mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-22 09:22:37 +00:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
103 lines
2.5 KiB
C
103 lines
2.5 KiB
C
/*
|
|
* linux/include/asm-arm/tlb.h
|
|
*
|
|
* Copyright (C) 2002 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Experimentation shows that on a StrongARM, it appears to be faster
|
|
* to use the "invalidate whole tlb" rather than "invalidate single
|
|
* tlb" for this.
|
|
*
|
|
* This appears true for both the process fork+exit case, as well as
|
|
* the munmap-large-area case.
|
|
*/
|
|
#ifndef __ASMARM_TLB_H
|
|
#define __ASMARM_TLB_H
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
/*
|
|
* TLB handling. This allows us to remove pages from the page
|
|
* tables, and efficiently handle the TLB issues.
|
|
*/
|
|
struct mmu_gather {
|
|
struct mm_struct *mm;
|
|
unsigned int freed;
|
|
unsigned int fullmm;
|
|
|
|
unsigned int flushes;
|
|
unsigned int avoided_flushes;
|
|
};
|
|
|
|
DECLARE_PER_CPU(struct mmu_gather, mmu_gathers);
|
|
|
|
static inline struct mmu_gather *
|
|
tlb_gather_mmu(struct mm_struct *mm, unsigned int full_mm_flush)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct mmu_gather *tlb = &per_cpu(mmu_gathers, cpu);
|
|
|
|
tlb->mm = mm;
|
|
tlb->freed = 0;
|
|
tlb->fullmm = full_mm_flush;
|
|
|
|
return tlb;
|
|
}
|
|
|
|
static inline void
|
|
tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
|
|
{
|
|
struct mm_struct *mm = tlb->mm;
|
|
unsigned long freed = tlb->freed;
|
|
int rss = get_mm_counter(mm, rss);
|
|
|
|
if (rss < freed)
|
|
freed = rss;
|
|
add_mm_counter(mm, rss, -freed);
|
|
|
|
if (tlb->fullmm)
|
|
flush_tlb_mm(mm);
|
|
|
|
/* keep the page table cache within bounds */
|
|
check_pgt_cache();
|
|
}
|
|
|
|
static inline unsigned int tlb_is_full_mm(struct mmu_gather *tlb)
|
|
{
|
|
return tlb->fullmm;
|
|
}
|
|
|
|
#define tlb_remove_tlb_entry(tlb,ptep,address) do { } while (0)
|
|
|
|
/*
|
|
* In the case of tlb vma handling, we can optimise these away in the
|
|
* case where we're doing a full MM flush. When we're doing a munmap,
|
|
* the vmas are adjusted to only cover the region to be torn down.
|
|
*/
|
|
static inline void
|
|
tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
|
|
{
|
|
if (!tlb->fullmm)
|
|
flush_cache_range(vma, vma->vm_start, vma->vm_end);
|
|
}
|
|
|
|
static inline void
|
|
tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
|
|
{
|
|
if (!tlb->fullmm)
|
|
flush_tlb_range(vma, vma->vm_start, vma->vm_end);
|
|
}
|
|
|
|
#define tlb_remove_page(tlb,page) free_page_and_swap_cache(page)
|
|
#define pte_free_tlb(tlb,ptep) pte_free(ptep)
|
|
#define pmd_free_tlb(tlb,pmdp) pmd_free(pmdp)
|
|
|
|
#define tlb_migrate_finish(mm) do { } while (0)
|
|
|
|
#endif
|