mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-24 10:28:57 +00:00
162453bfbd
Per-cgroup thrash detection will need to derive a live memcg from the eviction cookie, and doing that inside unpack_shadow() will get nasty with the reference handling spread over two functions. In preparation, make unpack_shadow() clearly about extracting static data, and let workingset_refault() do all the higher-level handling. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
418 lines
14 KiB
C
418 lines
14 KiB
C
/*
|
|
* Workingset detection
|
|
*
|
|
* Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
|
|
*/
|
|
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/module.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
|
|
/*
|
|
* Double CLOCK lists
|
|
*
|
|
* Per zone, two clock lists are maintained for file pages: the
|
|
* inactive and the active list. Freshly faulted pages start out at
|
|
* the head of the inactive list and page reclaim scans pages from the
|
|
* tail. Pages that are accessed multiple times on the inactive list
|
|
* are promoted to the active list, to protect them from reclaim,
|
|
* whereas active pages are demoted to the inactive list when the
|
|
* active list grows too big.
|
|
*
|
|
* fault ------------------------+
|
|
* |
|
|
* +--------------+ | +-------------+
|
|
* reclaim <- | inactive | <-+-- demotion | active | <--+
|
|
* +--------------+ +-------------+ |
|
|
* | |
|
|
* +-------------- promotion ------------------+
|
|
*
|
|
*
|
|
* Access frequency and refault distance
|
|
*
|
|
* A workload is thrashing when its pages are frequently used but they
|
|
* are evicted from the inactive list every time before another access
|
|
* would have promoted them to the active list.
|
|
*
|
|
* In cases where the average access distance between thrashing pages
|
|
* is bigger than the size of memory there is nothing that can be
|
|
* done - the thrashing set could never fit into memory under any
|
|
* circumstance.
|
|
*
|
|
* However, the average access distance could be bigger than the
|
|
* inactive list, yet smaller than the size of memory. In this case,
|
|
* the set could fit into memory if it weren't for the currently
|
|
* active pages - which may be used more, hopefully less frequently:
|
|
*
|
|
* +-memory available to cache-+
|
|
* | |
|
|
* +-inactive------+-active----+
|
|
* a b | c d e f g h i | J K L M N |
|
|
* +---------------+-----------+
|
|
*
|
|
* It is prohibitively expensive to accurately track access frequency
|
|
* of pages. But a reasonable approximation can be made to measure
|
|
* thrashing on the inactive list, after which refaulting pages can be
|
|
* activated optimistically to compete with the existing active pages.
|
|
*
|
|
* Approximating inactive page access frequency - Observations:
|
|
*
|
|
* 1. When a page is accessed for the first time, it is added to the
|
|
* head of the inactive list, slides every existing inactive page
|
|
* towards the tail by one slot, and pushes the current tail page
|
|
* out of memory.
|
|
*
|
|
* 2. When a page is accessed for the second time, it is promoted to
|
|
* the active list, shrinking the inactive list by one slot. This
|
|
* also slides all inactive pages that were faulted into the cache
|
|
* more recently than the activated page towards the tail of the
|
|
* inactive list.
|
|
*
|
|
* Thus:
|
|
*
|
|
* 1. The sum of evictions and activations between any two points in
|
|
* time indicate the minimum number of inactive pages accessed in
|
|
* between.
|
|
*
|
|
* 2. Moving one inactive page N page slots towards the tail of the
|
|
* list requires at least N inactive page accesses.
|
|
*
|
|
* Combining these:
|
|
*
|
|
* 1. When a page is finally evicted from memory, the number of
|
|
* inactive pages accessed while the page was in cache is at least
|
|
* the number of page slots on the inactive list.
|
|
*
|
|
* 2. In addition, measuring the sum of evictions and activations (E)
|
|
* at the time of a page's eviction, and comparing it to another
|
|
* reading (R) at the time the page faults back into memory tells
|
|
* the minimum number of accesses while the page was not cached.
|
|
* This is called the refault distance.
|
|
*
|
|
* Because the first access of the page was the fault and the second
|
|
* access the refault, we combine the in-cache distance with the
|
|
* out-of-cache distance to get the complete minimum access distance
|
|
* of this page:
|
|
*
|
|
* NR_inactive + (R - E)
|
|
*
|
|
* And knowing the minimum access distance of a page, we can easily
|
|
* tell if the page would be able to stay in cache assuming all page
|
|
* slots in the cache were available:
|
|
*
|
|
* NR_inactive + (R - E) <= NR_inactive + NR_active
|
|
*
|
|
* which can be further simplified to
|
|
*
|
|
* (R - E) <= NR_active
|
|
*
|
|
* Put into words, the refault distance (out-of-cache) can be seen as
|
|
* a deficit in inactive list space (in-cache). If the inactive list
|
|
* had (R - E) more page slots, the page would not have been evicted
|
|
* in between accesses, but activated instead. And on a full system,
|
|
* the only thing eating into inactive list space is active pages.
|
|
*
|
|
*
|
|
* Activating refaulting pages
|
|
*
|
|
* All that is known about the active list is that the pages have been
|
|
* accessed more than once in the past. This means that at any given
|
|
* time there is actually a good chance that pages on the active list
|
|
* are no longer in active use.
|
|
*
|
|
* So when a refault distance of (R - E) is observed and there are at
|
|
* least (R - E) active pages, the refaulting page is activated
|
|
* optimistically in the hope that (R - E) active pages are actually
|
|
* used less frequently than the refaulting page - or even not used at
|
|
* all anymore.
|
|
*
|
|
* If this is wrong and demotion kicks in, the pages which are truly
|
|
* used more frequently will be reactivated while the less frequently
|
|
* used once will be evicted from memory.
|
|
*
|
|
* But if this is right, the stale pages will be pushed out of memory
|
|
* and the used pages get to stay in cache.
|
|
*
|
|
*
|
|
* Implementation
|
|
*
|
|
* For each zone's file LRU lists, a counter for inactive evictions
|
|
* and activations is maintained (zone->inactive_age).
|
|
*
|
|
* On eviction, a snapshot of this counter (along with some bits to
|
|
* identify the zone) is stored in the now empty page cache radix tree
|
|
* slot of the evicted page. This is called a shadow entry.
|
|
*
|
|
* On cache misses for which there are shadow entries, an eligible
|
|
* refault distance will immediately activate the refaulting page.
|
|
*/
|
|
|
|
#define EVICTION_SHIFT (RADIX_TREE_EXCEPTIONAL_ENTRY + \
|
|
ZONES_SHIFT + NODES_SHIFT)
|
|
#define EVICTION_MASK (~0UL >> EVICTION_SHIFT)
|
|
|
|
static void *pack_shadow(unsigned long eviction, struct zone *zone)
|
|
{
|
|
eviction = (eviction << NODES_SHIFT) | zone_to_nid(zone);
|
|
eviction = (eviction << ZONES_SHIFT) | zone_idx(zone);
|
|
eviction = (eviction << RADIX_TREE_EXCEPTIONAL_SHIFT);
|
|
|
|
return (void *)(eviction | RADIX_TREE_EXCEPTIONAL_ENTRY);
|
|
}
|
|
|
|
static void unpack_shadow(void *shadow, struct zone **zonep,
|
|
unsigned long *evictionp)
|
|
{
|
|
unsigned long entry = (unsigned long)shadow;
|
|
int zid, nid;
|
|
|
|
entry >>= RADIX_TREE_EXCEPTIONAL_SHIFT;
|
|
zid = entry & ((1UL << ZONES_SHIFT) - 1);
|
|
entry >>= ZONES_SHIFT;
|
|
nid = entry & ((1UL << NODES_SHIFT) - 1);
|
|
entry >>= NODES_SHIFT;
|
|
|
|
*zonep = NODE_DATA(nid)->node_zones + zid;
|
|
*evictionp = entry;
|
|
}
|
|
|
|
/**
|
|
* workingset_eviction - note the eviction of a page from memory
|
|
* @mapping: address space the page was backing
|
|
* @page: the page being evicted
|
|
*
|
|
* Returns a shadow entry to be stored in @mapping->page_tree in place
|
|
* of the evicted @page so that a later refault can be detected.
|
|
*/
|
|
void *workingset_eviction(struct address_space *mapping, struct page *page)
|
|
{
|
|
struct zone *zone = page_zone(page);
|
|
unsigned long eviction;
|
|
|
|
eviction = atomic_long_inc_return(&zone->inactive_age);
|
|
return pack_shadow(eviction, zone);
|
|
}
|
|
|
|
/**
|
|
* workingset_refault - evaluate the refault of a previously evicted page
|
|
* @shadow: shadow entry of the evicted page
|
|
*
|
|
* Calculates and evaluates the refault distance of the previously
|
|
* evicted page in the context of the zone it was allocated in.
|
|
*
|
|
* Returns %true if the page should be activated, %false otherwise.
|
|
*/
|
|
bool workingset_refault(void *shadow)
|
|
{
|
|
unsigned long refault_distance;
|
|
unsigned long eviction;
|
|
unsigned long refault;
|
|
struct zone *zone;
|
|
|
|
unpack_shadow(shadow, &zone, &eviction);
|
|
|
|
refault = atomic_long_read(&zone->inactive_age);
|
|
|
|
/*
|
|
* The unsigned subtraction here gives an accurate distance
|
|
* across inactive_age overflows in most cases.
|
|
*
|
|
* There is a special case: usually, shadow entries have a
|
|
* short lifetime and are either refaulted or reclaimed along
|
|
* with the inode before they get too old. But it is not
|
|
* impossible for the inactive_age to lap a shadow entry in
|
|
* the field, which can then can result in a false small
|
|
* refault distance, leading to a false activation should this
|
|
* old entry actually refault again. However, earlier kernels
|
|
* used to deactivate unconditionally with *every* reclaim
|
|
* invocation for the longest time, so the occasional
|
|
* inappropriate activation leading to pressure on the active
|
|
* list is not a problem.
|
|
*/
|
|
refault_distance = (refault - eviction) & EVICTION_MASK;
|
|
|
|
inc_zone_state(zone, WORKINGSET_REFAULT);
|
|
|
|
if (refault_distance <= zone_page_state(zone, NR_ACTIVE_FILE)) {
|
|
inc_zone_state(zone, WORKINGSET_ACTIVATE);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* workingset_activation - note a page activation
|
|
* @page: page that is being activated
|
|
*/
|
|
void workingset_activation(struct page *page)
|
|
{
|
|
atomic_long_inc(&page_zone(page)->inactive_age);
|
|
}
|
|
|
|
/*
|
|
* Shadow entries reflect the share of the working set that does not
|
|
* fit into memory, so their number depends on the access pattern of
|
|
* the workload. In most cases, they will refault or get reclaimed
|
|
* along with the inode, but a (malicious) workload that streams
|
|
* through files with a total size several times that of available
|
|
* memory, while preventing the inodes from being reclaimed, can
|
|
* create excessive amounts of shadow nodes. To keep a lid on this,
|
|
* track shadow nodes and reclaim them when they grow way past the
|
|
* point where they would still be useful.
|
|
*/
|
|
|
|
struct list_lru workingset_shadow_nodes;
|
|
|
|
static unsigned long count_shadow_nodes(struct shrinker *shrinker,
|
|
struct shrink_control *sc)
|
|
{
|
|
unsigned long shadow_nodes;
|
|
unsigned long max_nodes;
|
|
unsigned long pages;
|
|
|
|
/* list_lru lock nests inside IRQ-safe mapping->tree_lock */
|
|
local_irq_disable();
|
|
shadow_nodes = list_lru_shrink_count(&workingset_shadow_nodes, sc);
|
|
local_irq_enable();
|
|
|
|
pages = node_present_pages(sc->nid);
|
|
/*
|
|
* Active cache pages are limited to 50% of memory, and shadow
|
|
* entries that represent a refault distance bigger than that
|
|
* do not have any effect. Limit the number of shadow nodes
|
|
* such that shadow entries do not exceed the number of active
|
|
* cache pages, assuming a worst-case node population density
|
|
* of 1/8th on average.
|
|
*
|
|
* On 64-bit with 7 radix_tree_nodes per page and 64 slots
|
|
* each, this will reclaim shadow entries when they consume
|
|
* ~2% of available memory:
|
|
*
|
|
* PAGE_SIZE / radix_tree_nodes / node_entries / PAGE_SIZE
|
|
*/
|
|
max_nodes = pages >> (1 + RADIX_TREE_MAP_SHIFT - 3);
|
|
|
|
if (shadow_nodes <= max_nodes)
|
|
return 0;
|
|
|
|
return shadow_nodes - max_nodes;
|
|
}
|
|
|
|
static enum lru_status shadow_lru_isolate(struct list_head *item,
|
|
struct list_lru_one *lru,
|
|
spinlock_t *lru_lock,
|
|
void *arg)
|
|
{
|
|
struct address_space *mapping;
|
|
struct radix_tree_node *node;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
/*
|
|
* Page cache insertions and deletions synchroneously maintain
|
|
* the shadow node LRU under the mapping->tree_lock and the
|
|
* lru_lock. Because the page cache tree is emptied before
|
|
* the inode can be destroyed, holding the lru_lock pins any
|
|
* address_space that has radix tree nodes on the LRU.
|
|
*
|
|
* We can then safely transition to the mapping->tree_lock to
|
|
* pin only the address_space of the particular node we want
|
|
* to reclaim, take the node off-LRU, and drop the lru_lock.
|
|
*/
|
|
|
|
node = container_of(item, struct radix_tree_node, private_list);
|
|
mapping = node->private_data;
|
|
|
|
/* Coming from the list, invert the lock order */
|
|
if (!spin_trylock(&mapping->tree_lock)) {
|
|
spin_unlock(lru_lock);
|
|
ret = LRU_RETRY;
|
|
goto out;
|
|
}
|
|
|
|
list_lru_isolate(lru, item);
|
|
spin_unlock(lru_lock);
|
|
|
|
/*
|
|
* The nodes should only contain one or more shadow entries,
|
|
* no pages, so we expect to be able to remove them all and
|
|
* delete and free the empty node afterwards.
|
|
*/
|
|
|
|
BUG_ON(!node->count);
|
|
BUG_ON(node->count & RADIX_TREE_COUNT_MASK);
|
|
|
|
for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
|
|
if (node->slots[i]) {
|
|
BUG_ON(!radix_tree_exceptional_entry(node->slots[i]));
|
|
node->slots[i] = NULL;
|
|
BUG_ON(node->count < (1U << RADIX_TREE_COUNT_SHIFT));
|
|
node->count -= 1U << RADIX_TREE_COUNT_SHIFT;
|
|
BUG_ON(!mapping->nrexceptional);
|
|
mapping->nrexceptional--;
|
|
}
|
|
}
|
|
BUG_ON(node->count);
|
|
inc_zone_state(page_zone(virt_to_page(node)), WORKINGSET_NODERECLAIM);
|
|
if (!__radix_tree_delete_node(&mapping->page_tree, node))
|
|
BUG();
|
|
|
|
spin_unlock(&mapping->tree_lock);
|
|
ret = LRU_REMOVED_RETRY;
|
|
out:
|
|
local_irq_enable();
|
|
cond_resched();
|
|
local_irq_disable();
|
|
spin_lock(lru_lock);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
|
|
struct shrink_control *sc)
|
|
{
|
|
unsigned long ret;
|
|
|
|
/* list_lru lock nests inside IRQ-safe mapping->tree_lock */
|
|
local_irq_disable();
|
|
ret = list_lru_shrink_walk(&workingset_shadow_nodes, sc,
|
|
shadow_lru_isolate, NULL);
|
|
local_irq_enable();
|
|
return ret;
|
|
}
|
|
|
|
static struct shrinker workingset_shadow_shrinker = {
|
|
.count_objects = count_shadow_nodes,
|
|
.scan_objects = scan_shadow_nodes,
|
|
.seeks = DEFAULT_SEEKS,
|
|
.flags = SHRINKER_NUMA_AWARE,
|
|
};
|
|
|
|
/*
|
|
* Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
|
|
* mapping->tree_lock.
|
|
*/
|
|
static struct lock_class_key shadow_nodes_key;
|
|
|
|
static int __init workingset_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = list_lru_init_key(&workingset_shadow_nodes, &shadow_nodes_key);
|
|
if (ret)
|
|
goto err;
|
|
ret = register_shrinker(&workingset_shadow_shrinker);
|
|
if (ret)
|
|
goto err_list_lru;
|
|
return 0;
|
|
err_list_lru:
|
|
list_lru_destroy(&workingset_shadow_nodes);
|
|
err:
|
|
return ret;
|
|
}
|
|
module_init(workingset_init);
|