mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-09 02:51:20 +00:00
2c1a1b124f
We must not clear the FIF_BCN_PRBRESP_PROMISC bit in the new_flags. The zd-driver does support sending beacons and probe responses to the host. What the flag does is say "Send me all beacons and probe responses". And we actually do that. We always do that, so we ignore the case when the bit is disabled. But that is fine. But we must not clear the flag, as that tells mac80211 that we do not support passing beacons and probe responses to the stack. And that's not true. Signed-off-by: Michael Buesch <mb@bu3sch.de> Acked-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
976 lines
26 KiB
C
976 lines
26 KiB
C
/* ZD1211 USB-WLAN driver for Linux
|
|
*
|
|
* Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
|
|
* Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
|
|
* Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
|
|
* Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/usb.h>
|
|
#include <linux/jiffies.h>
|
|
#include <net/ieee80211_radiotap.h>
|
|
|
|
#include "zd_def.h"
|
|
#include "zd_chip.h"
|
|
#include "zd_mac.h"
|
|
#include "zd_ieee80211.h"
|
|
#include "zd_rf.h"
|
|
|
|
/* This table contains the hardware specific values for the modulation rates. */
|
|
static const struct ieee80211_rate zd_rates[] = {
|
|
{ .bitrate = 10,
|
|
.hw_value = ZD_CCK_RATE_1M, },
|
|
{ .bitrate = 20,
|
|
.hw_value = ZD_CCK_RATE_2M,
|
|
.hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
|
|
{ .bitrate = 55,
|
|
.hw_value = ZD_CCK_RATE_5_5M,
|
|
.hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
|
|
{ .bitrate = 110,
|
|
.hw_value = ZD_CCK_RATE_11M,
|
|
.hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
|
|
{ .bitrate = 60,
|
|
.hw_value = ZD_OFDM_RATE_6M,
|
|
.flags = 0 },
|
|
{ .bitrate = 90,
|
|
.hw_value = ZD_OFDM_RATE_9M,
|
|
.flags = 0 },
|
|
{ .bitrate = 120,
|
|
.hw_value = ZD_OFDM_RATE_12M,
|
|
.flags = 0 },
|
|
{ .bitrate = 180,
|
|
.hw_value = ZD_OFDM_RATE_18M,
|
|
.flags = 0 },
|
|
{ .bitrate = 240,
|
|
.hw_value = ZD_OFDM_RATE_24M,
|
|
.flags = 0 },
|
|
{ .bitrate = 360,
|
|
.hw_value = ZD_OFDM_RATE_36M,
|
|
.flags = 0 },
|
|
{ .bitrate = 480,
|
|
.hw_value = ZD_OFDM_RATE_48M,
|
|
.flags = 0 },
|
|
{ .bitrate = 540,
|
|
.hw_value = ZD_OFDM_RATE_54M,
|
|
.flags = 0 },
|
|
};
|
|
|
|
static const struct ieee80211_channel zd_channels[] = {
|
|
{ .center_freq = 2412, .hw_value = 1 },
|
|
{ .center_freq = 2417, .hw_value = 2 },
|
|
{ .center_freq = 2422, .hw_value = 3 },
|
|
{ .center_freq = 2427, .hw_value = 4 },
|
|
{ .center_freq = 2432, .hw_value = 5 },
|
|
{ .center_freq = 2437, .hw_value = 6 },
|
|
{ .center_freq = 2442, .hw_value = 7 },
|
|
{ .center_freq = 2447, .hw_value = 8 },
|
|
{ .center_freq = 2452, .hw_value = 9 },
|
|
{ .center_freq = 2457, .hw_value = 10 },
|
|
{ .center_freq = 2462, .hw_value = 11 },
|
|
{ .center_freq = 2467, .hw_value = 12 },
|
|
{ .center_freq = 2472, .hw_value = 13 },
|
|
{ .center_freq = 2484, .hw_value = 14 },
|
|
};
|
|
|
|
static void housekeeping_init(struct zd_mac *mac);
|
|
static void housekeeping_enable(struct zd_mac *mac);
|
|
static void housekeeping_disable(struct zd_mac *mac);
|
|
|
|
int zd_mac_preinit_hw(struct ieee80211_hw *hw)
|
|
{
|
|
int r;
|
|
u8 addr[ETH_ALEN];
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
|
|
r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
|
|
if (r)
|
|
return r;
|
|
|
|
SET_IEEE80211_PERM_ADDR(hw, addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int zd_mac_init_hw(struct ieee80211_hw *hw)
|
|
{
|
|
int r;
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_chip *chip = &mac->chip;
|
|
u8 default_regdomain;
|
|
|
|
r = zd_chip_enable_int(chip);
|
|
if (r)
|
|
goto out;
|
|
r = zd_chip_init_hw(chip);
|
|
if (r)
|
|
goto disable_int;
|
|
|
|
ZD_ASSERT(!irqs_disabled());
|
|
|
|
r = zd_read_regdomain(chip, &default_regdomain);
|
|
if (r)
|
|
goto disable_int;
|
|
spin_lock_irq(&mac->lock);
|
|
mac->regdomain = mac->default_regdomain = default_regdomain;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
/* We must inform the device that we are doing encryption/decryption in
|
|
* software at the moment. */
|
|
r = zd_set_encryption_type(chip, ENC_SNIFFER);
|
|
if (r)
|
|
goto disable_int;
|
|
|
|
zd_geo_init(hw, mac->regdomain);
|
|
|
|
r = 0;
|
|
disable_int:
|
|
zd_chip_disable_int(chip);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
void zd_mac_clear(struct zd_mac *mac)
|
|
{
|
|
flush_workqueue(zd_workqueue);
|
|
zd_chip_clear(&mac->chip);
|
|
ZD_ASSERT(!spin_is_locked(&mac->lock));
|
|
ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
|
|
}
|
|
|
|
static int set_rx_filter(struct zd_mac *mac)
|
|
{
|
|
unsigned long flags;
|
|
u32 filter = STA_RX_FILTER;
|
|
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
if (mac->pass_ctrl)
|
|
filter |= RX_FILTER_CTRL;
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
|
|
return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
|
|
}
|
|
|
|
static int set_mc_hash(struct zd_mac *mac)
|
|
{
|
|
struct zd_mc_hash hash;
|
|
zd_mc_clear(&hash);
|
|
return zd_chip_set_multicast_hash(&mac->chip, &hash);
|
|
}
|
|
|
|
static int zd_op_start(struct ieee80211_hw *hw)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_chip *chip = &mac->chip;
|
|
struct zd_usb *usb = &chip->usb;
|
|
int r;
|
|
|
|
if (!usb->initialized) {
|
|
r = zd_usb_init_hw(usb);
|
|
if (r)
|
|
goto out;
|
|
}
|
|
|
|
r = zd_chip_enable_int(chip);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
|
|
if (r < 0)
|
|
goto disable_int;
|
|
r = set_rx_filter(mac);
|
|
if (r)
|
|
goto disable_int;
|
|
r = set_mc_hash(mac);
|
|
if (r)
|
|
goto disable_int;
|
|
r = zd_chip_switch_radio_on(chip);
|
|
if (r < 0)
|
|
goto disable_int;
|
|
r = zd_chip_enable_rxtx(chip);
|
|
if (r < 0)
|
|
goto disable_radio;
|
|
r = zd_chip_enable_hwint(chip);
|
|
if (r < 0)
|
|
goto disable_rxtx;
|
|
|
|
housekeeping_enable(mac);
|
|
return 0;
|
|
disable_rxtx:
|
|
zd_chip_disable_rxtx(chip);
|
|
disable_radio:
|
|
zd_chip_switch_radio_off(chip);
|
|
disable_int:
|
|
zd_chip_disable_int(chip);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* clear_tx_skb_control_block - clears the control block of tx skbuffs
|
|
* @skb: a &struct sk_buff pointer
|
|
*
|
|
* This clears the control block of skbuff buffers, which were transmitted to
|
|
* the device. Notify that the function is not thread-safe, so prevent
|
|
* multiple calls.
|
|
*/
|
|
static void clear_tx_skb_control_block(struct sk_buff *skb)
|
|
{
|
|
struct zd_tx_skb_control_block *cb =
|
|
(struct zd_tx_skb_control_block *)skb->cb;
|
|
|
|
kfree(cb->control);
|
|
cb->control = NULL;
|
|
}
|
|
|
|
/**
|
|
* kfree_tx_skb - frees a tx skbuff
|
|
* @skb: a &struct sk_buff pointer
|
|
*
|
|
* Frees the tx skbuff. Frees also the allocated control structure in the
|
|
* control block if necessary.
|
|
*/
|
|
static void kfree_tx_skb(struct sk_buff *skb)
|
|
{
|
|
clear_tx_skb_control_block(skb);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
static void zd_op_stop(struct ieee80211_hw *hw)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct zd_chip *chip = &mac->chip;
|
|
struct sk_buff *skb;
|
|
struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
|
|
|
|
/* The order here deliberately is a little different from the open()
|
|
* method, since we need to make sure there is no opportunity for RX
|
|
* frames to be processed by mac80211 after we have stopped it.
|
|
*/
|
|
|
|
zd_chip_disable_rxtx(chip);
|
|
housekeeping_disable(mac);
|
|
flush_workqueue(zd_workqueue);
|
|
|
|
zd_chip_disable_hwint(chip);
|
|
zd_chip_switch_radio_off(chip);
|
|
zd_chip_disable_int(chip);
|
|
|
|
|
|
while ((skb = skb_dequeue(ack_wait_queue)))
|
|
kfree_tx_skb(skb);
|
|
}
|
|
|
|
/**
|
|
* init_tx_skb_control_block - initializes skb control block
|
|
* @skb: a &sk_buff pointer
|
|
* @dev: pointer to the mac80221 device
|
|
* @control: mac80211 tx control applying for the frame in @skb
|
|
*
|
|
* Initializes the control block of the skbuff to be transmitted.
|
|
*/
|
|
static int init_tx_skb_control_block(struct sk_buff *skb,
|
|
struct ieee80211_hw *hw,
|
|
struct ieee80211_tx_control *control)
|
|
{
|
|
struct zd_tx_skb_control_block *cb =
|
|
(struct zd_tx_skb_control_block *)skb->cb;
|
|
|
|
ZD_ASSERT(sizeof(*cb) <= sizeof(skb->cb));
|
|
memset(cb, 0, sizeof(*cb));
|
|
cb->hw= hw;
|
|
cb->control = kmalloc(sizeof(*control), GFP_ATOMIC);
|
|
if (cb->control == NULL)
|
|
return -ENOMEM;
|
|
memcpy(cb->control, control, sizeof(*control));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* tx_status - reports tx status of a packet if required
|
|
* @hw - a &struct ieee80211_hw pointer
|
|
* @skb - a sk-buffer
|
|
* @status - the tx status of the packet without control information
|
|
* @success - True for successfull transmission of the frame
|
|
*
|
|
* This information calls ieee80211_tx_status_irqsafe() if required by the
|
|
* control information. It copies the control information into the status
|
|
* information.
|
|
*
|
|
* If no status information has been requested, the skb is freed.
|
|
*/
|
|
static void tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
|
|
struct ieee80211_tx_status *status,
|
|
bool success)
|
|
{
|
|
struct zd_tx_skb_control_block *cb = (struct zd_tx_skb_control_block *)
|
|
skb->cb;
|
|
|
|
ZD_ASSERT(cb->control != NULL);
|
|
memcpy(&status->control, cb->control, sizeof(status->control));
|
|
if (!success)
|
|
status->excessive_retries = 1;
|
|
clear_tx_skb_control_block(skb);
|
|
ieee80211_tx_status_irqsafe(hw, skb, status);
|
|
}
|
|
|
|
/**
|
|
* zd_mac_tx_failed - callback for failed frames
|
|
* @dev: the mac80211 wireless device
|
|
*
|
|
* This function is called if a frame couldn't be succesfully be
|
|
* transferred. The first frame from the tx queue, will be selected and
|
|
* reported as error to the upper layers.
|
|
*/
|
|
void zd_mac_tx_failed(struct ieee80211_hw *hw)
|
|
{
|
|
struct sk_buff_head *q = &zd_hw_mac(hw)->ack_wait_queue;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_tx_status status;
|
|
|
|
skb = skb_dequeue(q);
|
|
if (skb == NULL)
|
|
return;
|
|
|
|
memset(&status, 0, sizeof(status));
|
|
|
|
tx_status(hw, skb, &status, 0);
|
|
}
|
|
|
|
/**
|
|
* zd_mac_tx_to_dev - callback for USB layer
|
|
* @skb: a &sk_buff pointer
|
|
* @error: error value, 0 if transmission successful
|
|
*
|
|
* Informs the MAC layer that the frame has successfully transferred to the
|
|
* device. If an ACK is required and the transfer to the device has been
|
|
* successful, the packets are put on the @ack_wait_queue with
|
|
* the control set removed.
|
|
*/
|
|
void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
|
|
{
|
|
struct zd_tx_skb_control_block *cb =
|
|
(struct zd_tx_skb_control_block *)skb->cb;
|
|
struct ieee80211_hw *hw = cb->hw;
|
|
|
|
if (likely(cb->control)) {
|
|
skb_pull(skb, sizeof(struct zd_ctrlset));
|
|
if (unlikely(error ||
|
|
(cb->control->flags & IEEE80211_TXCTL_NO_ACK)))
|
|
{
|
|
struct ieee80211_tx_status status;
|
|
memset(&status, 0, sizeof(status));
|
|
tx_status(hw, skb, &status, !error);
|
|
} else {
|
|
struct sk_buff_head *q =
|
|
&zd_hw_mac(hw)->ack_wait_queue;
|
|
|
|
skb_queue_tail(q, skb);
|
|
while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS)
|
|
zd_mac_tx_failed(hw);
|
|
}
|
|
} else {
|
|
kfree_tx_skb(skb);
|
|
}
|
|
}
|
|
|
|
static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
|
|
{
|
|
/* ZD_PURE_RATE() must be used to remove the modulation type flag of
|
|
* the zd-rate values.
|
|
*/
|
|
static const u8 rate_divisor[] = {
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
|
|
/* Bits must be doubled. */
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
|
|
[ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
|
|
[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
|
|
};
|
|
|
|
u32 bits = (u32)tx_length * 8;
|
|
u32 divisor;
|
|
|
|
divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
|
|
if (divisor == 0)
|
|
return -EINVAL;
|
|
|
|
switch (zd_rate) {
|
|
case ZD_CCK_RATE_5_5M:
|
|
bits = (2*bits) + 10; /* round up to the next integer */
|
|
break;
|
|
case ZD_CCK_RATE_11M:
|
|
if (service) {
|
|
u32 t = bits % 11;
|
|
*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
|
|
if (0 < t && t <= 3) {
|
|
*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
|
|
}
|
|
}
|
|
bits += 10; /* round up to the next integer */
|
|
break;
|
|
}
|
|
|
|
return bits/divisor;
|
|
}
|
|
|
|
static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
|
|
struct ieee80211_hdr *header, u32 flags)
|
|
{
|
|
u16 fctl = le16_to_cpu(header->frame_control);
|
|
|
|
/*
|
|
* CONTROL TODO:
|
|
* - if backoff needed, enable bit 0
|
|
* - if burst (backoff not needed) disable bit 0
|
|
*/
|
|
|
|
cs->control = 0;
|
|
|
|
/* First fragment */
|
|
if (flags & IEEE80211_TXCTL_FIRST_FRAGMENT)
|
|
cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
|
|
|
|
/* Multicast */
|
|
if (is_multicast_ether_addr(header->addr1))
|
|
cs->control |= ZD_CS_MULTICAST;
|
|
|
|
/* PS-POLL */
|
|
if ((fctl & (IEEE80211_FCTL_FTYPE|IEEE80211_FCTL_STYPE)) ==
|
|
(IEEE80211_FTYPE_CTL|IEEE80211_STYPE_PSPOLL))
|
|
cs->control |= ZD_CS_PS_POLL_FRAME;
|
|
|
|
if (flags & IEEE80211_TXCTL_USE_RTS_CTS)
|
|
cs->control |= ZD_CS_RTS;
|
|
|
|
if (flags & IEEE80211_TXCTL_USE_CTS_PROTECT)
|
|
cs->control |= ZD_CS_SELF_CTS;
|
|
|
|
/* FIXME: Management frame? */
|
|
}
|
|
|
|
static int fill_ctrlset(struct zd_mac *mac,
|
|
struct sk_buff *skb,
|
|
struct ieee80211_tx_control *control)
|
|
{
|
|
int r;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
unsigned int frag_len = skb->len + FCS_LEN;
|
|
unsigned int packet_length;
|
|
struct zd_ctrlset *cs = (struct zd_ctrlset *)
|
|
skb_push(skb, sizeof(struct zd_ctrlset));
|
|
|
|
ZD_ASSERT(frag_len <= 0xffff);
|
|
|
|
cs->modulation = control->tx_rate->hw_value;
|
|
if (control->flags & IEEE80211_TXCTL_SHORT_PREAMBLE)
|
|
cs->modulation = control->tx_rate->hw_value_short;
|
|
|
|
cs->tx_length = cpu_to_le16(frag_len);
|
|
|
|
cs_set_control(mac, cs, hdr, control->flags);
|
|
|
|
packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
|
|
ZD_ASSERT(packet_length <= 0xffff);
|
|
/* ZD1211B: Computing the length difference this way, gives us
|
|
* flexibility to compute the packet length.
|
|
*/
|
|
cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
|
|
packet_length - frag_len : packet_length);
|
|
|
|
/*
|
|
* CURRENT LENGTH:
|
|
* - transmit frame length in microseconds
|
|
* - seems to be derived from frame length
|
|
* - see Cal_Us_Service() in zdinlinef.h
|
|
* - if macp->bTxBurstEnable is enabled, then multiply by 4
|
|
* - bTxBurstEnable is never set in the vendor driver
|
|
*
|
|
* SERVICE:
|
|
* - "for PLCP configuration"
|
|
* - always 0 except in some situations at 802.11b 11M
|
|
* - see line 53 of zdinlinef.h
|
|
*/
|
|
cs->service = 0;
|
|
r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
|
|
le16_to_cpu(cs->tx_length));
|
|
if (r < 0)
|
|
return r;
|
|
cs->current_length = cpu_to_le16(r);
|
|
cs->next_frame_length = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* zd_op_tx - transmits a network frame to the device
|
|
*
|
|
* @dev: mac80211 hardware device
|
|
* @skb: socket buffer
|
|
* @control: the control structure
|
|
*
|
|
* This function transmit an IEEE 802.11 network frame to the device. The
|
|
* control block of the skbuff will be initialized. If necessary the incoming
|
|
* mac80211 queues will be stopped.
|
|
*/
|
|
static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
|
|
struct ieee80211_tx_control *control)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
int r;
|
|
|
|
r = fill_ctrlset(mac, skb, control);
|
|
if (r)
|
|
return r;
|
|
|
|
r = init_tx_skb_control_block(skb, hw, control);
|
|
if (r)
|
|
return r;
|
|
r = zd_usb_tx(&mac->chip.usb, skb);
|
|
if (r) {
|
|
clear_tx_skb_control_block(skb);
|
|
return r;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* filter_ack - filters incoming packets for acknowledgements
|
|
* @dev: the mac80211 device
|
|
* @rx_hdr: received header
|
|
* @stats: the status for the received packet
|
|
*
|
|
* This functions looks for ACK packets and tries to match them with the
|
|
* frames in the tx queue. If a match is found the frame will be dequeued and
|
|
* the upper layers is informed about the successful transmission. If
|
|
* mac80211 queues have been stopped and the number of frames still to be
|
|
* transmitted is low the queues will be opened again.
|
|
*
|
|
* Returns 1 if the frame was an ACK, 0 if it was ignored.
|
|
*/
|
|
static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
|
|
struct ieee80211_rx_status *stats)
|
|
{
|
|
u16 fc = le16_to_cpu(rx_hdr->frame_control);
|
|
struct sk_buff *skb;
|
|
struct sk_buff_head *q;
|
|
unsigned long flags;
|
|
|
|
if ((fc & (IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) !=
|
|
(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK))
|
|
return 0;
|
|
|
|
q = &zd_hw_mac(hw)->ack_wait_queue;
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
for (skb = q->next; skb != (struct sk_buff *)q; skb = skb->next) {
|
|
struct ieee80211_hdr *tx_hdr;
|
|
|
|
tx_hdr = (struct ieee80211_hdr *)skb->data;
|
|
if (likely(!compare_ether_addr(tx_hdr->addr2, rx_hdr->addr1)))
|
|
{
|
|
struct ieee80211_tx_status status;
|
|
|
|
memset(&status, 0, sizeof(status));
|
|
status.flags = IEEE80211_TX_STATUS_ACK;
|
|
status.ack_signal = stats->ssi;
|
|
__skb_unlink(skb, q);
|
|
tx_status(hw, skb, &status, 1);
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
return 1;
|
|
}
|
|
|
|
int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
struct ieee80211_rx_status stats;
|
|
const struct rx_status *status;
|
|
struct sk_buff *skb;
|
|
int bad_frame = 0;
|
|
u16 fc;
|
|
bool is_qos, is_4addr, need_padding;
|
|
int i;
|
|
u8 rate;
|
|
|
|
if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
|
|
FCS_LEN + sizeof(struct rx_status))
|
|
return -EINVAL;
|
|
|
|
memset(&stats, 0, sizeof(stats));
|
|
|
|
/* Note about pass_failed_fcs and pass_ctrl access below:
|
|
* mac locking intentionally omitted here, as this is the only unlocked
|
|
* reader and the only writer is configure_filter. Plus, if there were
|
|
* any races accessing these variables, it wouldn't really matter.
|
|
* If mac80211 ever provides a way for us to access filter flags
|
|
* from outside configure_filter, we could improve on this. Also, this
|
|
* situation may change once we implement some kind of DMA-into-skb
|
|
* RX path. */
|
|
|
|
/* Caller has to ensure that length >= sizeof(struct rx_status). */
|
|
status = (struct rx_status *)
|
|
(buffer + (length - sizeof(struct rx_status)));
|
|
if (status->frame_status & ZD_RX_ERROR) {
|
|
if (mac->pass_failed_fcs &&
|
|
(status->frame_status & ZD_RX_CRC32_ERROR)) {
|
|
stats.flag |= RX_FLAG_FAILED_FCS_CRC;
|
|
bad_frame = 1;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
|
|
stats.band = IEEE80211_BAND_2GHZ;
|
|
stats.ssi = status->signal_strength;
|
|
stats.signal = zd_rx_qual_percent(buffer,
|
|
length - sizeof(struct rx_status),
|
|
status);
|
|
|
|
rate = zd_rx_rate(buffer, status);
|
|
|
|
/* todo: return index in the big switches in zd_rx_rate instead */
|
|
for (i = 0; i < mac->band.n_bitrates; i++)
|
|
if (rate == mac->band.bitrates[i].hw_value)
|
|
stats.rate_idx = i;
|
|
|
|
length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
|
|
buffer += ZD_PLCP_HEADER_SIZE;
|
|
|
|
/* Except for bad frames, filter each frame to see if it is an ACK, in
|
|
* which case our internal TX tracking is updated. Normally we then
|
|
* bail here as there's no need to pass ACKs on up to the stack, but
|
|
* there is also the case where the stack has requested us to pass
|
|
* control frames on up (pass_ctrl) which we must consider. */
|
|
if (!bad_frame &&
|
|
filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
|
|
&& !mac->pass_ctrl)
|
|
return 0;
|
|
|
|
fc = le16_to_cpu(*((__le16 *) buffer));
|
|
|
|
is_qos = ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
|
|
((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_QOS_DATA);
|
|
is_4addr = (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) ==
|
|
(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
|
|
need_padding = is_qos ^ is_4addr;
|
|
|
|
skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
|
|
if (skb == NULL)
|
|
return -ENOMEM;
|
|
if (need_padding) {
|
|
/* Make sure the the payload data is 4 byte aligned. */
|
|
skb_reserve(skb, 2);
|
|
}
|
|
|
|
memcpy(skb_put(skb, length), buffer, length);
|
|
|
|
ieee80211_rx_irqsafe(hw, skb, &stats);
|
|
return 0;
|
|
}
|
|
|
|
static int zd_op_add_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_if_init_conf *conf)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
|
|
/* using IEEE80211_IF_TYPE_INVALID to indicate no mode selected */
|
|
if (mac->type != IEEE80211_IF_TYPE_INVALID)
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (conf->type) {
|
|
case IEEE80211_IF_TYPE_MNTR:
|
|
case IEEE80211_IF_TYPE_STA:
|
|
mac->type = conf->type;
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return zd_write_mac_addr(&mac->chip, conf->mac_addr);
|
|
}
|
|
|
|
static void zd_op_remove_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_if_init_conf *conf)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
mac->type = IEEE80211_IF_TYPE_INVALID;
|
|
zd_write_mac_addr(&mac->chip, NULL);
|
|
}
|
|
|
|
static int zd_op_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
|
|
}
|
|
|
|
static int zd_op_config_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_if_conf *conf)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
mac->associated = is_valid_ether_addr(conf->bssid);
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
/* TODO: do hardware bssid filtering */
|
|
return 0;
|
|
}
|
|
|
|
static void set_multicast_hash_handler(struct work_struct *work)
|
|
{
|
|
struct zd_mac *mac =
|
|
container_of(work, struct zd_mac, set_multicast_hash_work);
|
|
struct zd_mc_hash hash;
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
hash = mac->multicast_hash;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
zd_chip_set_multicast_hash(&mac->chip, &hash);
|
|
}
|
|
|
|
static void set_rx_filter_handler(struct work_struct *work)
|
|
{
|
|
struct zd_mac *mac =
|
|
container_of(work, struct zd_mac, set_rx_filter_work);
|
|
int r;
|
|
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
r = set_rx_filter(mac);
|
|
if (r)
|
|
dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
|
|
}
|
|
|
|
#define SUPPORTED_FIF_FLAGS \
|
|
(FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
|
|
FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
|
|
static void zd_op_configure_filter(struct ieee80211_hw *hw,
|
|
unsigned int changed_flags,
|
|
unsigned int *new_flags,
|
|
int mc_count, struct dev_mc_list *mclist)
|
|
{
|
|
struct zd_mc_hash hash;
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
/* Only deal with supported flags */
|
|
changed_flags &= SUPPORTED_FIF_FLAGS;
|
|
*new_flags &= SUPPORTED_FIF_FLAGS;
|
|
|
|
/* changed_flags is always populated but this driver
|
|
* doesn't support all FIF flags so its possible we don't
|
|
* need to do anything */
|
|
if (!changed_flags)
|
|
return;
|
|
|
|
if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI)) {
|
|
zd_mc_add_all(&hash);
|
|
} else {
|
|
DECLARE_MAC_BUF(macbuf);
|
|
|
|
zd_mc_clear(&hash);
|
|
for (i = 0; i < mc_count; i++) {
|
|
if (!mclist)
|
|
break;
|
|
dev_dbg_f(zd_mac_dev(mac), "mc addr %s\n",
|
|
print_mac(macbuf, mclist->dmi_addr));
|
|
zd_mc_add_addr(&hash, mclist->dmi_addr);
|
|
mclist = mclist->next;
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
|
|
mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
|
|
mac->multicast_hash = hash;
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
queue_work(zd_workqueue, &mac->set_multicast_hash_work);
|
|
|
|
if (changed_flags & FIF_CONTROL)
|
|
queue_work(zd_workqueue, &mac->set_rx_filter_work);
|
|
|
|
/* no handling required for FIF_OTHER_BSS as we don't currently
|
|
* do BSSID filtering */
|
|
/* FIXME: in future it would be nice to enable the probe response
|
|
* filter (so that the driver doesn't see them) until
|
|
* FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
|
|
* have to schedule work to enable prbresp reception, which might
|
|
* happen too late. For now we'll just listen and forward them all the
|
|
* time. */
|
|
}
|
|
|
|
static void set_rts_cts_work(struct work_struct *work)
|
|
{
|
|
struct zd_mac *mac =
|
|
container_of(work, struct zd_mac, set_rts_cts_work);
|
|
unsigned long flags;
|
|
unsigned int short_preamble;
|
|
|
|
mutex_lock(&mac->chip.mutex);
|
|
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
mac->updating_rts_rate = 0;
|
|
short_preamble = mac->short_preamble;
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
|
|
zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
|
|
mutex_unlock(&mac->chip.mutex);
|
|
}
|
|
|
|
static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_bss_conf *bss_conf,
|
|
u32 changes)
|
|
{
|
|
struct zd_mac *mac = zd_hw_mac(hw);
|
|
unsigned long flags;
|
|
|
|
dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
|
|
|
|
if (changes & BSS_CHANGED_ERP_PREAMBLE) {
|
|
spin_lock_irqsave(&mac->lock, flags);
|
|
mac->short_preamble = bss_conf->use_short_preamble;
|
|
if (!mac->updating_rts_rate) {
|
|
mac->updating_rts_rate = 1;
|
|
/* FIXME: should disable TX here, until work has
|
|
* completed and RTS_CTS reg is updated */
|
|
queue_work(zd_workqueue, &mac->set_rts_cts_work);
|
|
}
|
|
spin_unlock_irqrestore(&mac->lock, flags);
|
|
}
|
|
}
|
|
|
|
static const struct ieee80211_ops zd_ops = {
|
|
.tx = zd_op_tx,
|
|
.start = zd_op_start,
|
|
.stop = zd_op_stop,
|
|
.add_interface = zd_op_add_interface,
|
|
.remove_interface = zd_op_remove_interface,
|
|
.config = zd_op_config,
|
|
.config_interface = zd_op_config_interface,
|
|
.configure_filter = zd_op_configure_filter,
|
|
.bss_info_changed = zd_op_bss_info_changed,
|
|
};
|
|
|
|
struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
|
|
{
|
|
struct zd_mac *mac;
|
|
struct ieee80211_hw *hw;
|
|
|
|
hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
|
|
if (!hw) {
|
|
dev_dbg_f(&intf->dev, "out of memory\n");
|
|
return NULL;
|
|
}
|
|
|
|
mac = zd_hw_mac(hw);
|
|
|
|
memset(mac, 0, sizeof(*mac));
|
|
spin_lock_init(&mac->lock);
|
|
mac->hw = hw;
|
|
|
|
mac->type = IEEE80211_IF_TYPE_INVALID;
|
|
|
|
memcpy(mac->channels, zd_channels, sizeof(zd_channels));
|
|
memcpy(mac->rates, zd_rates, sizeof(zd_rates));
|
|
mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
|
|
mac->band.bitrates = mac->rates;
|
|
mac->band.n_channels = ARRAY_SIZE(zd_channels);
|
|
mac->band.channels = mac->channels;
|
|
|
|
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
|
|
|
|
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS;
|
|
hw->max_rssi = 100;
|
|
hw->max_signal = 100;
|
|
|
|
hw->queues = 1;
|
|
hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
|
|
|
|
skb_queue_head_init(&mac->ack_wait_queue);
|
|
|
|
zd_chip_init(&mac->chip, hw, intf);
|
|
housekeeping_init(mac);
|
|
INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
|
|
INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
|
|
INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
|
|
|
|
SET_IEEE80211_DEV(hw, &intf->dev);
|
|
return hw;
|
|
}
|
|
|
|
#define LINK_LED_WORK_DELAY HZ
|
|
|
|
static void link_led_handler(struct work_struct *work)
|
|
{
|
|
struct zd_mac *mac =
|
|
container_of(work, struct zd_mac, housekeeping.link_led_work.work);
|
|
struct zd_chip *chip = &mac->chip;
|
|
int is_associated;
|
|
int r;
|
|
|
|
spin_lock_irq(&mac->lock);
|
|
is_associated = mac->associated;
|
|
spin_unlock_irq(&mac->lock);
|
|
|
|
r = zd_chip_control_leds(chip,
|
|
is_associated ? LED_ASSOCIATED : LED_SCANNING);
|
|
if (r)
|
|
dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
|
|
|
|
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
|
|
LINK_LED_WORK_DELAY);
|
|
}
|
|
|
|
static void housekeeping_init(struct zd_mac *mac)
|
|
{
|
|
INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
|
|
}
|
|
|
|
static void housekeeping_enable(struct zd_mac *mac)
|
|
{
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
|
|
0);
|
|
}
|
|
|
|
static void housekeeping_disable(struct zd_mac *mac)
|
|
{
|
|
dev_dbg_f(zd_mac_dev(mac), "\n");
|
|
cancel_rearming_delayed_workqueue(zd_workqueue,
|
|
&mac->housekeeping.link_led_work);
|
|
zd_chip_control_leds(&mac->chip, LED_OFF);
|
|
}
|