
|
/*
|
|
* The current flushing context - we pass it instead of 5 arguments:
|
|
*/
|
|
struct cpa_data {
|
|
unsigned long *vaddr;
|
|
pgprot_t mask_set;
|
|
pgprot_t mask_clr;
|
|
int numpages;
|
|
int flags;
|
|
unsigned long pfn;
|
|
unsigned force_split : 1;
|
|
int curpage;
|
|
struct page **pages;
|
|
};
|
|
|
|
/*
|
|
* Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
|
|
* using cpa_lock. So that we don't allow any other cpu, with stale large tlb
|
|
* entries change the page attribute in parallel to some other cpu
|
|
* splitting a large page entry along with changing the attribute.
|
|
*/
|
|
static DEFINE_SPINLOCK(cpa_lock);
|
|
|
|
#define CPA_FLUSHTLB 1
|
|
#define CPA_ARRAY 2
|
|
#define CPA_PAGES_ARRAY 4
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static unsigned long direct_pages_count[PG_LEVEL_NUM];
|
|
|
|
void update_page_count(int level, unsigned long pages)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* Protect against CPA */
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
direct_pages_count[level] += pages;
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
}
|
|
|
|
static void split_page_count(int level)
|
|
{
|
|
direct_pages_count[level]--;
|
|
direct_pages_count[level - 1] += PTRS_PER_PTE;
|
|
}
|
|
|
|
void arch_report_meminfo(struct seq_file *m)
|
|
{
|
|
seq_printf(m, "DirectMap4k: %8lu kB\n",
|
|
direct_pages_count[PG_LEVEL_4K] << 2);
|
|
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
|
|
seq_printf(m, "DirectMap2M: %8lu kB\n",
|
|
direct_pages_count[PG_LEVEL_2M] << 11);
|
|
#else
|
|
seq_printf(m, "DirectMap4M: %8lu kB\n",
|
|
direct_pages_count[PG_LEVEL_2M] << 12);
|
|
#endif
|
|
#ifdef CONFIG_X86_64
|
|
if (direct_gbpages)
|
|
seq_printf(m, "DirectMap1G: %8lu kB\n",
|
|
direct_pages_count[PG_LEVEL_1G] << 20);
|
|
#endif
|
|
}
|
|
#else
|
|
static inline void split_page_count(int level) { }
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
static inline unsigned long highmap_start_pfn(void)
|
|
{
|
|
return __pa(_text) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline unsigned long highmap_end_pfn(void)
|
|
{
|
|
return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
# define debug_pagealloc 1
|
|
#else
|
|
# define debug_pagealloc 0
|
|
#endif
|
|
|
|
static inline int
|
|
within(unsigned long addr, unsigned long start, unsigned long end)
|
|
{
|
|
return addr >= start && addr < end;
|
|
}
|
|
|
|
/*
|
|
* Flushing functions
|
|
*/
|
|
|
|
/**
|
|
* clflush_cache_range - flush a cache range with clflush
|
|
* @addr: virtual start address
|
|
* @size: number of bytes to flush
|
|
*
|
|
* clflush is an unordered instruction which needs fencing with mfence
|
|
* to avoid ordering issues.
|
|
*/
|
|
void clflush_cache_range(void *vaddr, unsigned int size)
|
|
{
|
|
void *vend = vaddr + size - 1;
|
|
|
|
mb();
|
|
|
|
for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
|
|
clflush(vaddr);
|
|
/*
|
|
* Flush any possible final partial cacheline:
|
|
*/
|
|
clflush(vend);
|
|
|
|
mb();
|
|
}
|
|
EXPORT_SYMBOL_GPL(clflush_cache_range);
|
|
|
|
static void __cpa_flush_all(void *arg)
|
|
{
|
|
unsigned long cache = (unsigned long)arg;
|
|
|
|
/*
|
|
* Flush all to work around Errata in early athlons regarding
|
|
* large page flushing.
|
|
*/
|
|
__flush_tlb_all();
|
|
|
|
if (cache && boot_cpu_data.x86 >= 4)
|
|
wbinvd();
|
|
}
|
|
|
|
static void cpa_flush_all(unsigned long cache)
|
|
{
|
|
BUG_ON(irqs_disabled());
|
|
|
|
on_each_cpu(__cpa_flush_all, (void *) cache, 1);
|
|
}
|
|
|
|
static void __cpa_flush_range(void *arg)
|
|
{
|
|
/*
|
|
* We could optimize that further and do individual per page
|
|
* tlb invalidates for a low number of pages. Caveat: we must
|
|
* flush the high aliases on 64bit as well.
|
|
*/
|
|
__flush_tlb_all();
|
|
}
|
|
|
|
static void cpa_flush_range(unsigned long start, int numpages, int cache)
|
|
{
|
|
unsigned int i, level;
|
|
unsigned long addr;
|
|
|
|
BUG_ON(irqs_disabled());
|
|
WARN_ON(PAGE_ALIGN(start) != start);
|
|
|
|
on_each_cpu(__cpa_flush_range, NULL, 1);
|
|
|
|
if (!cache)
|
|
return;
|
|
|
|
/*
|
|
* We only need to flush on one CPU,
|
|
* clflush is a MESI-coherent instruction that
|
|
* will cause all other CPUs to flush the same
|
|
* cachelines:
|
|
*/
|
|
for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
|
|
pte_t *pte = lookup_address(addr, &level);
|
|
|
|
/*
|
|
* Only flush present addresses:
|
|
*/
|
|
if (pte && (pte_val(*pte) & _PAGE_PRESENT))
|
|
clflush_cache_range((void *) addr, PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
static void cpa_flush_array(unsigned long *start, int numpages, int cache,
|
|
int in_flags, struct page **pages)
|
|
{
|
|
unsigned int i, level;
|
|
unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
|
|
|
|
BUG_ON(irqs_disabled());
|
|
|
|
on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
|
|
|
|
if (!cache || do_wbinvd)
|
|
return;
|
|
|
|
/*
|
|
* We only need to flush on one CPU,
|
|
* clflush is a MESI-coherent instruction that
|
|
* will cause all other CPUs to flush the same
|
|
* cachelines:
|
|
*/
|
|
for (i = 0; i < numpages; i++) {
|
|
unsigned long addr;
|
|
pte_t *pte;
|
|
|
|
if (in_flags & CPA_PAGES_ARRAY)
|
|
addr = (unsigned long)page_address(pages[i]);
|
|
else
|
|
addr = start[i];
|
|
|
|
pte = lookup_address(addr, &level);
|
|
|
|
/*
|
|
* Only flush present addresses:
|
|
*/
|
|
if (pte && (pte_val(*pte) & _PAGE_PRESENT))
|
|
clflush_cache_range((void *)addr, PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Certain areas of memory on x86 require very specific protection flags,
|
|
* for example the BIOS area or kernel text. Callers don't always get this
|
|
* right (again, ioremap() on BIOS memory is not uncommon) so this function
|
|
* checks and fixes these known static required protection bits.
|
|
*/
|
|
static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
|
|
unsigned long pfn)
|
|
{
|
|
pgprot_t forbidden = __pgprot(0);
|
|
|
|
/*
|
|
* The BIOS area between 640k and 1Mb needs to be executable for
|
|
* PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
|
|
*/
|
|
if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
|
|
pgprot_val(forbidden) |= _PAGE_NX;
|
|
|
|
/*
|
|
* The kernel text needs to be executable for obvious reasons
|
|
* Does not cover __inittext since that is gone later on. On
|
|
* 64bit we do not enforce !NX on the low mapping
|
|
*/
|
|
if (within(address, (unsigned long)_text, (unsigned long)_etext))
|
|
pgprot_val(forbidden) |= _PAGE_NX;
|
|
|
|
/*
|
|
* The .rodata section needs to be read-only. Using the pfn
|
|
* catches all aliases.
|
|
*/
|
|
if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
|
|
__pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
|
|
pgprot_val(forbidden) |= _PAGE_RW;
|
|
|
|
#if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
|
|
/*
|
|
* Once the kernel maps the text as RO (kernel_set_to_readonly is set),
|
|
* kernel text mappings for the large page aligned text, rodata sections
|
|
* will be always read-only. For the kernel identity mappings covering
|
|
* the holes caused by this alignment can be anything that user asks.
|
|
*
|
|
* This will preserve the large page mappings for kernel text/data
|
|
* at no extra cost.
|
|
*/
|
|
if (kernel_set_to_readonly &&
|
|
within(address, (unsigned long)_text,
|
|
(unsigned long)__end_rodata_hpage_align)) {
|
|
unsigned int level;
|
|
|
|
/*
|
|
* Don't enforce the !RW mapping for the kernel text mapping,
|
|
* if the current mapping is already using small page mapping.
|
|
* No need to work hard to preserve large page mappings in this
|
|
* case.
|
|
*
|
|
* This also fixes the Linux Xen paravirt guest boot failure
|
|
* (because of unexpected read-only mappings for kernel identity
|
|
* mappings). In this paravirt guest case, the kernel text
|
|
* mapping and the kernel identity mapping share the same
|
|
* page-table pages. Thus we can't really use different
|
|
* protections for the kernel text and identity mappings. Also,
|
|
* these shared mappings are made of small page mappings.
|
|
* Thus this don't enforce !RW mapping for small page kernel
|
|
* text mapping logic will help Linux Xen parvirt guest boot
|
|
* aswell.
|
|
*/
|
|
if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
|
|
pgprot_val(forbidden) |= _PAGE_RW;
|
|
}
|
|
#endif
|
|
|
|
prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
|
|
|
|
return prot;
|
|
}
|
|
|
|
/*
|
|
* Lookup the page table entry for a virtual address. Return a pointer
|
|
* to the entry and the level of the mapping.
|
|
*
|
|
* Note: We return pud and pmd either when the entry is marked large
|
|
* or when the present bit is not set. Otherwise we would return a
|
|
* pointer to a nonexisting mapping.
|
|
*/
|
|
pte_t *lookup_address(unsigned long address, unsigned int *level)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(address);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
*level = PG_LEVEL_NONE;
|
|
|
|
if (pgd_none(*pgd))
|
|
return NULL;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (pud_none(*pud))
|
|
return NULL;
|
|
|
|
*level = PG_LEVEL_1G;
|
|
if (pud_large(*pud) || !pud_present(*pud))
|
|
return (pte_t *)pud;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none(*pmd))
|
|
return NULL;
|
|
|
|
*level = PG_LEVEL_2M;
|
|
if (pmd_large(*pmd) || !pmd_present(*pmd))
|
|
return (pte_t *)pmd;
|
|
|
|
*level = PG_LEVEL_4K;
|
|
|
|
return pte_offset_kernel(pmd, address);
|
|
}
|
|
EXPORT_SYMBOL_GPL(lookup_address);
|
|
|
|
/*
|
|
* Set the new pmd in all the pgds we know about:
|
|
*/
|
|
static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
|
|
{
|
|
/* change init_mm */
|
|
set_pte_atomic(kpte, pte);
|
|
#ifdef CONFIG_X86_32
|
|
if (!SHARED_KERNEL_PMD) {
|
|
struct page *page;
|
|
|
|
list_for_each_entry(page, &pgd_list, lru) {
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = (pgd_t *)page_address(page) + pgd_index(address);
|
|
pud = pud_offset(pgd, address);
|
|
pmd = pmd_offset(pud, address);
|
|
set_pte_atomic((pte_t *)pmd, pte);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
try_preserve_large_page(pte_t *kpte, unsigned long address,
|
|
struct cpa_data *cpa)
|
|
{
|
|
unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
|
|
pte_t new_pte, old_pte, *tmp;
|
|
pgprot_t old_prot, new_prot;
|
|
int i, do_split = 1;
|
|
unsigned int level;
|
|
|
|
if (cpa->force_split)
|
|
return 1;
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
/*
|
|
* Check for races, another CPU might have split this page
|
|
* up already:
|
|
*/
|
|
tmp = lookup_address(address, &level);
|
|
if (tmp != kpte)
|
|
goto out_unlock;
|
|
|
|
switch (level) {
|
|
case PG_LEVEL_2M:
|
|
psize = PMD_PAGE_SIZE;
|
|
pmask = PMD_PAGE_MASK;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case PG_LEVEL_1G:
|
|
psize = PUD_PAGE_SIZE;
|
|
pmask = PUD_PAGE_MASK;
|
|
break;
|
|
#endif
|
|
default:
|
|
do_split = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of pages, which fit into this large
|
|
* page starting at address:
|
|
*/
|
|
nextpage_addr = (address + psize) & pmask;
|
|
numpages = (nextpage_addr - address) >> PAGE_SHIFT;
|
|
if (numpages < cpa->numpages)
|
|
cpa->numpages = numpages;
|
|
|
|
/*
|
|
* We are safe now. Check whether the new pgprot is the same:
|
|
*/
|
|
old_pte = *kpte;
|
|
old_prot = new_prot = pte_pgprot(old_pte);
|
|
|
|
pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
|
|
pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
|
|
|
|
/*
|
|
* old_pte points to the large page base address. So we need
|
|
* to add the offset of the virtual address:
|
|
*/
|
|
pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
|
|
cpa->pfn = pfn;
|
|
|
|
new_prot = static_protections(new_prot, address, pfn);
|
|
|
|
/*
|
|
* We need to check the full range, whether
|
|
* static_protection() requires a different pgprot for one of
|
|
* the pages in the range we try to preserve:
|
|
*/
|
|
addr = address + PAGE_SIZE;
|
|
pfn++;
|
|
for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
|
|
pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
|
|
|
|
if (pgprot_val(chk_prot) != pgprot_val(new_prot))
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If there are no changes, return. maxpages has been updated
|
|
* above:
|
|
*/
|
|
if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
|
|
do_split = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* We need to change the attributes. Check, whether we can
|
|
* change the large page in one go. We request a split, when
|
|
* the address is not aligned and the number of pages is
|
|
* smaller than the number of pages in the large page. Note
|
|
* that we limited the number of possible pages already to
|
|
* the number of pages in the large page.
|
|
*/
|
|
if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
|
|
/*
|
|
* The address is aligned and the number of pages
|
|
* covers the full page.
|
|
*/
|
|
new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
|
|
__set_pmd_pte(kpte, address, new_pte);
|
|
cpa->flags |= CPA_FLUSHTLB;
|
|
do_split = 0;
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
|
return do_split;
|
|
}
|
|
|
|
static int split_large_page(pte_t *kpte, unsigned long address)
|
|
{
|
|
unsigned long flags, pfn, pfninc = 1;
|
|
unsigned int i, level;
|
|
pte_t *pbase, *tmp;
|
|
pgprot_t ref_prot;
|
|
struct page *base;
|
|
|
|
if (!debug_pagealloc)
|
|
spin_unlock(&cpa_lock);
|
|
base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
|
|
if (!debug_pagealloc)
|
|
spin_lock(&cpa_lock);
|
|
if (!base)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
/*
|
|
* Check for races, another CPU might have split this page
|
|
* up for us already:
|
|
*/
|
|
tmp = lookup_address(address, &level);
|
|
if (tmp != kpte)
|
|
goto out_unlock;
|
|
|
|
pbase = (pte_t *)page_address(base);
|
|
paravirt_alloc_pte(&init_mm, page_to_pfn(base));
|
|
ref_prot = pte_pgprot(pte_clrhuge(*kpte));
|
|
/*
|
|
* If we ever want to utilize the PAT bit, we need to
|
|
* update this function to make sure it's converted from
|
|
* bit 12 to bit 7 when we cross from the 2MB level to
|
|
* the 4K level:
|
|
*/
|
|
WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (level == PG_LEVEL_1G) {
|
|
pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
|
|
pgprot_val(ref_prot) |= _PAGE_PSE;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Get the target pfn from the original entry:
|
|
*/
|
|
pfn = pte_pfn(*kpte);
|
|
for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
|
|
set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
|
|
|
|
if (address >= (unsigned long)__va(0) &&
|
|
address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
|
|
split_page_count(level);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (address >= (unsigned long)__va(1UL<<32) &&
|
|
address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
|
|
split_page_count(level);
|
|
#endif
|
|
|
|
/*
|
|
* Install the new, split up pagetable.
|
|
*
|
|
* We use the standard kernel pagetable protections for the new
|
|
* pagetable protections, the actual ptes set above control the
|
|
* primary protection behavior:
|
|
*/
|
|
__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
|
|
|
|
/*
|
|
* Intel Atom errata AAH41 workaround.
|
|
*
|
|
* The real fix should be in hw or in a microcode update, but
|
|
* we also probabilistically try to reduce the window of having
|
|
* a large TLB mixed with 4K TLBs while instruction fetches are
|
|
* going on.
|
|
*/
|
|
__flush_tlb_all();
|
|
|
|
base = NULL;
|
|
|
|
out_unlock:
|
|
/*
|
|
* If we dropped out via the lookup_address check under
|
|
* pgd_lock then stick the page back into the pool:
|
|
*/
|
|
if (base)
|
|
__free_page(base);
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
|
|
int primary)
|
|
{
|
|
/*
|
|
* Ignore all non primary paths.
|
|
*/
|
|
if (!primary)
|
|
return 0;
|
|
|
|
/*
|
|
* Ignore the NULL PTE for kernel identity mapping, as it is expected
|
|
* to have holes.
|
|
* Also set numpages to '1' indicating that we processed cpa req for
|
|
* one virtual address page and its pfn. TBD: numpages can be set based
|
|
* on the initial value and the level returned by lookup_address().
|
|
*/
|
|
if (within(vaddr, PAGE_OFFSET,
|
|
PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
|
|
cpa->numpages = 1;
|
|
cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
|
|
return 0;
|
|
} else {
|
|
WARN(1, KERN_WARNING "CPA: called for zero pte. "
|
|
"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
|
|
*cpa->vaddr);
|
|
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
static int __change_page_attr(struct cpa_data *cpa, int primary)
|
|
{
|
|
unsigned long address;
|
|
int do_split, err;
|
|
unsigned int level;
|
|
pte_t *kpte, old_pte;
|
|
|
|
if (cpa->flags & CPA_PAGES_ARRAY) {
|
|
struct page *page = cpa->pages[cpa->curpage];
|
|
if (unlikely(PageHighMem(page)))
|
|
return 0;
|
|
address = (unsigned long)page_address(page);
|
|
} else if (cpa->flags & CPA_ARRAY)
|
|
address = cpa->vaddr[cpa->curpage];
|
|
else
|
|
address = *cpa->vaddr;
|
|
repeat:
|
|
kpte = lookup_address(address, &level);
|
|
if (!kpte)
|
|
return __cpa_process_fault(cpa, address, primary);
|
|
|
|
old_pte = *kpte;
|
|
if (!pte_val(old_pte))
|
|
return __cpa_process_fault(cpa, address, primary);
|
|
|
|
if (level == PG_LEVEL_4K) {
|
|
pte_t new_pte;
|
|
pgprot_t new_prot = pte_pgprot(old_pte);
|
|
unsigned long pfn = pte_pfn(old_pte);
|
|
|
|
pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
|
|
pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
|
|
|
|
new_prot = static_protections(new_prot, address, pfn);
|
|
|
|
/*
|
|
* We need to keep the pfn from the existing PTE,
|
|
* after all we're only going to change it's attributes
|
|
* not the memory it points to
|
|
*/
|
|
new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
|
|
cpa->pfn = pfn;
|
|
/*
|
|
* Do we really change anything ?
|
|
*/
|
|
if (pte_val(old_pte) != pte_val(new_pte)) {
|
|
set_pte_atomic(kpte, new_pte);
|
|
cpa->flags |= CPA_FLUSHTLB;
|
|
}
|
|
cpa->numpages = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check, whether we can keep the large page intact
|
|
* and just change the pte:
|
|
*/
|
|
do_split = try_preserve_large_page(kpte, address, cpa);
|
|
/*
|
|
* When the range fits into the existing large page,
|
|
* return. cp->numpages and cpa->tlbflush have been updated in
|
|
* try_large_page:
|
|
*/
|
|
if (do_split <= 0)
|
|
return do_split;
|
|
|
|
/*
|
|
* We have to split the large page:
|
|
*/
|
|
err = split_large_page(kpte, address);
|
|
if (!err) {
|
|
/*
|
|
* Do a global flush tlb after splitting the large page
|
|
* and before we do the actual change page attribute in the PTE.
|
|
*
|
|
* With out this, we violate the TLB application note, that says
|
|
* "The TLBs may contain both ordinary and large-page
|
|
* translations for a 4-KByte range of linear addresses. This
|
|
* may occur if software modifies the paging structures so that
|
|
* the page size used for the address range changes. If the two
|
|
* translations differ with respect to page frame or attributes
|
|
* (e.g., permissions), processor behavior is undefined and may
|
|
* be implementation-specific."
|
|
*
|
|
* We do this global tlb flush inside the cpa_lock, so that we
|
|
* don't allow any other cpu, with stale tlb entries change the
|
|
* page attribute in parallel, that also falls into the
|
|
* just split large page entry.
|
|
*/
|
|
flush_tlb_all();
|
|
goto repeat;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
|
|
|
|
static int cpa_process_alias(struct cpa_data *cpa)
|
|
{
|
|
struct cpa_data alias_cpa;
|
|
unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
|
|
unsigned long vaddr;
|
|
int ret;
|
|
|
|
if (cpa->pfn >= max_pfn_mapped)
|
|
return 0;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
|
|
return 0;
|
|
#endif
|
|
/*
|
|
* No need to redo, when the primary call touched the direct
|
|
* mapping already:
|
|
*/
|
|
if (cpa->flags & CPA_PAGES_ARRAY) {
|
|
struct page *page = cpa->pages[cpa->curpage];
|
|
if (unlikely(PageHighMem(page)))
|
|
return 0;
|
|
vaddr = (unsigned long)page_address(page);
|
|
} else if (cpa->flags & CPA_ARRAY)
|
|
vaddr = cpa->vaddr[cpa->curpage];
|
|
else
|
|
vaddr = *cpa->vaddr;
|
|
|
|
if (!(within(vaddr, PAGE_OFFSET,
|
|
PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
|
|
|
|
alias_cpa = *cpa;
|
|
alias_cpa.vaddr = &laddr;
|
|
alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
|
|
|
|
ret = __change_page_attr_set_clr(&alias_cpa, 0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* If the primary call didn't touch the high mapping already
|
|
* and the physical address is inside the kernel map, we need
|
|
* to touch the high mapped kernel as well:
|
|
*/
|
|
if (!within(vaddr, (unsigned long)_text, _brk_end) &&
|
|
within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
|
|
unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
|
|
__START_KERNEL_map - phys_base;
|
|
alias_cpa = *cpa;
|
|
alias_cpa.vaddr = &temp_cpa_vaddr;
|
|
alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
|
|
|
|
/*
|
|
* The high mapping range is imprecise, so ignore the
|
|
* return value.
|
|
*/
|
|
__change_page_attr_set_clr(&alias_cpa, 0);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
|
|
{
|
|
int ret, numpages = cpa->numpages;
|
|
|
|
while (numpages) {
|
|
/*
|
|
* Store the remaining nr of pages for the large page
|
|
* preservation check.
|
|
*/
|
|
cpa->numpages = numpages;
|
|
/* for array changes, we can't use large page */
|
|
if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
|
|
cpa->numpages = 1;
|
|
|
|
if (!debug_pagealloc)
|
|
spin_lock(&cpa_lock);
|
|
ret = __change_page_attr(cpa, checkalias);
|
|
if (!debug_pagealloc)
|
|
spin_unlock(&cpa_lock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (checkalias) {
|
|
ret = cpa_process_alias(cpa);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Adjust the number of pages with the result of the
|
|
* CPA operation. Either a large page has been
|
|
* preserved or a single page update happened.
|
|
*/
|
|
BUG_ON(cpa->numpages > numpages);
|
|
numpages -= cpa->numpages;
|
|
if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
|
|
cpa->curpage++;
|
|
else
|
|
*cpa->vaddr += cpa->numpages * PAGE_SIZE;
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int cache_attr(pgprot_t attr)
|
|
{
|
|
return pgprot_val(attr) &
|
|
(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
|
|
}
|
|
|
|
static int change_page_attr_set_clr(unsigned long *addr, int numpages,
|
|
pgprot_t mask_set, pgprot_t mask_clr,
|
|
int force_split, int in_flag,
|
|
struct page **pages)
|
|
{
|
|
struct cpa_data cpa;
|
|
int ret, cache, checkalias;
|
|
unsigned long baddr = 0;
|
|
|
|
/*
|
|
* Check, if we are requested to change a not supported
|
|
* feature:
|
|
*/
|
|
mask_set = canon_pgprot(mask_set);
|
|
mask_clr = canon_pgprot(mask_clr);
|
|
if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
|
|
return 0;
|
|
|
|
/* Ensure we are PAGE_SIZE aligned */
|
|
if (in_flag & CPA_ARRAY) {
|
|
int i;
|
|
for (i = 0; i < numpages; i++) {
|
|
if (addr[i] & ~PAGE_MASK) {
|
|
addr[i] &= PAGE_MASK;
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
}
|
|
} else if (!(in_flag & CPA_PAGES_ARRAY)) {
|
|
/*
|
|
* in_flag of CPA_PAGES_ARRAY implies it is aligned.
|
|
* No need to cehck in that case
|
|
*/
|
|
if (*addr & ~PAGE_MASK) {
|
|
*addr &= PAGE_MASK;
|
|
/*
|
|
* People should not be passing in unaligned addresses:
|
|
*/
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
/*
|
|
* Save address for cache flush. *addr is modified in the call
|
|
* to __change_page_attr_set_clr() below.
|
|
*/
|
|
baddr = *addr;
|
|
}
|
|
|
|
/* Must avoid aliasing mappings in the highmem code */
|
|
kmap_flush_unused();
|
|
|
|
vm_unmap_aliases();
|
|
|
|
cpa.vaddr = addr;
|
|
cpa.pages = pages;
|
|
cpa.numpages = numpages;
|
|
cpa.mask_set = mask_set;
|
|
cpa.mask_clr = mask_clr;
|
|
cpa.flags = 0;
|
|
cpa.curpage = 0;
|
|
cpa.force_split = force_split;
|
|
|
|
if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
|
|
cpa.flags |= in_flag;
|
|
|
|
/* No alias checking for _NX bit modifications */
|
|
checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
|
|
|
|
ret = __change_page_attr_set_clr(&cpa, checkalias);
|
|
|
|
/*
|
|
* Check whether we really changed something:
|
|
*/
|
|
if (!(cpa.flags & CPA_FLUSHTLB))
|
|
goto out;
|
|
|
|
/*
|
|
* No need to flush, when we did not set any of the caching
|
|
* attributes:
|
|
*/
|
|
cache = cache_attr(mask_set);
|
|
|
|
/*
|
|
* On success we use clflush, when the CPU supports it to
|
|
* avoid the wbindv. If the CPU does not support it and in the
|
|
* error case we fall back to cpa_flush_all (which uses
|
|
* wbindv):
|
|
*/
|
|
if (!ret && cpu_has_clflush) {
|
|
if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
|
|
cpa_flush_array(addr, numpages, cache,
|
|
cpa.flags, pages);
|
|
} else
|
|
cpa_flush_range(baddr, numpages, cache);
|
|
} else
|
|
cpa_flush_all(cache);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static inline int change_page_attr_set(unsigned long *addr, int numpages,
|
|
pgprot_t mask, int array)
|
|
{
|
|
return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
|
|
(array ? CPA_ARRAY : 0), NULL);
|
|
}
|
|
|
|
static inline int change_page_attr_clear(unsigned long *addr, int numpages,
|
|
pgprot_t mask, int array)
|
|
{
|
|
return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
|
|
(array ? CPA_ARRAY : 0), NULL);
|
|
}
|
|
|
|
static inline int cpa_set_pages_array(struct page **pages, int numpages,
|
|
pgprot_t mask)
|
|
{
|
|
return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
|
|
CPA_PAGES_ARRAY, pages);
|
|
}
|
|
|
|
static inline int cpa_clear_pages_array(struct page **pages, int numpages,
|
|
pgprot_t mask)
|
|
{
|
|
return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
|
|
CPA_PAGES_ARRAY, pages);
|
|
}
|
|
|
|
int _set_memory_uc(unsigned long addr, int numpages)
|
|
{
|
|
/*
|
|
* for now UC MINUS. see comments in ioremap_nocache()
|
|
*/
|
|
return change_page_attr_set(&addr, numpages,
|
|
__pgprot(_PAGE_CACHE_UC_MINUS), 0);
|
|
}
|
|
|
|
int set_memory_uc(unsigned long addr, int numpages)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* for now UC MINUS. see comments in ioremap_nocache()
|
|
*/
|
|
ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
|
|
_PAGE_CACHE_UC_MINUS, NULL);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
ret = _set_memory_uc(addr, numpages);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
|
|
out_err:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(set_memory_uc);
|
|
|
|
int set_memory_array_uc(unsigned long *addr, int addrinarray)
|
|
{
|
|
int i, j;
|
|
int ret;
|
|
|
|
/*
|
|
* for now UC MINUS. see comments in ioremap_nocache()
|
|
*/
|
|
for (i = 0; i < addrinarray; i++) {
|
|
ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
|
|
_PAGE_CACHE_UC_MINUS, NULL);
|
|
if (ret)
|
|
goto out_free;
|
|
}
|
|
|
|
ret = change_page_attr_set(addr, addrinarray,
|
|
__pgprot(_PAGE_CACHE_UC_MINUS), 1);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
for (j = 0; j < i; j++)
|
|
free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(set_memory_array_uc);
|
|
|
|
int _set_memory_wc(unsigned long addr, int numpages)
|
|
{
|
|
int ret;
|
|
unsigned long addr_copy = addr;
|
|
|
|
ret = change_page_attr_set(&addr, numpages,
|
|
__pgprot(_PAGE_CACHE_UC_MINUS), 0);
|
|
if (!ret) {
|
|
ret = change_page_attr_set_clr(&addr_copy, numpages,
|
|
__pgprot(_PAGE_CACHE_WC),
|
|
__pgprot(_PAGE_CACHE_MASK),
|
|
0, 0, NULL);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int set_memory_wc(unsigned long addr, int numpages)
|
|
{
|
|
int ret;
|
|
|
|
if (!pat_enabled)
|
|
return set_memory_uc(addr, numpages);
|
|
|
|
ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
|
|
_PAGE_CACHE_WC, NULL);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
ret = _set_memory_wc(addr, numpages);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
|
|
out_err:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(set_memory_wc);
|
|
|
|
int _set_memory_wb(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(&addr, numpages,
|
|
__pgprot(_PAGE_CACHE_MASK), 0);
|
|
}
|
|
|
|
int set_memory_wb(unsigned long addr, int numpages)
|
|
{
|
|
int ret;
|
|
|
|
ret = _set_memory_wb(addr, numpages);
|
|
if (ret)
|
|
return ret;
|
|
|
|
free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(set_memory_wb);
|
|
|
|
int set_memory_array_wb(unsigned long *addr, int addrinarray)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
ret = change_page_attr_clear(addr, addrinarray,
|
|
__pgprot(_PAGE_CACHE_MASK), 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < addrinarray; i++)
|
|
free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(set_memory_array_wb);
|
|
|
|
int set_memory_x(unsigned long addr, int numpages)
|
|
{
|
|
if (!(__supported_pte_mask & _PAGE_NX))
|
|
return 0;
|
|
|
|
return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
|
|
}
|
|
EXPORT_SYMBOL(set_memory_x);
|
|
|
|
int set_memory_nx(unsigned long addr, int numpages)
|
|
{
|
|
if (!(__supported_pte_mask & _PAGE_NX))
|
|
return 0;
|
|
|
|
return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
|
|
}
|
|
EXPORT_SYMBOL(set_memory_nx);
|
|
|
|
int set_memory_ro(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_memory_ro);
|
|
|
|
int set_memory_rw(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_memory_rw);
|
|
|
|
int set_memory_np(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
|
|
}
|
|
|
|
int set_memory_4k(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
|
|
__pgprot(0), 1, 0, NULL);
|
|
}
|
|
|
|
int set_pages_uc(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_uc(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_uc);
|
|
|
|
int set_pages_array_uc(struct page **pages, int addrinarray)
|
|
{
|
|
unsigned long start;
|
|
unsigned long end;
|
|
int i;
|
|
int free_idx;
|
|
|
|
for (i = 0; i < addrinarray; i++) {
|
|
if (PageHighMem(pages[i]))
|
|
continue;
|
|
start = page_to_pfn(pages[i]) << PAGE_SHIFT;
|
|
end = start + PAGE_SIZE;
|
|
if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
|
|
goto err_out;
|
|
}
|
|
|
|
if (cpa_set_pages_array(pages, addrinarray,
|
|
__pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
|
|
return 0; /* Success */
|
|
}
|
|
err_out:
|
|
free_idx = i;
|
|
for (i = 0; i < free_idx; i++) {
|
|
if (PageHighMem(pages[i]))
|
|
continue;
|
|
start = page_to_pfn(pages[i]) << PAGE_SHIFT;
|
|
end = start + PAGE_SIZE;
|
|
free_memtype(start, end);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(set_pages_array_uc);
|
|
|
|
int set_pages_wb(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_wb(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_wb);
|
|
|
|
int set_pages_array_wb(struct page **pages, int addrinarray)
|
|
{
|
|
int retval;
|
|
unsigned long start;
|
|
unsigned long end;
|
|
int i;
|
|
|
|
retval = cpa_clear_pages_array(pages, addrinarray,
|
|
__pgprot(_PAGE_CACHE_MASK));
|
|
if (retval)
|
|
return retval;
|
|
|
|
for (i = 0; i < addrinarray; i++) {
|
|
if (PageHighMem(pages[i]))
|
|
continue;
|
|
start = page_to_pfn(pages[i]) << PAGE_SHIFT;
|
|
end = start + PAGE_SIZE;
|
|
free_memtype(start, end);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(set_pages_array_wb);
|
|
|
|
int set_pages_x(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_x(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_x);
|
|
|
|
int set_pages_nx(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_nx(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_nx);
|
|
|
|
int set_pages_ro(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_ro(addr, numpages);
|
|
}
|
|
|
|
int set_pages_rw(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_rw(addr, numpages);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
|
|
static int __set_pages_p(struct page *page, int numpages)
|
|
{
|
|
unsigned long tempaddr = (unsigned long) page_address(page);
|
|
struct cpa_data cpa = { .vaddr = &tempaddr,
|
|
.numpages = numpages,
|
|
.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
|
|
.mask_clr = __pgprot(0),
|
|
.flags = 0};
|
|
|
|
/*
|
|
* No alias checking needed for setting present flag. otherwise,
|
|
* we may need to break large pages for 64-bit kernel text
|
|
* mappings (this adds to complexity if we want to do this from
|
|
* atomic context especially). Let's keep it simple!
|
|
*/
|
|
return __change_page_attr_set_clr(&cpa, 0);
|
|
}
|
|
|
|
static int __set_pages_np(struct page *page, int numpages)
|
|
{
|
|
unsigned long tempaddr = (unsigned long) page_address(page);
|
|
struct cpa_data cpa = { .vaddr = &tempaddr,
|
|
.numpages = numpages,
|
|
.mask_set = __pgprot(0),
|
|
.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
|
|
.flags = 0};
|
|
|
|
/*
|
|
* No alias checking needed for setting not present flag. otherwise,
|
|
* we may need to break large pages for 64-bit kernel text
|
|
* mappings (this adds to complexity if we want to do this from
|
|
* atomic context especially). Let's keep it simple!
|
|
*/
|
|
return __change_page_attr_set_clr(&cpa, 0);
|
|
}
|
|
|
|
void kernel_map_pages(struct page *page, int numpages, int enable)
|
|
{
|
|
if (PageHighMem(page))
|
|
return;
|
|
if (!enable) {
|
|
debug_check_no_locks_freed(page_address(page),
|
|
numpages * PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* If page allocator is not up yet then do not call c_p_a():
|
|
*/
|
|
if (!debug_pagealloc_enabled)
|
|
return;
|
|
|
|
/*
|
|
* The return value is ignored as the calls cannot fail.
|
|
* Large pages for identity mappings are not used at boot time
|
|
* and hence no memory allocations during large page split.
|
|
*/
|
|
if (enable)
|
|
__set_pages_p(page, numpages);
|
|
else
|
|
__set_pages_np(page, numpages);
|
|
|
|
/*
|
|
* We should perform an IPI and flush all tlbs,
|
|
* but that can deadlock->flush only current cpu:
|
|
*/
|
|
__flush_tlb_all();
|
|
}
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
|
|
bool kernel_page_present(struct page *page)
|
|
{
|
|
unsigned int level;
|
|
pte_t *pte;
|
|
|
|
if (PageHighMem(page))
|
|
return false;
|
|
|
|
pte = lookup_address((unsigned long)page_address(page), &level);
|
|
return (pte_val(*pte) & _PAGE_PRESENT);
|
|
}
|
|
|
|
#endif /* CONFIG_HIBERNATION */
|
|
|
|
#endif /* CONFIG_DEBUG_PAGEALLOC */
|
|
|
|
/*
|
|
* The testcases use internal knowledge of the implementation that shouldn't
|
|
* be exposed to the rest of the kernel. Include these directly here.
|
|
*/
|
|
#ifdef CONFIG_CPA_DEBUG
|
|
#include "pageattr-test.c"
|
|
#endif
|