mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-15 06:00:41 +00:00
32af1e180f
Use devm_ioremap_resource() in order to make the code simpler, and remove redundant return value check of platform_get_resource() because the value is checked by devm_ioremap_resource(). Signed-off-by: Jingoo Han <jg1.han@samsung.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1862 lines
53 KiB
C
1862 lines
53 KiB
C
/*
|
|
* Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include <crypto/aead.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/authenc.h>
|
|
#include <crypto/des.h>
|
|
#include <crypto/md5.h>
|
|
#include <crypto/sha.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/timer.h>
|
|
|
|
#include "picoxcell_crypto_regs.h"
|
|
|
|
/*
|
|
* The threshold for the number of entries in the CMD FIFO available before
|
|
* the CMD0_CNT interrupt is raised. Increasing this value will reduce the
|
|
* number of interrupts raised to the CPU.
|
|
*/
|
|
#define CMD0_IRQ_THRESHOLD 1
|
|
|
|
/*
|
|
* The timeout period (in jiffies) for a PDU. When the the number of PDUs in
|
|
* flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
|
|
* When there are packets in flight but lower than the threshold, we enable
|
|
* the timer and at expiry, attempt to remove any processed packets from the
|
|
* queue and if there are still packets left, schedule the timer again.
|
|
*/
|
|
#define PACKET_TIMEOUT 1
|
|
|
|
/* The priority to register each algorithm with. */
|
|
#define SPACC_CRYPTO_ALG_PRIORITY 10000
|
|
|
|
#define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
|
|
#define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
|
|
#define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
|
|
#define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
|
|
#define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
|
|
#define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
|
|
#define SPACC_CRYPTO_L2_HASH_PG_SZ 64
|
|
#define SPACC_CRYPTO_L2_MAX_CTXS 128
|
|
#define SPACC_CRYPTO_L2_FIFO_SZ 128
|
|
|
|
#define MAX_DDT_LEN 16
|
|
|
|
/* DDT format. This must match the hardware DDT format exactly. */
|
|
struct spacc_ddt {
|
|
dma_addr_t p;
|
|
u32 len;
|
|
};
|
|
|
|
/*
|
|
* Asynchronous crypto request structure.
|
|
*
|
|
* This structure defines a request that is either queued for processing or
|
|
* being processed.
|
|
*/
|
|
struct spacc_req {
|
|
struct list_head list;
|
|
struct spacc_engine *engine;
|
|
struct crypto_async_request *req;
|
|
int result;
|
|
bool is_encrypt;
|
|
unsigned ctx_id;
|
|
dma_addr_t src_addr, dst_addr;
|
|
struct spacc_ddt *src_ddt, *dst_ddt;
|
|
void (*complete)(struct spacc_req *req);
|
|
|
|
/* AEAD specific bits. */
|
|
u8 *giv;
|
|
size_t giv_len;
|
|
dma_addr_t giv_pa;
|
|
};
|
|
|
|
struct spacc_engine {
|
|
void __iomem *regs;
|
|
struct list_head pending;
|
|
int next_ctx;
|
|
spinlock_t hw_lock;
|
|
int in_flight;
|
|
struct list_head completed;
|
|
struct list_head in_progress;
|
|
struct tasklet_struct complete;
|
|
unsigned long fifo_sz;
|
|
void __iomem *cipher_ctx_base;
|
|
void __iomem *hash_key_base;
|
|
struct spacc_alg *algs;
|
|
unsigned num_algs;
|
|
struct list_head registered_algs;
|
|
size_t cipher_pg_sz;
|
|
size_t hash_pg_sz;
|
|
const char *name;
|
|
struct clk *clk;
|
|
struct device *dev;
|
|
unsigned max_ctxs;
|
|
struct timer_list packet_timeout;
|
|
unsigned stat_irq_thresh;
|
|
struct dma_pool *req_pool;
|
|
};
|
|
|
|
/* Algorithm type mask. */
|
|
#define SPACC_CRYPTO_ALG_MASK 0x7
|
|
|
|
/* SPACC definition of a crypto algorithm. */
|
|
struct spacc_alg {
|
|
unsigned long ctrl_default;
|
|
unsigned long type;
|
|
struct crypto_alg alg;
|
|
struct spacc_engine *engine;
|
|
struct list_head entry;
|
|
int key_offs;
|
|
int iv_offs;
|
|
};
|
|
|
|
/* Generic context structure for any algorithm type. */
|
|
struct spacc_generic_ctx {
|
|
struct spacc_engine *engine;
|
|
int flags;
|
|
int key_offs;
|
|
int iv_offs;
|
|
};
|
|
|
|
/* Block cipher context. */
|
|
struct spacc_ablk_ctx {
|
|
struct spacc_generic_ctx generic;
|
|
u8 key[AES_MAX_KEY_SIZE];
|
|
u8 key_len;
|
|
/*
|
|
* The fallback cipher. If the operation can't be done in hardware,
|
|
* fallback to a software version.
|
|
*/
|
|
struct crypto_ablkcipher *sw_cipher;
|
|
};
|
|
|
|
/* AEAD cipher context. */
|
|
struct spacc_aead_ctx {
|
|
struct spacc_generic_ctx generic;
|
|
u8 cipher_key[AES_MAX_KEY_SIZE];
|
|
u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
|
|
u8 cipher_key_len;
|
|
u8 hash_key_len;
|
|
struct crypto_aead *sw_cipher;
|
|
size_t auth_size;
|
|
u8 salt[AES_BLOCK_SIZE];
|
|
};
|
|
|
|
static int spacc_ablk_submit(struct spacc_req *req);
|
|
|
|
static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
|
|
{
|
|
return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
|
|
}
|
|
|
|
static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
|
|
{
|
|
u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
|
|
|
|
return fifo_stat & SPA_FIFO_CMD_FULL;
|
|
}
|
|
|
|
/*
|
|
* Given a cipher context, and a context number, get the base address of the
|
|
* context page.
|
|
*
|
|
* Returns the address of the context page where the key/context may
|
|
* be written.
|
|
*/
|
|
static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
|
|
unsigned indx,
|
|
bool is_cipher_ctx)
|
|
{
|
|
return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
|
|
(indx * ctx->engine->cipher_pg_sz) :
|
|
ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
|
|
}
|
|
|
|
/* The context pages can only be written with 32-bit accesses. */
|
|
static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
|
|
unsigned count)
|
|
{
|
|
const u32 *src32 = (const u32 *) src;
|
|
|
|
while (count--)
|
|
writel(*src32++, dst++);
|
|
}
|
|
|
|
static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
|
|
void __iomem *page_addr, const u8 *key,
|
|
size_t key_len, const u8 *iv, size_t iv_len)
|
|
{
|
|
void __iomem *key_ptr = page_addr + ctx->key_offs;
|
|
void __iomem *iv_ptr = page_addr + ctx->iv_offs;
|
|
|
|
memcpy_toio32(key_ptr, key, key_len / 4);
|
|
memcpy_toio32(iv_ptr, iv, iv_len / 4);
|
|
}
|
|
|
|
/*
|
|
* Load a context into the engines context memory.
|
|
*
|
|
* Returns the index of the context page where the context was loaded.
|
|
*/
|
|
static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
|
|
const u8 *ciph_key, size_t ciph_len,
|
|
const u8 *iv, size_t ivlen, const u8 *hash_key,
|
|
size_t hash_len)
|
|
{
|
|
unsigned indx = ctx->engine->next_ctx++;
|
|
void __iomem *ciph_page_addr, *hash_page_addr;
|
|
|
|
ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
|
|
hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
|
|
|
|
ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
|
|
spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
|
|
ivlen);
|
|
writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
|
|
(1 << SPA_KEY_SZ_CIPHER_OFFSET),
|
|
ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
|
|
|
|
if (hash_key) {
|
|
memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
|
|
writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
|
|
ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
|
|
}
|
|
|
|
return indx;
|
|
}
|
|
|
|
/* Count the number of scatterlist entries in a scatterlist. */
|
|
static int sg_count(struct scatterlist *sg_list, int nbytes)
|
|
{
|
|
struct scatterlist *sg = sg_list;
|
|
int sg_nents = 0;
|
|
|
|
while (nbytes > 0) {
|
|
++sg_nents;
|
|
nbytes -= sg->length;
|
|
sg = sg_next(sg);
|
|
}
|
|
|
|
return sg_nents;
|
|
}
|
|
|
|
static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
|
|
{
|
|
ddt->p = phys;
|
|
ddt->len = len;
|
|
}
|
|
|
|
/*
|
|
* Take a crypto request and scatterlists for the data and turn them into DDTs
|
|
* for passing to the crypto engines. This also DMA maps the data so that the
|
|
* crypto engines can DMA to/from them.
|
|
*/
|
|
static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
|
|
struct scatterlist *payload,
|
|
unsigned nbytes,
|
|
enum dma_data_direction dir,
|
|
dma_addr_t *ddt_phys)
|
|
{
|
|
unsigned nents, mapped_ents;
|
|
struct scatterlist *cur;
|
|
struct spacc_ddt *ddt;
|
|
int i;
|
|
|
|
nents = sg_count(payload, nbytes);
|
|
mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
|
|
|
|
if (mapped_ents + 1 > MAX_DDT_LEN)
|
|
goto out;
|
|
|
|
ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
|
|
if (!ddt)
|
|
goto out;
|
|
|
|
for_each_sg(payload, cur, mapped_ents, i)
|
|
ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
|
|
ddt_set(&ddt[mapped_ents], 0, 0);
|
|
|
|
return ddt;
|
|
|
|
out:
|
|
dma_unmap_sg(engine->dev, payload, nents, dir);
|
|
return NULL;
|
|
}
|
|
|
|
static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
|
|
{
|
|
struct aead_request *areq = container_of(req->req, struct aead_request,
|
|
base);
|
|
struct spacc_engine *engine = req->engine;
|
|
struct spacc_ddt *src_ddt, *dst_ddt;
|
|
unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
|
|
unsigned nents = sg_count(areq->src, areq->cryptlen);
|
|
dma_addr_t iv_addr;
|
|
struct scatterlist *cur;
|
|
int i, dst_ents, src_ents, assoc_ents;
|
|
u8 *iv = giv ? giv : areq->iv;
|
|
|
|
src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
|
|
if (!src_ddt)
|
|
return -ENOMEM;
|
|
|
|
dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
|
|
if (!dst_ddt) {
|
|
dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
req->src_ddt = src_ddt;
|
|
req->dst_ddt = dst_ddt;
|
|
|
|
assoc_ents = dma_map_sg(engine->dev, areq->assoc,
|
|
sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
|
|
if (areq->src != areq->dst) {
|
|
src_ents = dma_map_sg(engine->dev, areq->src, nents,
|
|
DMA_TO_DEVICE);
|
|
dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
|
|
DMA_FROM_DEVICE);
|
|
} else {
|
|
src_ents = dma_map_sg(engine->dev, areq->src, nents,
|
|
DMA_BIDIRECTIONAL);
|
|
dst_ents = 0;
|
|
}
|
|
|
|
/*
|
|
* Map the IV/GIV. For the GIV it needs to be bidirectional as it is
|
|
* formed by the crypto block and sent as the ESP IV for IPSEC.
|
|
*/
|
|
iv_addr = dma_map_single(engine->dev, iv, ivsize,
|
|
giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
req->giv_pa = iv_addr;
|
|
|
|
/*
|
|
* Map the associated data. For decryption we don't copy the
|
|
* associated data.
|
|
*/
|
|
for_each_sg(areq->assoc, cur, assoc_ents, i) {
|
|
ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
|
|
if (req->is_encrypt)
|
|
ddt_set(dst_ddt++, sg_dma_address(cur),
|
|
sg_dma_len(cur));
|
|
}
|
|
ddt_set(src_ddt++, iv_addr, ivsize);
|
|
|
|
if (giv || req->is_encrypt)
|
|
ddt_set(dst_ddt++, iv_addr, ivsize);
|
|
|
|
/*
|
|
* Now map in the payload for the source and destination and terminate
|
|
* with the NULL pointers.
|
|
*/
|
|
for_each_sg(areq->src, cur, src_ents, i) {
|
|
ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
|
|
if (areq->src == areq->dst)
|
|
ddt_set(dst_ddt++, sg_dma_address(cur),
|
|
sg_dma_len(cur));
|
|
}
|
|
|
|
for_each_sg(areq->dst, cur, dst_ents, i)
|
|
ddt_set(dst_ddt++, sg_dma_address(cur),
|
|
sg_dma_len(cur));
|
|
|
|
ddt_set(src_ddt, 0, 0);
|
|
ddt_set(dst_ddt, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spacc_aead_free_ddts(struct spacc_req *req)
|
|
{
|
|
struct aead_request *areq = container_of(req->req, struct aead_request,
|
|
base);
|
|
struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
|
|
struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
|
|
struct spacc_engine *engine = aead_ctx->generic.engine;
|
|
unsigned ivsize = alg->alg.cra_aead.ivsize;
|
|
unsigned nents = sg_count(areq->src, areq->cryptlen);
|
|
|
|
if (areq->src != areq->dst) {
|
|
dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
|
|
dma_unmap_sg(engine->dev, areq->dst,
|
|
sg_count(areq->dst, areq->cryptlen),
|
|
DMA_FROM_DEVICE);
|
|
} else
|
|
dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
|
|
|
|
dma_unmap_sg(engine->dev, areq->assoc,
|
|
sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
|
|
|
|
dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
|
|
|
|
dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
|
|
dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
|
|
}
|
|
|
|
static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
|
|
dma_addr_t ddt_addr, struct scatterlist *payload,
|
|
unsigned nbytes, enum dma_data_direction dir)
|
|
{
|
|
unsigned nents = sg_count(payload, nbytes);
|
|
|
|
dma_unmap_sg(req->engine->dev, payload, nents, dir);
|
|
dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
|
|
}
|
|
|
|
/*
|
|
* Set key for a DES operation in an AEAD cipher. This also performs weak key
|
|
* checking if required.
|
|
*/
|
|
static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
|
|
unsigned int len)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
|
|
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
u32 tmp[DES_EXPKEY_WORDS];
|
|
|
|
if (unlikely(!des_ekey(tmp, key)) &&
|
|
(crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
|
|
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(ctx->cipher_key, key, len);
|
|
ctx->cipher_key_len = len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Set the key for the AES block cipher component of the AEAD transform. */
|
|
static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
|
|
unsigned int len)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
|
|
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
/*
|
|
* IPSec engine only supports 128 and 256 bit AES keys. If we get a
|
|
* request for any other size (192 bits) then we need to do a software
|
|
* fallback.
|
|
*/
|
|
if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
|
|
/*
|
|
* Set the fallback transform to use the same request flags as
|
|
* the hardware transform.
|
|
*/
|
|
ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
|
|
ctx->sw_cipher->base.crt_flags |=
|
|
tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
|
|
return crypto_aead_setkey(ctx->sw_cipher, key, len);
|
|
}
|
|
|
|
memcpy(ctx->cipher_key, key, len);
|
|
ctx->cipher_key_len = len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
|
|
struct crypto_authenc_keys keys;
|
|
int err = -EINVAL;
|
|
|
|
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
|
|
goto badkey;
|
|
|
|
if (keys.enckeylen > AES_MAX_KEY_SIZE)
|
|
goto badkey;
|
|
|
|
if (keys.authkeylen > sizeof(ctx->hash_ctx))
|
|
goto badkey;
|
|
|
|
if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
|
|
SPA_CTRL_CIPH_ALG_AES)
|
|
err = spacc_aead_aes_setkey(tfm, keys.enckey, keys.enckeylen);
|
|
else
|
|
err = spacc_aead_des_setkey(tfm, keys.enckey, keys.enckeylen);
|
|
|
|
if (err)
|
|
goto badkey;
|
|
|
|
memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
|
|
ctx->hash_key_len = keys.authkeylen;
|
|
|
|
return 0;
|
|
|
|
badkey:
|
|
crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int spacc_aead_setauthsize(struct crypto_aead *tfm,
|
|
unsigned int authsize)
|
|
{
|
|
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
|
|
|
|
ctx->auth_size = authsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if an AEAD request requires a fallback operation. Some requests can't
|
|
* be completed in hardware because the hardware may not support certain key
|
|
* sizes. In these cases we need to complete the request in software.
|
|
*/
|
|
static int spacc_aead_need_fallback(struct spacc_req *req)
|
|
{
|
|
struct aead_request *aead_req;
|
|
struct crypto_tfm *tfm = req->req->tfm;
|
|
struct crypto_alg *alg = req->req->tfm->__crt_alg;
|
|
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
|
|
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
aead_req = container_of(req->req, struct aead_request, base);
|
|
/*
|
|
* If we have a non-supported key-length, then we need to do a
|
|
* software fallback.
|
|
*/
|
|
if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
|
|
SPA_CTRL_CIPH_ALG_AES &&
|
|
ctx->cipher_key_len != AES_KEYSIZE_128 &&
|
|
ctx->cipher_key_len != AES_KEYSIZE_256)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
|
|
bool is_encrypt)
|
|
{
|
|
struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
|
|
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
|
|
int err;
|
|
|
|
if (ctx->sw_cipher) {
|
|
/*
|
|
* Change the request to use the software fallback transform,
|
|
* and once the ciphering has completed, put the old transform
|
|
* back into the request.
|
|
*/
|
|
aead_request_set_tfm(req, ctx->sw_cipher);
|
|
err = is_encrypt ? crypto_aead_encrypt(req) :
|
|
crypto_aead_decrypt(req);
|
|
aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
|
|
} else
|
|
err = -EINVAL;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void spacc_aead_complete(struct spacc_req *req)
|
|
{
|
|
spacc_aead_free_ddts(req);
|
|
req->req->complete(req->req, req->result);
|
|
}
|
|
|
|
static int spacc_aead_submit(struct spacc_req *req)
|
|
{
|
|
struct crypto_tfm *tfm = req->req->tfm;
|
|
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_alg *alg = req->req->tfm->__crt_alg;
|
|
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
|
|
struct spacc_engine *engine = ctx->generic.engine;
|
|
u32 ctrl, proc_len, assoc_len;
|
|
struct aead_request *aead_req =
|
|
container_of(req->req, struct aead_request, base);
|
|
|
|
req->result = -EINPROGRESS;
|
|
req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
|
|
ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
|
|
ctx->hash_ctx, ctx->hash_key_len);
|
|
|
|
/* Set the source and destination DDT pointers. */
|
|
writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
|
|
writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
|
|
writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
|
|
|
|
assoc_len = aead_req->assoclen;
|
|
proc_len = aead_req->cryptlen + assoc_len;
|
|
|
|
/*
|
|
* If we aren't generating an IV, then we need to include the IV in the
|
|
* associated data so that it is included in the hash.
|
|
*/
|
|
if (!req->giv) {
|
|
assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
|
|
proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
|
|
} else
|
|
proc_len += req->giv_len;
|
|
|
|
/*
|
|
* If we are decrypting, we need to take the length of the ICV out of
|
|
* the processing length.
|
|
*/
|
|
if (!req->is_encrypt)
|
|
proc_len -= ctx->auth_size;
|
|
|
|
writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
|
|
writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
|
|
writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
|
|
writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
|
|
writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
|
|
|
|
ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
|
|
(1 << SPA_CTRL_ICV_APPEND);
|
|
if (req->is_encrypt)
|
|
ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
|
|
else
|
|
ctrl |= (1 << SPA_CTRL_KEY_EXP);
|
|
|
|
mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
|
|
|
|
writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
|
|
|
|
return -EINPROGRESS;
|
|
}
|
|
|
|
static int spacc_req_submit(struct spacc_req *req);
|
|
|
|
static void spacc_push(struct spacc_engine *engine)
|
|
{
|
|
struct spacc_req *req;
|
|
|
|
while (!list_empty(&engine->pending) &&
|
|
engine->in_flight + 1 <= engine->fifo_sz) {
|
|
|
|
++engine->in_flight;
|
|
req = list_first_entry(&engine->pending, struct spacc_req,
|
|
list);
|
|
list_move_tail(&req->list, &engine->in_progress);
|
|
|
|
req->result = spacc_req_submit(req);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup an AEAD request for processing. This will configure the engine, load
|
|
* the context and then start the packet processing.
|
|
*
|
|
* @giv Pointer to destination address for a generated IV. If the
|
|
* request does not need to generate an IV then this should be set to NULL.
|
|
*/
|
|
static int spacc_aead_setup(struct aead_request *req, u8 *giv,
|
|
unsigned alg_type, bool is_encrypt)
|
|
{
|
|
struct crypto_alg *alg = req->base.tfm->__crt_alg;
|
|
struct spacc_engine *engine = to_spacc_alg(alg)->engine;
|
|
struct spacc_req *dev_req = aead_request_ctx(req);
|
|
int err = -EINPROGRESS;
|
|
unsigned long flags;
|
|
unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
|
|
|
|
dev_req->giv = giv;
|
|
dev_req->giv_len = ivsize;
|
|
dev_req->req = &req->base;
|
|
dev_req->is_encrypt = is_encrypt;
|
|
dev_req->result = -EBUSY;
|
|
dev_req->engine = engine;
|
|
dev_req->complete = spacc_aead_complete;
|
|
|
|
if (unlikely(spacc_aead_need_fallback(dev_req)))
|
|
return spacc_aead_do_fallback(req, alg_type, is_encrypt);
|
|
|
|
spacc_aead_make_ddts(dev_req, dev_req->giv);
|
|
|
|
err = -EINPROGRESS;
|
|
spin_lock_irqsave(&engine->hw_lock, flags);
|
|
if (unlikely(spacc_fifo_cmd_full(engine)) ||
|
|
engine->in_flight + 1 > engine->fifo_sz) {
|
|
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
|
|
err = -EBUSY;
|
|
spin_unlock_irqrestore(&engine->hw_lock, flags);
|
|
goto out_free_ddts;
|
|
}
|
|
list_add_tail(&dev_req->list, &engine->pending);
|
|
} else {
|
|
list_add_tail(&dev_req->list, &engine->pending);
|
|
spacc_push(engine);
|
|
}
|
|
spin_unlock_irqrestore(&engine->hw_lock, flags);
|
|
|
|
goto out;
|
|
|
|
out_free_ddts:
|
|
spacc_aead_free_ddts(dev_req);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int spacc_aead_encrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
|
|
struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
|
|
|
|
return spacc_aead_setup(req, NULL, alg->type, 1);
|
|
}
|
|
|
|
static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
|
|
{
|
|
struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
|
|
struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
size_t ivsize = crypto_aead_ivsize(tfm);
|
|
struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
|
|
unsigned len;
|
|
__be64 seq;
|
|
|
|
memcpy(req->areq.iv, ctx->salt, ivsize);
|
|
len = ivsize;
|
|
if (ivsize > sizeof(u64)) {
|
|
memset(req->giv, 0, ivsize - sizeof(u64));
|
|
len = sizeof(u64);
|
|
}
|
|
seq = cpu_to_be64(req->seq);
|
|
memcpy(req->giv + ivsize - len, &seq, len);
|
|
|
|
return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
|
|
}
|
|
|
|
static int spacc_aead_decrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
|
|
struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
|
|
|
|
return spacc_aead_setup(req, NULL, alg->type, 0);
|
|
}
|
|
|
|
/*
|
|
* Initialise a new AEAD context. This is responsible for allocating the
|
|
* fallback cipher and initialising the context.
|
|
*/
|
|
static int spacc_aead_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
|
|
struct spacc_engine *engine = spacc_alg->engine;
|
|
|
|
ctx->generic.flags = spacc_alg->type;
|
|
ctx->generic.engine = engine;
|
|
ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(ctx->sw_cipher)) {
|
|
dev_warn(engine->dev, "failed to allocate fallback for %s\n",
|
|
alg->cra_name);
|
|
ctx->sw_cipher = NULL;
|
|
}
|
|
ctx->generic.key_offs = spacc_alg->key_offs;
|
|
ctx->generic.iv_offs = spacc_alg->iv_offs;
|
|
|
|
get_random_bytes(ctx->salt, sizeof(ctx->salt));
|
|
|
|
tfm->crt_aead.reqsize = sizeof(struct spacc_req);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Destructor for an AEAD context. This is called when the transform is freed
|
|
* and must free the fallback cipher.
|
|
*/
|
|
static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
if (ctx->sw_cipher)
|
|
crypto_free_aead(ctx->sw_cipher);
|
|
ctx->sw_cipher = NULL;
|
|
}
|
|
|
|
/*
|
|
* Set the DES key for a block cipher transform. This also performs weak key
|
|
* checking if the transform has requested it.
|
|
*/
|
|
static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int len)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
u32 tmp[DES_EXPKEY_WORDS];
|
|
|
|
if (len > DES3_EDE_KEY_SIZE) {
|
|
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (unlikely(!des_ekey(tmp, key)) &&
|
|
(crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
|
|
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(ctx->key, key, len);
|
|
ctx->key_len = len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the key for an AES block cipher. Some key lengths are not supported in
|
|
* hardware so this must also check whether a fallback is needed.
|
|
*/
|
|
static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int len)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
int err = 0;
|
|
|
|
if (len > AES_MAX_KEY_SIZE) {
|
|
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* IPSec engine only supports 128 and 256 bit AES keys. If we get a
|
|
* request for any other size (192 bits) then we need to do a software
|
|
* fallback.
|
|
*/
|
|
if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
|
|
ctx->sw_cipher) {
|
|
/*
|
|
* Set the fallback transform to use the same request flags as
|
|
* the hardware transform.
|
|
*/
|
|
ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
|
|
ctx->sw_cipher->base.crt_flags |=
|
|
cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
|
|
|
|
err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
|
|
if (err)
|
|
goto sw_setkey_failed;
|
|
} else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
|
|
!ctx->sw_cipher)
|
|
err = -EINVAL;
|
|
|
|
memcpy(ctx->key, key, len);
|
|
ctx->key_len = len;
|
|
|
|
sw_setkey_failed:
|
|
if (err && ctx->sw_cipher) {
|
|
tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
|
|
tfm->crt_flags |=
|
|
ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
|
|
const u8 *key, unsigned int len)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
int err = 0;
|
|
|
|
if (len > AES_MAX_KEY_SIZE) {
|
|
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
memcpy(ctx->key, key, len);
|
|
ctx->key_len = len;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int spacc_ablk_need_fallback(struct spacc_req *req)
|
|
{
|
|
struct spacc_ablk_ctx *ctx;
|
|
struct crypto_tfm *tfm = req->req->tfm;
|
|
struct crypto_alg *alg = req->req->tfm->__crt_alg;
|
|
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
|
|
|
|
ctx = crypto_tfm_ctx(tfm);
|
|
|
|
return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
|
|
SPA_CTRL_CIPH_ALG_AES &&
|
|
ctx->key_len != AES_KEYSIZE_128 &&
|
|
ctx->key_len != AES_KEYSIZE_256;
|
|
}
|
|
|
|
static void spacc_ablk_complete(struct spacc_req *req)
|
|
{
|
|
struct ablkcipher_request *ablk_req =
|
|
container_of(req->req, struct ablkcipher_request, base);
|
|
|
|
if (ablk_req->src != ablk_req->dst) {
|
|
spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
|
|
ablk_req->nbytes, DMA_TO_DEVICE);
|
|
spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
|
|
ablk_req->nbytes, DMA_FROM_DEVICE);
|
|
} else
|
|
spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
|
|
ablk_req->nbytes, DMA_BIDIRECTIONAL);
|
|
|
|
req->req->complete(req->req, req->result);
|
|
}
|
|
|
|
static int spacc_ablk_submit(struct spacc_req *req)
|
|
{
|
|
struct crypto_tfm *tfm = req->req->tfm;
|
|
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
|
|
struct crypto_alg *alg = req->req->tfm->__crt_alg;
|
|
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
|
|
struct spacc_engine *engine = ctx->generic.engine;
|
|
u32 ctrl;
|
|
|
|
req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
|
|
ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
|
|
NULL, 0);
|
|
|
|
writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
|
|
writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
|
|
writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
|
|
|
|
writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
|
|
writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
|
|
writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
|
|
writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
|
|
|
|
ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
|
|
(req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
|
|
(1 << SPA_CTRL_KEY_EXP));
|
|
|
|
mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
|
|
|
|
writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
|
|
|
|
return -EINPROGRESS;
|
|
}
|
|
|
|
static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
|
|
unsigned alg_type, bool is_encrypt)
|
|
{
|
|
struct crypto_tfm *old_tfm =
|
|
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
|
|
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
|
|
int err;
|
|
|
|
if (!ctx->sw_cipher)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Change the request to use the software fallback transform, and once
|
|
* the ciphering has completed, put the old transform back into the
|
|
* request.
|
|
*/
|
|
ablkcipher_request_set_tfm(req, ctx->sw_cipher);
|
|
err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
|
|
crypto_ablkcipher_decrypt(req);
|
|
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
|
|
|
|
return err;
|
|
}
|
|
|
|
static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
|
|
bool is_encrypt)
|
|
{
|
|
struct crypto_alg *alg = req->base.tfm->__crt_alg;
|
|
struct spacc_engine *engine = to_spacc_alg(alg)->engine;
|
|
struct spacc_req *dev_req = ablkcipher_request_ctx(req);
|
|
unsigned long flags;
|
|
int err = -ENOMEM;
|
|
|
|
dev_req->req = &req->base;
|
|
dev_req->is_encrypt = is_encrypt;
|
|
dev_req->engine = engine;
|
|
dev_req->complete = spacc_ablk_complete;
|
|
dev_req->result = -EINPROGRESS;
|
|
|
|
if (unlikely(spacc_ablk_need_fallback(dev_req)))
|
|
return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
|
|
|
|
/*
|
|
* Create the DDT's for the engine. If we share the same source and
|
|
* destination then we can optimize by reusing the DDT's.
|
|
*/
|
|
if (req->src != req->dst) {
|
|
dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
|
|
req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
|
|
if (!dev_req->src_ddt)
|
|
goto out;
|
|
|
|
dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
|
|
req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
|
|
if (!dev_req->dst_ddt)
|
|
goto out_free_src;
|
|
} else {
|
|
dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
|
|
req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
|
|
if (!dev_req->dst_ddt)
|
|
goto out;
|
|
|
|
dev_req->src_ddt = NULL;
|
|
dev_req->src_addr = dev_req->dst_addr;
|
|
}
|
|
|
|
err = -EINPROGRESS;
|
|
spin_lock_irqsave(&engine->hw_lock, flags);
|
|
/*
|
|
* Check if the engine will accept the operation now. If it won't then
|
|
* we either stick it on the end of a pending list if we can backlog,
|
|
* or bailout with an error if not.
|
|
*/
|
|
if (unlikely(spacc_fifo_cmd_full(engine)) ||
|
|
engine->in_flight + 1 > engine->fifo_sz) {
|
|
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
|
|
err = -EBUSY;
|
|
spin_unlock_irqrestore(&engine->hw_lock, flags);
|
|
goto out_free_ddts;
|
|
}
|
|
list_add_tail(&dev_req->list, &engine->pending);
|
|
} else {
|
|
list_add_tail(&dev_req->list, &engine->pending);
|
|
spacc_push(engine);
|
|
}
|
|
spin_unlock_irqrestore(&engine->hw_lock, flags);
|
|
|
|
goto out;
|
|
|
|
out_free_ddts:
|
|
spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
|
|
req->nbytes, req->src == req->dst ?
|
|
DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
|
|
out_free_src:
|
|
if (req->src != req->dst)
|
|
spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
|
|
req->src, req->nbytes, DMA_TO_DEVICE);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
|
|
struct spacc_engine *engine = spacc_alg->engine;
|
|
|
|
ctx->generic.flags = spacc_alg->type;
|
|
ctx->generic.engine = engine;
|
|
if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
|
|
ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
|
|
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(ctx->sw_cipher)) {
|
|
dev_warn(engine->dev, "failed to allocate fallback for %s\n",
|
|
alg->cra_name);
|
|
ctx->sw_cipher = NULL;
|
|
}
|
|
}
|
|
ctx->generic.key_offs = spacc_alg->key_offs;
|
|
ctx->generic.iv_offs = spacc_alg->iv_offs;
|
|
|
|
tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
if (ctx->sw_cipher)
|
|
crypto_free_ablkcipher(ctx->sw_cipher);
|
|
ctx->sw_cipher = NULL;
|
|
}
|
|
|
|
static int spacc_ablk_encrypt(struct ablkcipher_request *req)
|
|
{
|
|
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
|
|
|
|
return spacc_ablk_setup(req, alg->type, 1);
|
|
}
|
|
|
|
static int spacc_ablk_decrypt(struct ablkcipher_request *req)
|
|
{
|
|
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
|
|
|
|
return spacc_ablk_setup(req, alg->type, 0);
|
|
}
|
|
|
|
static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
|
|
{
|
|
return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
|
|
SPA_FIFO_STAT_EMPTY;
|
|
}
|
|
|
|
static void spacc_process_done(struct spacc_engine *engine)
|
|
{
|
|
struct spacc_req *req;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&engine->hw_lock, flags);
|
|
|
|
while (!spacc_fifo_stat_empty(engine)) {
|
|
req = list_first_entry(&engine->in_progress, struct spacc_req,
|
|
list);
|
|
list_move_tail(&req->list, &engine->completed);
|
|
--engine->in_flight;
|
|
|
|
/* POP the status register. */
|
|
writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
|
|
req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
|
|
SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
|
|
|
|
/*
|
|
* Convert the SPAcc error status into the standard POSIX error
|
|
* codes.
|
|
*/
|
|
if (unlikely(req->result)) {
|
|
switch (req->result) {
|
|
case SPA_STATUS_ICV_FAIL:
|
|
req->result = -EBADMSG;
|
|
break;
|
|
|
|
case SPA_STATUS_MEMORY_ERROR:
|
|
dev_warn(engine->dev,
|
|
"memory error triggered\n");
|
|
req->result = -EFAULT;
|
|
break;
|
|
|
|
case SPA_STATUS_BLOCK_ERROR:
|
|
dev_warn(engine->dev,
|
|
"block error triggered\n");
|
|
req->result = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
tasklet_schedule(&engine->complete);
|
|
|
|
spin_unlock_irqrestore(&engine->hw_lock, flags);
|
|
}
|
|
|
|
static irqreturn_t spacc_spacc_irq(int irq, void *dev)
|
|
{
|
|
struct spacc_engine *engine = (struct spacc_engine *)dev;
|
|
u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
|
|
|
|
writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
|
|
spacc_process_done(engine);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void spacc_packet_timeout(unsigned long data)
|
|
{
|
|
struct spacc_engine *engine = (struct spacc_engine *)data;
|
|
|
|
spacc_process_done(engine);
|
|
}
|
|
|
|
static int spacc_req_submit(struct spacc_req *req)
|
|
{
|
|
struct crypto_alg *alg = req->req->tfm->__crt_alg;
|
|
|
|
if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
|
|
return spacc_aead_submit(req);
|
|
else
|
|
return spacc_ablk_submit(req);
|
|
}
|
|
|
|
static void spacc_spacc_complete(unsigned long data)
|
|
{
|
|
struct spacc_engine *engine = (struct spacc_engine *)data;
|
|
struct spacc_req *req, *tmp;
|
|
unsigned long flags;
|
|
LIST_HEAD(completed);
|
|
|
|
spin_lock_irqsave(&engine->hw_lock, flags);
|
|
|
|
list_splice_init(&engine->completed, &completed);
|
|
spacc_push(engine);
|
|
if (engine->in_flight)
|
|
mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
|
|
|
|
spin_unlock_irqrestore(&engine->hw_lock, flags);
|
|
|
|
list_for_each_entry_safe(req, tmp, &completed, list) {
|
|
list_del(&req->list);
|
|
req->complete(req);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int spacc_suspend(struct device *dev)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct spacc_engine *engine = platform_get_drvdata(pdev);
|
|
|
|
/*
|
|
* We only support standby mode. All we have to do is gate the clock to
|
|
* the spacc. The hardware will preserve state until we turn it back
|
|
* on again.
|
|
*/
|
|
clk_disable(engine->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spacc_resume(struct device *dev)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct spacc_engine *engine = platform_get_drvdata(pdev);
|
|
|
|
return clk_enable(engine->clk);
|
|
}
|
|
|
|
static const struct dev_pm_ops spacc_pm_ops = {
|
|
.suspend = spacc_suspend,
|
|
.resume = spacc_resume,
|
|
};
|
|
#endif /* CONFIG_PM */
|
|
|
|
static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
|
|
{
|
|
return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
|
|
}
|
|
|
|
static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct spacc_engine *engine = spacc_dev_to_engine(dev);
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
|
|
}
|
|
|
|
static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t len)
|
|
{
|
|
struct spacc_engine *engine = spacc_dev_to_engine(dev);
|
|
unsigned long thresh;
|
|
|
|
if (kstrtoul(buf, 0, &thresh))
|
|
return -EINVAL;
|
|
|
|
thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
|
|
|
|
engine->stat_irq_thresh = thresh;
|
|
writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
|
|
engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
|
|
|
|
return len;
|
|
}
|
|
static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
|
|
spacc_stat_irq_thresh_store);
|
|
|
|
static struct spacc_alg ipsec_engine_algs[] = {
|
|
{
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
|
|
.key_offs = 0,
|
|
.iv_offs = AES_MAX_KEY_SIZE,
|
|
.alg = {
|
|
.cra_name = "cbc(aes)",
|
|
.cra_driver_name = "cbc-aes-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ablkcipher = {
|
|
.setkey = spacc_aes_setkey,
|
|
.encrypt = spacc_ablk_encrypt,
|
|
.decrypt = spacc_ablk_decrypt,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
},
|
|
.cra_init = spacc_ablk_cra_init,
|
|
.cra_exit = spacc_ablk_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.key_offs = 0,
|
|
.iv_offs = AES_MAX_KEY_SIZE,
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
|
|
.alg = {
|
|
.cra_name = "ecb(aes)",
|
|
.cra_driver_name = "ecb-aes-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
|
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ablkcipher = {
|
|
.setkey = spacc_aes_setkey,
|
|
.encrypt = spacc_ablk_encrypt,
|
|
.decrypt = spacc_ablk_decrypt,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
},
|
|
.cra_init = spacc_ablk_cra_init,
|
|
.cra_exit = spacc_ablk_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.key_offs = DES_BLOCK_SIZE,
|
|
.iv_offs = 0,
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
|
|
.alg = {
|
|
.cra_name = "cbc(des)",
|
|
.cra_driver_name = "cbc-des-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = DES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ablkcipher = {
|
|
.setkey = spacc_des_setkey,
|
|
.encrypt = spacc_ablk_encrypt,
|
|
.decrypt = spacc_ablk_decrypt,
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
},
|
|
.cra_init = spacc_ablk_cra_init,
|
|
.cra_exit = spacc_ablk_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.key_offs = DES_BLOCK_SIZE,
|
|
.iv_offs = 0,
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
|
|
.alg = {
|
|
.cra_name = "ecb(des)",
|
|
.cra_driver_name = "ecb-des-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = DES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ablkcipher = {
|
|
.setkey = spacc_des_setkey,
|
|
.encrypt = spacc_ablk_encrypt,
|
|
.decrypt = spacc_ablk_decrypt,
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
},
|
|
.cra_init = spacc_ablk_cra_init,
|
|
.cra_exit = spacc_ablk_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.key_offs = DES_BLOCK_SIZE,
|
|
.iv_offs = 0,
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
|
|
.alg = {
|
|
.cra_name = "cbc(des3_ede)",
|
|
.cra_driver_name = "cbc-des3-ede-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ablkcipher = {
|
|
.setkey = spacc_des_setkey,
|
|
.encrypt = spacc_ablk_encrypt,
|
|
.decrypt = spacc_ablk_decrypt,
|
|
.min_keysize = DES3_EDE_KEY_SIZE,
|
|
.max_keysize = DES3_EDE_KEY_SIZE,
|
|
.ivsize = DES3_EDE_BLOCK_SIZE,
|
|
},
|
|
.cra_init = spacc_ablk_cra_init,
|
|
.cra_exit = spacc_ablk_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.key_offs = DES_BLOCK_SIZE,
|
|
.iv_offs = 0,
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
|
|
.alg = {
|
|
.cra_name = "ecb(des3_ede)",
|
|
.cra_driver_name = "ecb-des3-ede-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ablkcipher = {
|
|
.setkey = spacc_des_setkey,
|
|
.encrypt = spacc_ablk_encrypt,
|
|
.decrypt = spacc_ablk_decrypt,
|
|
.min_keysize = DES3_EDE_KEY_SIZE,
|
|
.max_keysize = DES3_EDE_KEY_SIZE,
|
|
},
|
|
.cra_init = spacc_ablk_cra_init,
|
|
.cra_exit = spacc_ablk_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
|
|
SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
|
|
.key_offs = 0,
|
|
.iv_offs = AES_MAX_KEY_SIZE,
|
|
.alg = {
|
|
.cra_name = "authenc(hmac(sha1),cbc(aes))",
|
|
.cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_AEAD |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
|
|
.cra_type = &crypto_aead_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_aead = {
|
|
.setkey = spacc_aead_setkey,
|
|
.setauthsize = spacc_aead_setauthsize,
|
|
.encrypt = spacc_aead_encrypt,
|
|
.decrypt = spacc_aead_decrypt,
|
|
.givencrypt = spacc_aead_givencrypt,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.maxauthsize = SHA1_DIGEST_SIZE,
|
|
},
|
|
.cra_init = spacc_aead_cra_init,
|
|
.cra_exit = spacc_aead_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
|
|
SPA_CTRL_HASH_ALG_SHA256 |
|
|
SPA_CTRL_HASH_MODE_HMAC,
|
|
.key_offs = 0,
|
|
.iv_offs = AES_MAX_KEY_SIZE,
|
|
.alg = {
|
|
.cra_name = "authenc(hmac(sha256),cbc(aes))",
|
|
.cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_AEAD |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
|
|
.cra_type = &crypto_aead_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_aead = {
|
|
.setkey = spacc_aead_setkey,
|
|
.setauthsize = spacc_aead_setauthsize,
|
|
.encrypt = spacc_aead_encrypt,
|
|
.decrypt = spacc_aead_decrypt,
|
|
.givencrypt = spacc_aead_givencrypt,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.maxauthsize = SHA256_DIGEST_SIZE,
|
|
},
|
|
.cra_init = spacc_aead_cra_init,
|
|
.cra_exit = spacc_aead_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.key_offs = 0,
|
|
.iv_offs = AES_MAX_KEY_SIZE,
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
|
|
SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
|
|
.alg = {
|
|
.cra_name = "authenc(hmac(md5),cbc(aes))",
|
|
.cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_AEAD |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
|
|
.cra_type = &crypto_aead_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_aead = {
|
|
.setkey = spacc_aead_setkey,
|
|
.setauthsize = spacc_aead_setauthsize,
|
|
.encrypt = spacc_aead_encrypt,
|
|
.decrypt = spacc_aead_decrypt,
|
|
.givencrypt = spacc_aead_givencrypt,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.maxauthsize = MD5_DIGEST_SIZE,
|
|
},
|
|
.cra_init = spacc_aead_cra_init,
|
|
.cra_exit = spacc_aead_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.key_offs = DES_BLOCK_SIZE,
|
|
.iv_offs = 0,
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
|
|
SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
|
|
.alg = {
|
|
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
|
|
.cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_AEAD |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
|
|
.cra_type = &crypto_aead_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_aead = {
|
|
.setkey = spacc_aead_setkey,
|
|
.setauthsize = spacc_aead_setauthsize,
|
|
.encrypt = spacc_aead_encrypt,
|
|
.decrypt = spacc_aead_decrypt,
|
|
.givencrypt = spacc_aead_givencrypt,
|
|
.ivsize = DES3_EDE_BLOCK_SIZE,
|
|
.maxauthsize = SHA1_DIGEST_SIZE,
|
|
},
|
|
.cra_init = spacc_aead_cra_init,
|
|
.cra_exit = spacc_aead_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.key_offs = DES_BLOCK_SIZE,
|
|
.iv_offs = 0,
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
|
|
SPA_CTRL_HASH_ALG_SHA256 |
|
|
SPA_CTRL_HASH_MODE_HMAC,
|
|
.alg = {
|
|
.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
|
|
.cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_AEAD |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
|
|
.cra_type = &crypto_aead_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_aead = {
|
|
.setkey = spacc_aead_setkey,
|
|
.setauthsize = spacc_aead_setauthsize,
|
|
.encrypt = spacc_aead_encrypt,
|
|
.decrypt = spacc_aead_decrypt,
|
|
.givencrypt = spacc_aead_givencrypt,
|
|
.ivsize = DES3_EDE_BLOCK_SIZE,
|
|
.maxauthsize = SHA256_DIGEST_SIZE,
|
|
},
|
|
.cra_init = spacc_aead_cra_init,
|
|
.cra_exit = spacc_aead_cra_exit,
|
|
},
|
|
},
|
|
{
|
|
.key_offs = DES_BLOCK_SIZE,
|
|
.iv_offs = 0,
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
|
|
SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
|
|
.alg = {
|
|
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
|
|
.cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_AEAD |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
|
|
.cra_type = &crypto_aead_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_aead = {
|
|
.setkey = spacc_aead_setkey,
|
|
.setauthsize = spacc_aead_setauthsize,
|
|
.encrypt = spacc_aead_encrypt,
|
|
.decrypt = spacc_aead_decrypt,
|
|
.givencrypt = spacc_aead_givencrypt,
|
|
.ivsize = DES3_EDE_BLOCK_SIZE,
|
|
.maxauthsize = MD5_DIGEST_SIZE,
|
|
},
|
|
.cra_init = spacc_aead_cra_init,
|
|
.cra_exit = spacc_aead_cra_exit,
|
|
},
|
|
},
|
|
};
|
|
|
|
static struct spacc_alg l2_engine_algs[] = {
|
|
{
|
|
.key_offs = 0,
|
|
.iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
|
|
.ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
|
|
SPA_CTRL_CIPH_MODE_F8,
|
|
.alg = {
|
|
.cra_name = "f8(kasumi)",
|
|
.cra_driver_name = "f8-kasumi-picoxcell",
|
|
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY,
|
|
.cra_blocksize = 8,
|
|
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ablkcipher = {
|
|
.setkey = spacc_kasumi_f8_setkey,
|
|
.encrypt = spacc_ablk_encrypt,
|
|
.decrypt = spacc_ablk_decrypt,
|
|
.min_keysize = 16,
|
|
.max_keysize = 16,
|
|
.ivsize = 8,
|
|
},
|
|
.cra_init = spacc_ablk_cra_init,
|
|
.cra_exit = spacc_ablk_cra_exit,
|
|
},
|
|
},
|
|
};
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id spacc_of_id_table[] = {
|
|
{ .compatible = "picochip,spacc-ipsec" },
|
|
{ .compatible = "picochip,spacc-l2" },
|
|
{}
|
|
};
|
|
#endif /* CONFIG_OF */
|
|
|
|
static bool spacc_is_compatible(struct platform_device *pdev,
|
|
const char *spacc_type)
|
|
{
|
|
const struct platform_device_id *platid = platform_get_device_id(pdev);
|
|
|
|
if (platid && !strcmp(platid->name, spacc_type))
|
|
return true;
|
|
|
|
#ifdef CONFIG_OF
|
|
if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
|
|
return true;
|
|
#endif /* CONFIG_OF */
|
|
|
|
return false;
|
|
}
|
|
|
|
static int spacc_probe(struct platform_device *pdev)
|
|
{
|
|
int i, err, ret = -EINVAL;
|
|
struct resource *mem, *irq;
|
|
struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
|
|
GFP_KERNEL);
|
|
if (!engine)
|
|
return -ENOMEM;
|
|
|
|
if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
|
|
engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS;
|
|
engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
|
|
engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
|
|
engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ;
|
|
engine->algs = ipsec_engine_algs;
|
|
engine->num_algs = ARRAY_SIZE(ipsec_engine_algs);
|
|
} else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
|
|
engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS;
|
|
engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
|
|
engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ;
|
|
engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ;
|
|
engine->algs = l2_engine_algs;
|
|
engine->num_algs = ARRAY_SIZE(l2_engine_algs);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
engine->name = dev_name(&pdev->dev);
|
|
|
|
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
engine->regs = devm_ioremap_resource(&pdev->dev, mem);
|
|
if (IS_ERR(engine->regs))
|
|
return PTR_ERR(engine->regs);
|
|
|
|
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
|
|
if (!irq) {
|
|
dev_err(&pdev->dev, "no memory/irq resource for engine\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
|
|
engine->name, engine)) {
|
|
dev_err(engine->dev, "failed to request IRQ\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
engine->dev = &pdev->dev;
|
|
engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
|
|
engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
|
|
|
|
engine->req_pool = dmam_pool_create(engine->name, engine->dev,
|
|
MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
|
|
if (!engine->req_pool)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&engine->hw_lock);
|
|
|
|
engine->clk = clk_get(&pdev->dev, "ref");
|
|
if (IS_ERR(engine->clk)) {
|
|
dev_info(&pdev->dev, "clk unavailable\n");
|
|
device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
|
|
return PTR_ERR(engine->clk);
|
|
}
|
|
|
|
if (clk_enable(engine->clk)) {
|
|
dev_info(&pdev->dev, "unable to enable clk\n");
|
|
clk_put(engine->clk);
|
|
return -EIO;
|
|
}
|
|
|
|
err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
|
|
if (err) {
|
|
clk_disable(engine->clk);
|
|
clk_put(engine->clk);
|
|
return err;
|
|
}
|
|
|
|
|
|
/*
|
|
* Use an IRQ threshold of 50% as a default. This seems to be a
|
|
* reasonable trade off of latency against throughput but can be
|
|
* changed at runtime.
|
|
*/
|
|
engine->stat_irq_thresh = (engine->fifo_sz / 2);
|
|
|
|
/*
|
|
* Configure the interrupts. We only use the STAT_CNT interrupt as we
|
|
* only submit a new packet for processing when we complete another in
|
|
* the queue. This minimizes time spent in the interrupt handler.
|
|
*/
|
|
writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
|
|
engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
|
|
writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
|
|
engine->regs + SPA_IRQ_EN_REG_OFFSET);
|
|
|
|
setup_timer(&engine->packet_timeout, spacc_packet_timeout,
|
|
(unsigned long)engine);
|
|
|
|
INIT_LIST_HEAD(&engine->pending);
|
|
INIT_LIST_HEAD(&engine->completed);
|
|
INIT_LIST_HEAD(&engine->in_progress);
|
|
engine->in_flight = 0;
|
|
tasklet_init(&engine->complete, spacc_spacc_complete,
|
|
(unsigned long)engine);
|
|
|
|
platform_set_drvdata(pdev, engine);
|
|
|
|
INIT_LIST_HEAD(&engine->registered_algs);
|
|
for (i = 0; i < engine->num_algs; ++i) {
|
|
engine->algs[i].engine = engine;
|
|
err = crypto_register_alg(&engine->algs[i].alg);
|
|
if (!err) {
|
|
list_add_tail(&engine->algs[i].entry,
|
|
&engine->registered_algs);
|
|
ret = 0;
|
|
}
|
|
if (err)
|
|
dev_err(engine->dev, "failed to register alg \"%s\"\n",
|
|
engine->algs[i].alg.cra_name);
|
|
else
|
|
dev_dbg(engine->dev, "registered alg \"%s\"\n",
|
|
engine->algs[i].alg.cra_name);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spacc_remove(struct platform_device *pdev)
|
|
{
|
|
struct spacc_alg *alg, *next;
|
|
struct spacc_engine *engine = platform_get_drvdata(pdev);
|
|
|
|
del_timer_sync(&engine->packet_timeout);
|
|
device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
|
|
|
|
list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
|
|
list_del(&alg->entry);
|
|
crypto_unregister_alg(&alg->alg);
|
|
}
|
|
|
|
clk_disable(engine->clk);
|
|
clk_put(engine->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct platform_device_id spacc_id_table[] = {
|
|
{ "picochip,spacc-ipsec", },
|
|
{ "picochip,spacc-l2", },
|
|
{ }
|
|
};
|
|
|
|
static struct platform_driver spacc_driver = {
|
|
.probe = spacc_probe,
|
|
.remove = spacc_remove,
|
|
.driver = {
|
|
.name = "picochip,spacc",
|
|
#ifdef CONFIG_PM
|
|
.pm = &spacc_pm_ops,
|
|
#endif /* CONFIG_PM */
|
|
.of_match_table = of_match_ptr(spacc_of_id_table),
|
|
},
|
|
.id_table = spacc_id_table,
|
|
};
|
|
|
|
module_platform_driver(spacc_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Jamie Iles");
|