mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-21 08:53:41 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2697 lines
72 KiB
C
2697 lines
72 KiB
C
/*
|
|
* This file is part of UBIFS.
|
|
*
|
|
* Copyright (C) 2006-2008 Nokia Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 51
|
|
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Authors: Artem Bityutskiy (Битюцкий Артём)
|
|
* Adrian Hunter
|
|
*/
|
|
|
|
/*
|
|
* This file implements most of the debugging stuff which is compiled in only
|
|
* when it is enabled. But some debugging check functions are implemented in
|
|
* corresponding subsystem, just because they are closely related and utilize
|
|
* various local functions of those subsystems.
|
|
*/
|
|
|
|
#define UBIFS_DBG_PRESERVE_UBI
|
|
|
|
#include "ubifs.h"
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/slab.h>
|
|
|
|
#ifdef CONFIG_UBIFS_FS_DEBUG
|
|
|
|
DEFINE_SPINLOCK(dbg_lock);
|
|
|
|
static char dbg_key_buf0[128];
|
|
static char dbg_key_buf1[128];
|
|
|
|
unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
|
|
unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
|
|
unsigned int ubifs_tst_flags;
|
|
|
|
module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
|
|
module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
|
|
module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
|
|
|
|
MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
|
|
MODULE_PARM_DESC(debug_chks, "Debug check flags");
|
|
MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
|
|
|
|
static const char *get_key_fmt(int fmt)
|
|
{
|
|
switch (fmt) {
|
|
case UBIFS_SIMPLE_KEY_FMT:
|
|
return "simple";
|
|
default:
|
|
return "unknown/invalid format";
|
|
}
|
|
}
|
|
|
|
static const char *get_key_hash(int hash)
|
|
{
|
|
switch (hash) {
|
|
case UBIFS_KEY_HASH_R5:
|
|
return "R5";
|
|
case UBIFS_KEY_HASH_TEST:
|
|
return "test";
|
|
default:
|
|
return "unknown/invalid name hash";
|
|
}
|
|
}
|
|
|
|
static const char *get_key_type(int type)
|
|
{
|
|
switch (type) {
|
|
case UBIFS_INO_KEY:
|
|
return "inode";
|
|
case UBIFS_DENT_KEY:
|
|
return "direntry";
|
|
case UBIFS_XENT_KEY:
|
|
return "xentry";
|
|
case UBIFS_DATA_KEY:
|
|
return "data";
|
|
case UBIFS_TRUN_KEY:
|
|
return "truncate";
|
|
default:
|
|
return "unknown/invalid key";
|
|
}
|
|
}
|
|
|
|
static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
|
|
char *buffer)
|
|
{
|
|
char *p = buffer;
|
|
int type = key_type(c, key);
|
|
|
|
if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
|
|
switch (type) {
|
|
case UBIFS_INO_KEY:
|
|
sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
|
|
get_key_type(type));
|
|
break;
|
|
case UBIFS_DENT_KEY:
|
|
case UBIFS_XENT_KEY:
|
|
sprintf(p, "(%lu, %s, %#08x)",
|
|
(unsigned long)key_inum(c, key),
|
|
get_key_type(type), key_hash(c, key));
|
|
break;
|
|
case UBIFS_DATA_KEY:
|
|
sprintf(p, "(%lu, %s, %u)",
|
|
(unsigned long)key_inum(c, key),
|
|
get_key_type(type), key_block(c, key));
|
|
break;
|
|
case UBIFS_TRUN_KEY:
|
|
sprintf(p, "(%lu, %s)",
|
|
(unsigned long)key_inum(c, key),
|
|
get_key_type(type));
|
|
break;
|
|
default:
|
|
sprintf(p, "(bad key type: %#08x, %#08x)",
|
|
key->u32[0], key->u32[1]);
|
|
}
|
|
} else
|
|
sprintf(p, "bad key format %d", c->key_fmt);
|
|
}
|
|
|
|
const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
|
|
{
|
|
/* dbg_lock must be held */
|
|
sprintf_key(c, key, dbg_key_buf0);
|
|
return dbg_key_buf0;
|
|
}
|
|
|
|
const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
|
|
{
|
|
/* dbg_lock must be held */
|
|
sprintf_key(c, key, dbg_key_buf1);
|
|
return dbg_key_buf1;
|
|
}
|
|
|
|
const char *dbg_ntype(int type)
|
|
{
|
|
switch (type) {
|
|
case UBIFS_PAD_NODE:
|
|
return "padding node";
|
|
case UBIFS_SB_NODE:
|
|
return "superblock node";
|
|
case UBIFS_MST_NODE:
|
|
return "master node";
|
|
case UBIFS_REF_NODE:
|
|
return "reference node";
|
|
case UBIFS_INO_NODE:
|
|
return "inode node";
|
|
case UBIFS_DENT_NODE:
|
|
return "direntry node";
|
|
case UBIFS_XENT_NODE:
|
|
return "xentry node";
|
|
case UBIFS_DATA_NODE:
|
|
return "data node";
|
|
case UBIFS_TRUN_NODE:
|
|
return "truncate node";
|
|
case UBIFS_IDX_NODE:
|
|
return "indexing node";
|
|
case UBIFS_CS_NODE:
|
|
return "commit start node";
|
|
case UBIFS_ORPH_NODE:
|
|
return "orphan node";
|
|
default:
|
|
return "unknown node";
|
|
}
|
|
}
|
|
|
|
static const char *dbg_gtype(int type)
|
|
{
|
|
switch (type) {
|
|
case UBIFS_NO_NODE_GROUP:
|
|
return "no node group";
|
|
case UBIFS_IN_NODE_GROUP:
|
|
return "in node group";
|
|
case UBIFS_LAST_OF_NODE_GROUP:
|
|
return "last of node group";
|
|
default:
|
|
return "unknown";
|
|
}
|
|
}
|
|
|
|
const char *dbg_cstate(int cmt_state)
|
|
{
|
|
switch (cmt_state) {
|
|
case COMMIT_RESTING:
|
|
return "commit resting";
|
|
case COMMIT_BACKGROUND:
|
|
return "background commit requested";
|
|
case COMMIT_REQUIRED:
|
|
return "commit required";
|
|
case COMMIT_RUNNING_BACKGROUND:
|
|
return "BACKGROUND commit running";
|
|
case COMMIT_RUNNING_REQUIRED:
|
|
return "commit running and required";
|
|
case COMMIT_BROKEN:
|
|
return "broken commit";
|
|
default:
|
|
return "unknown commit state";
|
|
}
|
|
}
|
|
|
|
const char *dbg_jhead(int jhead)
|
|
{
|
|
switch (jhead) {
|
|
case GCHD:
|
|
return "0 (GC)";
|
|
case BASEHD:
|
|
return "1 (base)";
|
|
case DATAHD:
|
|
return "2 (data)";
|
|
default:
|
|
return "unknown journal head";
|
|
}
|
|
}
|
|
|
|
static void dump_ch(const struct ubifs_ch *ch)
|
|
{
|
|
printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
|
|
printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
|
|
printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
|
|
dbg_ntype(ch->node_type));
|
|
printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
|
|
dbg_gtype(ch->group_type));
|
|
printk(KERN_DEBUG "\tsqnum %llu\n",
|
|
(unsigned long long)le64_to_cpu(ch->sqnum));
|
|
printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
|
|
}
|
|
|
|
void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
|
|
{
|
|
const struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
printk(KERN_DEBUG "Dump in-memory inode:");
|
|
printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
|
|
printk(KERN_DEBUG "\tsize %llu\n",
|
|
(unsigned long long)i_size_read(inode));
|
|
printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
|
|
printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
|
|
printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
|
|
printk(KERN_DEBUG "\tatime %u.%u\n",
|
|
(unsigned int)inode->i_atime.tv_sec,
|
|
(unsigned int)inode->i_atime.tv_nsec);
|
|
printk(KERN_DEBUG "\tmtime %u.%u\n",
|
|
(unsigned int)inode->i_mtime.tv_sec,
|
|
(unsigned int)inode->i_mtime.tv_nsec);
|
|
printk(KERN_DEBUG "\tctime %u.%u\n",
|
|
(unsigned int)inode->i_ctime.tv_sec,
|
|
(unsigned int)inode->i_ctime.tv_nsec);
|
|
printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
|
|
printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
|
|
printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
|
|
printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
|
|
printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
|
|
printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
|
|
printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
|
|
printk(KERN_DEBUG "\tsynced_i_size %llu\n",
|
|
(unsigned long long)ui->synced_i_size);
|
|
printk(KERN_DEBUG "\tui_size %llu\n",
|
|
(unsigned long long)ui->ui_size);
|
|
printk(KERN_DEBUG "\tflags %d\n", ui->flags);
|
|
printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
|
|
printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
|
|
printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
|
|
printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
|
|
}
|
|
|
|
void dbg_dump_node(const struct ubifs_info *c, const void *node)
|
|
{
|
|
int i, n;
|
|
union ubifs_key key;
|
|
const struct ubifs_ch *ch = node;
|
|
|
|
if (dbg_failure_mode)
|
|
return;
|
|
|
|
/* If the magic is incorrect, just hexdump the first bytes */
|
|
if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
|
|
printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
|
|
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
|
|
(void *)node, UBIFS_CH_SZ, 1);
|
|
return;
|
|
}
|
|
|
|
spin_lock(&dbg_lock);
|
|
dump_ch(node);
|
|
|
|
switch (ch->node_type) {
|
|
case UBIFS_PAD_NODE:
|
|
{
|
|
const struct ubifs_pad_node *pad = node;
|
|
|
|
printk(KERN_DEBUG "\tpad_len %u\n",
|
|
le32_to_cpu(pad->pad_len));
|
|
break;
|
|
}
|
|
case UBIFS_SB_NODE:
|
|
{
|
|
const struct ubifs_sb_node *sup = node;
|
|
unsigned int sup_flags = le32_to_cpu(sup->flags);
|
|
|
|
printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
|
|
(int)sup->key_hash, get_key_hash(sup->key_hash));
|
|
printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
|
|
(int)sup->key_fmt, get_key_fmt(sup->key_fmt));
|
|
printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
|
|
printk(KERN_DEBUG "\t big_lpt %u\n",
|
|
!!(sup_flags & UBIFS_FLG_BIGLPT));
|
|
printk(KERN_DEBUG "\tmin_io_size %u\n",
|
|
le32_to_cpu(sup->min_io_size));
|
|
printk(KERN_DEBUG "\tleb_size %u\n",
|
|
le32_to_cpu(sup->leb_size));
|
|
printk(KERN_DEBUG "\tleb_cnt %u\n",
|
|
le32_to_cpu(sup->leb_cnt));
|
|
printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
|
|
le32_to_cpu(sup->max_leb_cnt));
|
|
printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
|
|
(unsigned long long)le64_to_cpu(sup->max_bud_bytes));
|
|
printk(KERN_DEBUG "\tlog_lebs %u\n",
|
|
le32_to_cpu(sup->log_lebs));
|
|
printk(KERN_DEBUG "\tlpt_lebs %u\n",
|
|
le32_to_cpu(sup->lpt_lebs));
|
|
printk(KERN_DEBUG "\torph_lebs %u\n",
|
|
le32_to_cpu(sup->orph_lebs));
|
|
printk(KERN_DEBUG "\tjhead_cnt %u\n",
|
|
le32_to_cpu(sup->jhead_cnt));
|
|
printk(KERN_DEBUG "\tfanout %u\n",
|
|
le32_to_cpu(sup->fanout));
|
|
printk(KERN_DEBUG "\tlsave_cnt %u\n",
|
|
le32_to_cpu(sup->lsave_cnt));
|
|
printk(KERN_DEBUG "\tdefault_compr %u\n",
|
|
(int)le16_to_cpu(sup->default_compr));
|
|
printk(KERN_DEBUG "\trp_size %llu\n",
|
|
(unsigned long long)le64_to_cpu(sup->rp_size));
|
|
printk(KERN_DEBUG "\trp_uid %u\n",
|
|
le32_to_cpu(sup->rp_uid));
|
|
printk(KERN_DEBUG "\trp_gid %u\n",
|
|
le32_to_cpu(sup->rp_gid));
|
|
printk(KERN_DEBUG "\tfmt_version %u\n",
|
|
le32_to_cpu(sup->fmt_version));
|
|
printk(KERN_DEBUG "\ttime_gran %u\n",
|
|
le32_to_cpu(sup->time_gran));
|
|
printk(KERN_DEBUG "\tUUID %pUB\n",
|
|
sup->uuid);
|
|
break;
|
|
}
|
|
case UBIFS_MST_NODE:
|
|
{
|
|
const struct ubifs_mst_node *mst = node;
|
|
|
|
printk(KERN_DEBUG "\thighest_inum %llu\n",
|
|
(unsigned long long)le64_to_cpu(mst->highest_inum));
|
|
printk(KERN_DEBUG "\tcommit number %llu\n",
|
|
(unsigned long long)le64_to_cpu(mst->cmt_no));
|
|
printk(KERN_DEBUG "\tflags %#x\n",
|
|
le32_to_cpu(mst->flags));
|
|
printk(KERN_DEBUG "\tlog_lnum %u\n",
|
|
le32_to_cpu(mst->log_lnum));
|
|
printk(KERN_DEBUG "\troot_lnum %u\n",
|
|
le32_to_cpu(mst->root_lnum));
|
|
printk(KERN_DEBUG "\troot_offs %u\n",
|
|
le32_to_cpu(mst->root_offs));
|
|
printk(KERN_DEBUG "\troot_len %u\n",
|
|
le32_to_cpu(mst->root_len));
|
|
printk(KERN_DEBUG "\tgc_lnum %u\n",
|
|
le32_to_cpu(mst->gc_lnum));
|
|
printk(KERN_DEBUG "\tihead_lnum %u\n",
|
|
le32_to_cpu(mst->ihead_lnum));
|
|
printk(KERN_DEBUG "\tihead_offs %u\n",
|
|
le32_to_cpu(mst->ihead_offs));
|
|
printk(KERN_DEBUG "\tindex_size %llu\n",
|
|
(unsigned long long)le64_to_cpu(mst->index_size));
|
|
printk(KERN_DEBUG "\tlpt_lnum %u\n",
|
|
le32_to_cpu(mst->lpt_lnum));
|
|
printk(KERN_DEBUG "\tlpt_offs %u\n",
|
|
le32_to_cpu(mst->lpt_offs));
|
|
printk(KERN_DEBUG "\tnhead_lnum %u\n",
|
|
le32_to_cpu(mst->nhead_lnum));
|
|
printk(KERN_DEBUG "\tnhead_offs %u\n",
|
|
le32_to_cpu(mst->nhead_offs));
|
|
printk(KERN_DEBUG "\tltab_lnum %u\n",
|
|
le32_to_cpu(mst->ltab_lnum));
|
|
printk(KERN_DEBUG "\tltab_offs %u\n",
|
|
le32_to_cpu(mst->ltab_offs));
|
|
printk(KERN_DEBUG "\tlsave_lnum %u\n",
|
|
le32_to_cpu(mst->lsave_lnum));
|
|
printk(KERN_DEBUG "\tlsave_offs %u\n",
|
|
le32_to_cpu(mst->lsave_offs));
|
|
printk(KERN_DEBUG "\tlscan_lnum %u\n",
|
|
le32_to_cpu(mst->lscan_lnum));
|
|
printk(KERN_DEBUG "\tleb_cnt %u\n",
|
|
le32_to_cpu(mst->leb_cnt));
|
|
printk(KERN_DEBUG "\tempty_lebs %u\n",
|
|
le32_to_cpu(mst->empty_lebs));
|
|
printk(KERN_DEBUG "\tidx_lebs %u\n",
|
|
le32_to_cpu(mst->idx_lebs));
|
|
printk(KERN_DEBUG "\ttotal_free %llu\n",
|
|
(unsigned long long)le64_to_cpu(mst->total_free));
|
|
printk(KERN_DEBUG "\ttotal_dirty %llu\n",
|
|
(unsigned long long)le64_to_cpu(mst->total_dirty));
|
|
printk(KERN_DEBUG "\ttotal_used %llu\n",
|
|
(unsigned long long)le64_to_cpu(mst->total_used));
|
|
printk(KERN_DEBUG "\ttotal_dead %llu\n",
|
|
(unsigned long long)le64_to_cpu(mst->total_dead));
|
|
printk(KERN_DEBUG "\ttotal_dark %llu\n",
|
|
(unsigned long long)le64_to_cpu(mst->total_dark));
|
|
break;
|
|
}
|
|
case UBIFS_REF_NODE:
|
|
{
|
|
const struct ubifs_ref_node *ref = node;
|
|
|
|
printk(KERN_DEBUG "\tlnum %u\n",
|
|
le32_to_cpu(ref->lnum));
|
|
printk(KERN_DEBUG "\toffs %u\n",
|
|
le32_to_cpu(ref->offs));
|
|
printk(KERN_DEBUG "\tjhead %u\n",
|
|
le32_to_cpu(ref->jhead));
|
|
break;
|
|
}
|
|
case UBIFS_INO_NODE:
|
|
{
|
|
const struct ubifs_ino_node *ino = node;
|
|
|
|
key_read(c, &ino->key, &key);
|
|
printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
|
|
printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
|
|
(unsigned long long)le64_to_cpu(ino->creat_sqnum));
|
|
printk(KERN_DEBUG "\tsize %llu\n",
|
|
(unsigned long long)le64_to_cpu(ino->size));
|
|
printk(KERN_DEBUG "\tnlink %u\n",
|
|
le32_to_cpu(ino->nlink));
|
|
printk(KERN_DEBUG "\tatime %lld.%u\n",
|
|
(long long)le64_to_cpu(ino->atime_sec),
|
|
le32_to_cpu(ino->atime_nsec));
|
|
printk(KERN_DEBUG "\tmtime %lld.%u\n",
|
|
(long long)le64_to_cpu(ino->mtime_sec),
|
|
le32_to_cpu(ino->mtime_nsec));
|
|
printk(KERN_DEBUG "\tctime %lld.%u\n",
|
|
(long long)le64_to_cpu(ino->ctime_sec),
|
|
le32_to_cpu(ino->ctime_nsec));
|
|
printk(KERN_DEBUG "\tuid %u\n",
|
|
le32_to_cpu(ino->uid));
|
|
printk(KERN_DEBUG "\tgid %u\n",
|
|
le32_to_cpu(ino->gid));
|
|
printk(KERN_DEBUG "\tmode %u\n",
|
|
le32_to_cpu(ino->mode));
|
|
printk(KERN_DEBUG "\tflags %#x\n",
|
|
le32_to_cpu(ino->flags));
|
|
printk(KERN_DEBUG "\txattr_cnt %u\n",
|
|
le32_to_cpu(ino->xattr_cnt));
|
|
printk(KERN_DEBUG "\txattr_size %u\n",
|
|
le32_to_cpu(ino->xattr_size));
|
|
printk(KERN_DEBUG "\txattr_names %u\n",
|
|
le32_to_cpu(ino->xattr_names));
|
|
printk(KERN_DEBUG "\tcompr_type %#x\n",
|
|
(int)le16_to_cpu(ino->compr_type));
|
|
printk(KERN_DEBUG "\tdata len %u\n",
|
|
le32_to_cpu(ino->data_len));
|
|
break;
|
|
}
|
|
case UBIFS_DENT_NODE:
|
|
case UBIFS_XENT_NODE:
|
|
{
|
|
const struct ubifs_dent_node *dent = node;
|
|
int nlen = le16_to_cpu(dent->nlen);
|
|
|
|
key_read(c, &dent->key, &key);
|
|
printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
|
|
printk(KERN_DEBUG "\tinum %llu\n",
|
|
(unsigned long long)le64_to_cpu(dent->inum));
|
|
printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
|
|
printk(KERN_DEBUG "\tnlen %d\n", nlen);
|
|
printk(KERN_DEBUG "\tname ");
|
|
|
|
if (nlen > UBIFS_MAX_NLEN)
|
|
printk(KERN_DEBUG "(bad name length, not printing, "
|
|
"bad or corrupted node)");
|
|
else {
|
|
for (i = 0; i < nlen && dent->name[i]; i++)
|
|
printk(KERN_CONT "%c", dent->name[i]);
|
|
}
|
|
printk(KERN_CONT "\n");
|
|
|
|
break;
|
|
}
|
|
case UBIFS_DATA_NODE:
|
|
{
|
|
const struct ubifs_data_node *dn = node;
|
|
int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
|
|
|
|
key_read(c, &dn->key, &key);
|
|
printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
|
|
printk(KERN_DEBUG "\tsize %u\n",
|
|
le32_to_cpu(dn->size));
|
|
printk(KERN_DEBUG "\tcompr_typ %d\n",
|
|
(int)le16_to_cpu(dn->compr_type));
|
|
printk(KERN_DEBUG "\tdata size %d\n",
|
|
dlen);
|
|
printk(KERN_DEBUG "\tdata:\n");
|
|
print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
|
|
(void *)&dn->data, dlen, 0);
|
|
break;
|
|
}
|
|
case UBIFS_TRUN_NODE:
|
|
{
|
|
const struct ubifs_trun_node *trun = node;
|
|
|
|
printk(KERN_DEBUG "\tinum %u\n",
|
|
le32_to_cpu(trun->inum));
|
|
printk(KERN_DEBUG "\told_size %llu\n",
|
|
(unsigned long long)le64_to_cpu(trun->old_size));
|
|
printk(KERN_DEBUG "\tnew_size %llu\n",
|
|
(unsigned long long)le64_to_cpu(trun->new_size));
|
|
break;
|
|
}
|
|
case UBIFS_IDX_NODE:
|
|
{
|
|
const struct ubifs_idx_node *idx = node;
|
|
|
|
n = le16_to_cpu(idx->child_cnt);
|
|
printk(KERN_DEBUG "\tchild_cnt %d\n", n);
|
|
printk(KERN_DEBUG "\tlevel %d\n",
|
|
(int)le16_to_cpu(idx->level));
|
|
printk(KERN_DEBUG "\tBranches:\n");
|
|
|
|
for (i = 0; i < n && i < c->fanout - 1; i++) {
|
|
const struct ubifs_branch *br;
|
|
|
|
br = ubifs_idx_branch(c, idx, i);
|
|
key_read(c, &br->key, &key);
|
|
printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
|
|
i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
|
|
le32_to_cpu(br->len), DBGKEY(&key));
|
|
}
|
|
break;
|
|
}
|
|
case UBIFS_CS_NODE:
|
|
break;
|
|
case UBIFS_ORPH_NODE:
|
|
{
|
|
const struct ubifs_orph_node *orph = node;
|
|
|
|
printk(KERN_DEBUG "\tcommit number %llu\n",
|
|
(unsigned long long)
|
|
le64_to_cpu(orph->cmt_no) & LLONG_MAX);
|
|
printk(KERN_DEBUG "\tlast node flag %llu\n",
|
|
(unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
|
|
n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
|
|
printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
|
|
for (i = 0; i < n; i++)
|
|
printk(KERN_DEBUG "\t ino %llu\n",
|
|
(unsigned long long)le64_to_cpu(orph->inos[i]));
|
|
break;
|
|
}
|
|
default:
|
|
printk(KERN_DEBUG "node type %d was not recognized\n",
|
|
(int)ch->node_type);
|
|
}
|
|
spin_unlock(&dbg_lock);
|
|
}
|
|
|
|
void dbg_dump_budget_req(const struct ubifs_budget_req *req)
|
|
{
|
|
spin_lock(&dbg_lock);
|
|
printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
|
|
req->new_ino, req->dirtied_ino);
|
|
printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
|
|
req->new_ino_d, req->dirtied_ino_d);
|
|
printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
|
|
req->new_page, req->dirtied_page);
|
|
printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
|
|
req->new_dent, req->mod_dent);
|
|
printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
|
|
printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
|
|
req->data_growth, req->dd_growth);
|
|
spin_unlock(&dbg_lock);
|
|
}
|
|
|
|
void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
|
|
{
|
|
spin_lock(&dbg_lock);
|
|
printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
|
|
"idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
|
|
printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
|
|
"total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
|
|
lst->total_dirty);
|
|
printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
|
|
"total_dead %lld\n", lst->total_used, lst->total_dark,
|
|
lst->total_dead);
|
|
spin_unlock(&dbg_lock);
|
|
}
|
|
|
|
void dbg_dump_budg(struct ubifs_info *c)
|
|
{
|
|
int i;
|
|
struct rb_node *rb;
|
|
struct ubifs_bud *bud;
|
|
struct ubifs_gced_idx_leb *idx_gc;
|
|
long long available, outstanding, free;
|
|
|
|
ubifs_assert(spin_is_locked(&c->space_lock));
|
|
spin_lock(&dbg_lock);
|
|
printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
|
|
"budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
|
|
c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
|
|
printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
|
|
"freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
|
|
c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
|
|
c->freeable_cnt);
|
|
printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
|
|
"calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
|
|
c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
|
|
printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
|
|
"clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
|
|
atomic_long_read(&c->dirty_zn_cnt),
|
|
atomic_long_read(&c->clean_zn_cnt));
|
|
printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
|
|
c->dark_wm, c->dead_wm, c->max_idx_node_sz);
|
|
printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
|
|
c->gc_lnum, c->ihead_lnum);
|
|
/* If we are in R/O mode, journal heads do not exist */
|
|
if (c->jheads)
|
|
for (i = 0; i < c->jhead_cnt; i++)
|
|
printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
|
|
dbg_jhead(c->jheads[i].wbuf.jhead),
|
|
c->jheads[i].wbuf.lnum);
|
|
for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
|
|
bud = rb_entry(rb, struct ubifs_bud, rb);
|
|
printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
|
|
}
|
|
list_for_each_entry(bud, &c->old_buds, list)
|
|
printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
|
|
list_for_each_entry(idx_gc, &c->idx_gc, list)
|
|
printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
|
|
idx_gc->lnum, idx_gc->unmap);
|
|
printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
|
|
|
|
/* Print budgeting predictions */
|
|
available = ubifs_calc_available(c, c->min_idx_lebs);
|
|
outstanding = c->budg_data_growth + c->budg_dd_growth;
|
|
free = ubifs_get_free_space_nolock(c);
|
|
printk(KERN_DEBUG "Budgeting predictions:\n");
|
|
printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
|
|
available, outstanding, free);
|
|
spin_unlock(&dbg_lock);
|
|
}
|
|
|
|
void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
|
|
{
|
|
int i, spc, dark = 0, dead = 0;
|
|
struct rb_node *rb;
|
|
struct ubifs_bud *bud;
|
|
|
|
spc = lp->free + lp->dirty;
|
|
if (spc < c->dead_wm)
|
|
dead = spc;
|
|
else
|
|
dark = ubifs_calc_dark(c, spc);
|
|
|
|
if (lp->flags & LPROPS_INDEX)
|
|
printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
|
|
"free + dirty %-8d flags %#x (", lp->lnum, lp->free,
|
|
lp->dirty, c->leb_size - spc, spc, lp->flags);
|
|
else
|
|
printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
|
|
"free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
|
|
"flags %#-4x (", lp->lnum, lp->free, lp->dirty,
|
|
c->leb_size - spc, spc, dark, dead,
|
|
(int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
|
|
|
|
if (lp->flags & LPROPS_TAKEN) {
|
|
if (lp->flags & LPROPS_INDEX)
|
|
printk(KERN_CONT "index, taken");
|
|
else
|
|
printk(KERN_CONT "taken");
|
|
} else {
|
|
const char *s;
|
|
|
|
if (lp->flags & LPROPS_INDEX) {
|
|
switch (lp->flags & LPROPS_CAT_MASK) {
|
|
case LPROPS_DIRTY_IDX:
|
|
s = "dirty index";
|
|
break;
|
|
case LPROPS_FRDI_IDX:
|
|
s = "freeable index";
|
|
break;
|
|
default:
|
|
s = "index";
|
|
}
|
|
} else {
|
|
switch (lp->flags & LPROPS_CAT_MASK) {
|
|
case LPROPS_UNCAT:
|
|
s = "not categorized";
|
|
break;
|
|
case LPROPS_DIRTY:
|
|
s = "dirty";
|
|
break;
|
|
case LPROPS_FREE:
|
|
s = "free";
|
|
break;
|
|
case LPROPS_EMPTY:
|
|
s = "empty";
|
|
break;
|
|
case LPROPS_FREEABLE:
|
|
s = "freeable";
|
|
break;
|
|
default:
|
|
s = NULL;
|
|
break;
|
|
}
|
|
}
|
|
printk(KERN_CONT "%s", s);
|
|
}
|
|
|
|
for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
|
|
bud = rb_entry(rb, struct ubifs_bud, rb);
|
|
if (bud->lnum == lp->lnum) {
|
|
int head = 0;
|
|
for (i = 0; i < c->jhead_cnt; i++) {
|
|
if (lp->lnum == c->jheads[i].wbuf.lnum) {
|
|
printk(KERN_CONT ", jhead %s",
|
|
dbg_jhead(i));
|
|
head = 1;
|
|
}
|
|
}
|
|
if (!head)
|
|
printk(KERN_CONT ", bud of jhead %s",
|
|
dbg_jhead(bud->jhead));
|
|
}
|
|
}
|
|
if (lp->lnum == c->gc_lnum)
|
|
printk(KERN_CONT ", GC LEB");
|
|
printk(KERN_CONT ")\n");
|
|
}
|
|
|
|
void dbg_dump_lprops(struct ubifs_info *c)
|
|
{
|
|
int lnum, err;
|
|
struct ubifs_lprops lp;
|
|
struct ubifs_lp_stats lst;
|
|
|
|
printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
|
|
current->pid);
|
|
ubifs_get_lp_stats(c, &lst);
|
|
dbg_dump_lstats(&lst);
|
|
|
|
for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
|
|
err = ubifs_read_one_lp(c, lnum, &lp);
|
|
if (err)
|
|
ubifs_err("cannot read lprops for LEB %d", lnum);
|
|
|
|
dbg_dump_lprop(c, &lp);
|
|
}
|
|
printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
|
|
current->pid);
|
|
}
|
|
|
|
void dbg_dump_lpt_info(struct ubifs_info *c)
|
|
{
|
|
int i;
|
|
|
|
spin_lock(&dbg_lock);
|
|
printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
|
|
printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
|
|
printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
|
|
printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
|
|
printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
|
|
printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
|
|
printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
|
|
printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
|
|
printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
|
|
printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
|
|
printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
|
|
printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
|
|
printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
|
|
printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
|
|
printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
|
|
printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
|
|
printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
|
|
printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
|
|
printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
|
|
printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
|
|
printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
|
|
c->nhead_lnum, c->nhead_offs);
|
|
printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
|
|
c->ltab_lnum, c->ltab_offs);
|
|
if (c->big_lpt)
|
|
printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
|
|
c->lsave_lnum, c->lsave_offs);
|
|
for (i = 0; i < c->lpt_lebs; i++)
|
|
printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
|
|
"cmt %d\n", i + c->lpt_first, c->ltab[i].free,
|
|
c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
|
|
spin_unlock(&dbg_lock);
|
|
}
|
|
|
|
void dbg_dump_leb(const struct ubifs_info *c, int lnum)
|
|
{
|
|
struct ubifs_scan_leb *sleb;
|
|
struct ubifs_scan_node *snod;
|
|
|
|
if (dbg_failure_mode)
|
|
return;
|
|
|
|
printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
|
|
current->pid, lnum);
|
|
sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
|
|
if (IS_ERR(sleb)) {
|
|
ubifs_err("scan error %d", (int)PTR_ERR(sleb));
|
|
return;
|
|
}
|
|
|
|
printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
|
|
sleb->nodes_cnt, sleb->endpt);
|
|
|
|
list_for_each_entry(snod, &sleb->nodes, list) {
|
|
cond_resched();
|
|
printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
|
|
snod->offs, snod->len);
|
|
dbg_dump_node(c, snod->node);
|
|
}
|
|
|
|
printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
|
|
current->pid, lnum);
|
|
ubifs_scan_destroy(sleb);
|
|
return;
|
|
}
|
|
|
|
void dbg_dump_znode(const struct ubifs_info *c,
|
|
const struct ubifs_znode *znode)
|
|
{
|
|
int n;
|
|
const struct ubifs_zbranch *zbr;
|
|
|
|
spin_lock(&dbg_lock);
|
|
if (znode->parent)
|
|
zbr = &znode->parent->zbranch[znode->iip];
|
|
else
|
|
zbr = &c->zroot;
|
|
|
|
printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
|
|
" child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
|
|
zbr->len, znode->parent, znode->iip, znode->level,
|
|
znode->child_cnt, znode->flags);
|
|
|
|
if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
|
|
spin_unlock(&dbg_lock);
|
|
return;
|
|
}
|
|
|
|
printk(KERN_DEBUG "zbranches:\n");
|
|
for (n = 0; n < znode->child_cnt; n++) {
|
|
zbr = &znode->zbranch[n];
|
|
if (znode->level > 0)
|
|
printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
|
|
"%s\n", n, zbr->znode, zbr->lnum,
|
|
zbr->offs, zbr->len,
|
|
DBGKEY(&zbr->key));
|
|
else
|
|
printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
|
|
"%s\n", n, zbr->znode, zbr->lnum,
|
|
zbr->offs, zbr->len,
|
|
DBGKEY(&zbr->key));
|
|
}
|
|
spin_unlock(&dbg_lock);
|
|
}
|
|
|
|
void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
|
|
{
|
|
int i;
|
|
|
|
printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
|
|
current->pid, cat, heap->cnt);
|
|
for (i = 0; i < heap->cnt; i++) {
|
|
struct ubifs_lprops *lprops = heap->arr[i];
|
|
|
|
printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
|
|
"flags %d\n", i, lprops->lnum, lprops->hpos,
|
|
lprops->free, lprops->dirty, lprops->flags);
|
|
}
|
|
printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
|
|
}
|
|
|
|
void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
|
|
struct ubifs_nnode *parent, int iip)
|
|
{
|
|
int i;
|
|
|
|
printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
|
|
printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
|
|
(size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
|
|
printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
|
|
pnode->flags, iip, pnode->level, pnode->num);
|
|
for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
|
|
struct ubifs_lprops *lp = &pnode->lprops[i];
|
|
|
|
printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
|
|
i, lp->free, lp->dirty, lp->flags, lp->lnum);
|
|
}
|
|
}
|
|
|
|
void dbg_dump_tnc(struct ubifs_info *c)
|
|
{
|
|
struct ubifs_znode *znode;
|
|
int level;
|
|
|
|
printk(KERN_DEBUG "\n");
|
|
printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
|
|
znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
|
|
level = znode->level;
|
|
printk(KERN_DEBUG "== Level %d ==\n", level);
|
|
while (znode) {
|
|
if (level != znode->level) {
|
|
level = znode->level;
|
|
printk(KERN_DEBUG "== Level %d ==\n", level);
|
|
}
|
|
dbg_dump_znode(c, znode);
|
|
znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
|
|
}
|
|
printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
|
|
}
|
|
|
|
static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
|
|
void *priv)
|
|
{
|
|
dbg_dump_znode(c, znode);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dbg_dump_index - dump the on-flash index.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
|
|
* which dumps only in-memory znodes and does not read znodes which from flash.
|
|
*/
|
|
void dbg_dump_index(struct ubifs_info *c)
|
|
{
|
|
dbg_walk_index(c, NULL, dump_znode, NULL);
|
|
}
|
|
|
|
/**
|
|
* dbg_save_space_info - save information about flash space.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function saves information about UBIFS free space, dirty space, etc, in
|
|
* order to check it later.
|
|
*/
|
|
void dbg_save_space_info(struct ubifs_info *c)
|
|
{
|
|
struct ubifs_debug_info *d = c->dbg;
|
|
|
|
ubifs_get_lp_stats(c, &d->saved_lst);
|
|
|
|
spin_lock(&c->space_lock);
|
|
d->saved_free = ubifs_get_free_space_nolock(c);
|
|
spin_unlock(&c->space_lock);
|
|
}
|
|
|
|
/**
|
|
* dbg_check_space_info - check flash space information.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function compares current flash space information with the information
|
|
* which was saved when the 'dbg_save_space_info()' function was called.
|
|
* Returns zero if the information has not changed, and %-EINVAL it it has
|
|
* changed.
|
|
*/
|
|
int dbg_check_space_info(struct ubifs_info *c)
|
|
{
|
|
struct ubifs_debug_info *d = c->dbg;
|
|
struct ubifs_lp_stats lst;
|
|
long long avail, free;
|
|
|
|
spin_lock(&c->space_lock);
|
|
avail = ubifs_calc_available(c, c->min_idx_lebs);
|
|
spin_unlock(&c->space_lock);
|
|
free = ubifs_get_free_space(c);
|
|
|
|
if (free != d->saved_free) {
|
|
ubifs_err("free space changed from %lld to %lld",
|
|
d->saved_free, free);
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
ubifs_msg("saved lprops statistics dump");
|
|
dbg_dump_lstats(&d->saved_lst);
|
|
ubifs_get_lp_stats(c, &lst);
|
|
|
|
ubifs_msg("current lprops statistics dump");
|
|
dbg_dump_lstats(&lst);
|
|
|
|
spin_lock(&c->space_lock);
|
|
dbg_dump_budg(c);
|
|
spin_unlock(&c->space_lock);
|
|
dump_stack();
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* dbg_check_synced_i_size - check synchronized inode size.
|
|
* @inode: inode to check
|
|
*
|
|
* If inode is clean, synchronized inode size has to be equivalent to current
|
|
* inode size. This function has to be called only for locked inodes (@i_mutex
|
|
* has to be locked). Returns %0 if synchronized inode size if correct, and
|
|
* %-EINVAL if not.
|
|
*/
|
|
int dbg_check_synced_i_size(struct inode *inode)
|
|
{
|
|
int err = 0;
|
|
struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
|
|
return 0;
|
|
if (!S_ISREG(inode->i_mode))
|
|
return 0;
|
|
|
|
mutex_lock(&ui->ui_mutex);
|
|
spin_lock(&ui->ui_lock);
|
|
if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
|
|
ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
|
|
"is clean", ui->ui_size, ui->synced_i_size);
|
|
ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
|
|
inode->i_mode, i_size_read(inode));
|
|
dbg_dump_stack();
|
|
err = -EINVAL;
|
|
}
|
|
spin_unlock(&ui->ui_lock);
|
|
mutex_unlock(&ui->ui_mutex);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* dbg_check_dir - check directory inode size and link count.
|
|
* @c: UBIFS file-system description object
|
|
* @dir: the directory to calculate size for
|
|
* @size: the result is returned here
|
|
*
|
|
* This function makes sure that directory size and link count are correct.
|
|
* Returns zero in case of success and a negative error code in case of
|
|
* failure.
|
|
*
|
|
* Note, it is good idea to make sure the @dir->i_mutex is locked before
|
|
* calling this function.
|
|
*/
|
|
int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
|
|
{
|
|
unsigned int nlink = 2;
|
|
union ubifs_key key;
|
|
struct ubifs_dent_node *dent, *pdent = NULL;
|
|
struct qstr nm = { .name = NULL };
|
|
loff_t size = UBIFS_INO_NODE_SZ;
|
|
|
|
if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
|
|
return 0;
|
|
|
|
if (!S_ISDIR(dir->i_mode))
|
|
return 0;
|
|
|
|
lowest_dent_key(c, &key, dir->i_ino);
|
|
while (1) {
|
|
int err;
|
|
|
|
dent = ubifs_tnc_next_ent(c, &key, &nm);
|
|
if (IS_ERR(dent)) {
|
|
err = PTR_ERR(dent);
|
|
if (err == -ENOENT)
|
|
break;
|
|
return err;
|
|
}
|
|
|
|
nm.name = dent->name;
|
|
nm.len = le16_to_cpu(dent->nlen);
|
|
size += CALC_DENT_SIZE(nm.len);
|
|
if (dent->type == UBIFS_ITYPE_DIR)
|
|
nlink += 1;
|
|
kfree(pdent);
|
|
pdent = dent;
|
|
key_read(c, &dent->key, &key);
|
|
}
|
|
kfree(pdent);
|
|
|
|
if (i_size_read(dir) != size) {
|
|
ubifs_err("directory inode %lu has size %llu, "
|
|
"but calculated size is %llu", dir->i_ino,
|
|
(unsigned long long)i_size_read(dir),
|
|
(unsigned long long)size);
|
|
dump_stack();
|
|
return -EINVAL;
|
|
}
|
|
if (dir->i_nlink != nlink) {
|
|
ubifs_err("directory inode %lu has nlink %u, but calculated "
|
|
"nlink is %u", dir->i_ino, dir->i_nlink, nlink);
|
|
dump_stack();
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dbg_check_key_order - make sure that colliding keys are properly ordered.
|
|
* @c: UBIFS file-system description object
|
|
* @zbr1: first zbranch
|
|
* @zbr2: following zbranch
|
|
*
|
|
* In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
|
|
* names of the direntries/xentries which are referred by the keys. This
|
|
* function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
|
|
* sure the name of direntry/xentry referred by @zbr1 is less than
|
|
* direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
|
|
* and a negative error code in case of failure.
|
|
*/
|
|
static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
|
|
struct ubifs_zbranch *zbr2)
|
|
{
|
|
int err, nlen1, nlen2, cmp;
|
|
struct ubifs_dent_node *dent1, *dent2;
|
|
union ubifs_key key;
|
|
|
|
ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
|
|
dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
|
|
if (!dent1)
|
|
return -ENOMEM;
|
|
dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
|
|
if (!dent2) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
err = ubifs_tnc_read_node(c, zbr1, dent1);
|
|
if (err)
|
|
goto out_free;
|
|
err = ubifs_validate_entry(c, dent1);
|
|
if (err)
|
|
goto out_free;
|
|
|
|
err = ubifs_tnc_read_node(c, zbr2, dent2);
|
|
if (err)
|
|
goto out_free;
|
|
err = ubifs_validate_entry(c, dent2);
|
|
if (err)
|
|
goto out_free;
|
|
|
|
/* Make sure node keys are the same as in zbranch */
|
|
err = 1;
|
|
key_read(c, &dent1->key, &key);
|
|
if (keys_cmp(c, &zbr1->key, &key)) {
|
|
dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
|
|
zbr1->offs, DBGKEY(&key));
|
|
dbg_err("but it should have key %s according to tnc",
|
|
DBGKEY(&zbr1->key));
|
|
dbg_dump_node(c, dent1);
|
|
goto out_free;
|
|
}
|
|
|
|
key_read(c, &dent2->key, &key);
|
|
if (keys_cmp(c, &zbr2->key, &key)) {
|
|
dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
|
|
zbr1->offs, DBGKEY(&key));
|
|
dbg_err("but it should have key %s according to tnc",
|
|
DBGKEY(&zbr2->key));
|
|
dbg_dump_node(c, dent2);
|
|
goto out_free;
|
|
}
|
|
|
|
nlen1 = le16_to_cpu(dent1->nlen);
|
|
nlen2 = le16_to_cpu(dent2->nlen);
|
|
|
|
cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
|
|
if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
|
|
err = 0;
|
|
goto out_free;
|
|
}
|
|
if (cmp == 0 && nlen1 == nlen2)
|
|
dbg_err("2 xent/dent nodes with the same name");
|
|
else
|
|
dbg_err("bad order of colliding key %s",
|
|
DBGKEY(&key));
|
|
|
|
ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
|
|
dbg_dump_node(c, dent1);
|
|
ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
|
|
dbg_dump_node(c, dent2);
|
|
|
|
out_free:
|
|
kfree(dent2);
|
|
kfree(dent1);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* dbg_check_znode - check if znode is all right.
|
|
* @c: UBIFS file-system description object
|
|
* @zbr: zbranch which points to this znode
|
|
*
|
|
* This function makes sure that znode referred to by @zbr is all right.
|
|
* Returns zero if it is, and %-EINVAL if it is not.
|
|
*/
|
|
static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
|
|
{
|
|
struct ubifs_znode *znode = zbr->znode;
|
|
struct ubifs_znode *zp = znode->parent;
|
|
int n, err, cmp;
|
|
|
|
if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
|
|
err = 1;
|
|
goto out;
|
|
}
|
|
if (znode->level < 0) {
|
|
err = 2;
|
|
goto out;
|
|
}
|
|
if (znode->iip < 0 || znode->iip >= c->fanout) {
|
|
err = 3;
|
|
goto out;
|
|
}
|
|
|
|
if (zbr->len == 0)
|
|
/* Only dirty zbranch may have no on-flash nodes */
|
|
if (!ubifs_zn_dirty(znode)) {
|
|
err = 4;
|
|
goto out;
|
|
}
|
|
|
|
if (ubifs_zn_dirty(znode)) {
|
|
/*
|
|
* If znode is dirty, its parent has to be dirty as well. The
|
|
* order of the operation is important, so we have to have
|
|
* memory barriers.
|
|
*/
|
|
smp_mb();
|
|
if (zp && !ubifs_zn_dirty(zp)) {
|
|
/*
|
|
* The dirty flag is atomic and is cleared outside the
|
|
* TNC mutex, so znode's dirty flag may now have
|
|
* been cleared. The child is always cleared before the
|
|
* parent, so we just need to check again.
|
|
*/
|
|
smp_mb();
|
|
if (ubifs_zn_dirty(znode)) {
|
|
err = 5;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (zp) {
|
|
const union ubifs_key *min, *max;
|
|
|
|
if (znode->level != zp->level - 1) {
|
|
err = 6;
|
|
goto out;
|
|
}
|
|
|
|
/* Make sure the 'parent' pointer in our znode is correct */
|
|
err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
|
|
if (!err) {
|
|
/* This zbranch does not exist in the parent */
|
|
err = 7;
|
|
goto out;
|
|
}
|
|
|
|
if (znode->iip >= zp->child_cnt) {
|
|
err = 8;
|
|
goto out;
|
|
}
|
|
|
|
if (znode->iip != n) {
|
|
/* This may happen only in case of collisions */
|
|
if (keys_cmp(c, &zp->zbranch[n].key,
|
|
&zp->zbranch[znode->iip].key)) {
|
|
err = 9;
|
|
goto out;
|
|
}
|
|
n = znode->iip;
|
|
}
|
|
|
|
/*
|
|
* Make sure that the first key in our znode is greater than or
|
|
* equal to the key in the pointing zbranch.
|
|
*/
|
|
min = &zbr->key;
|
|
cmp = keys_cmp(c, min, &znode->zbranch[0].key);
|
|
if (cmp == 1) {
|
|
err = 10;
|
|
goto out;
|
|
}
|
|
|
|
if (n + 1 < zp->child_cnt) {
|
|
max = &zp->zbranch[n + 1].key;
|
|
|
|
/*
|
|
* Make sure the last key in our znode is less or
|
|
* equivalent than the key in the zbranch which goes
|
|
* after our pointing zbranch.
|
|
*/
|
|
cmp = keys_cmp(c, max,
|
|
&znode->zbranch[znode->child_cnt - 1].key);
|
|
if (cmp == -1) {
|
|
err = 11;
|
|
goto out;
|
|
}
|
|
}
|
|
} else {
|
|
/* This may only be root znode */
|
|
if (zbr != &c->zroot) {
|
|
err = 12;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure that next key is greater or equivalent then the previous
|
|
* one.
|
|
*/
|
|
for (n = 1; n < znode->child_cnt; n++) {
|
|
cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
|
|
&znode->zbranch[n].key);
|
|
if (cmp > 0) {
|
|
err = 13;
|
|
goto out;
|
|
}
|
|
if (cmp == 0) {
|
|
/* This can only be keys with colliding hash */
|
|
if (!is_hash_key(c, &znode->zbranch[n].key)) {
|
|
err = 14;
|
|
goto out;
|
|
}
|
|
|
|
if (znode->level != 0 || c->replaying)
|
|
continue;
|
|
|
|
/*
|
|
* Colliding keys should follow binary order of
|
|
* corresponding xentry/dentry names.
|
|
*/
|
|
err = dbg_check_key_order(c, &znode->zbranch[n - 1],
|
|
&znode->zbranch[n]);
|
|
if (err < 0)
|
|
return err;
|
|
if (err) {
|
|
err = 15;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < znode->child_cnt; n++) {
|
|
if (!znode->zbranch[n].znode &&
|
|
(znode->zbranch[n].lnum == 0 ||
|
|
znode->zbranch[n].len == 0)) {
|
|
err = 16;
|
|
goto out;
|
|
}
|
|
|
|
if (znode->zbranch[n].lnum != 0 &&
|
|
znode->zbranch[n].len == 0) {
|
|
err = 17;
|
|
goto out;
|
|
}
|
|
|
|
if (znode->zbranch[n].lnum == 0 &&
|
|
znode->zbranch[n].len != 0) {
|
|
err = 18;
|
|
goto out;
|
|
}
|
|
|
|
if (znode->zbranch[n].lnum == 0 &&
|
|
znode->zbranch[n].offs != 0) {
|
|
err = 19;
|
|
goto out;
|
|
}
|
|
|
|
if (znode->level != 0 && znode->zbranch[n].znode)
|
|
if (znode->zbranch[n].znode->parent != znode) {
|
|
err = 20;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
ubifs_err("failed, error %d", err);
|
|
ubifs_msg("dump of the znode");
|
|
dbg_dump_znode(c, znode);
|
|
if (zp) {
|
|
ubifs_msg("dump of the parent znode");
|
|
dbg_dump_znode(c, zp);
|
|
}
|
|
dump_stack();
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* dbg_check_tnc - check TNC tree.
|
|
* @c: UBIFS file-system description object
|
|
* @extra: do extra checks that are possible at start commit
|
|
*
|
|
* This function traverses whole TNC tree and checks every znode. Returns zero
|
|
* if everything is all right and %-EINVAL if something is wrong with TNC.
|
|
*/
|
|
int dbg_check_tnc(struct ubifs_info *c, int extra)
|
|
{
|
|
struct ubifs_znode *znode;
|
|
long clean_cnt = 0, dirty_cnt = 0;
|
|
int err, last;
|
|
|
|
if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
|
|
return 0;
|
|
|
|
ubifs_assert(mutex_is_locked(&c->tnc_mutex));
|
|
if (!c->zroot.znode)
|
|
return 0;
|
|
|
|
znode = ubifs_tnc_postorder_first(c->zroot.znode);
|
|
while (1) {
|
|
struct ubifs_znode *prev;
|
|
struct ubifs_zbranch *zbr;
|
|
|
|
if (!znode->parent)
|
|
zbr = &c->zroot;
|
|
else
|
|
zbr = &znode->parent->zbranch[znode->iip];
|
|
|
|
err = dbg_check_znode(c, zbr);
|
|
if (err)
|
|
return err;
|
|
|
|
if (extra) {
|
|
if (ubifs_zn_dirty(znode))
|
|
dirty_cnt += 1;
|
|
else
|
|
clean_cnt += 1;
|
|
}
|
|
|
|
prev = znode;
|
|
znode = ubifs_tnc_postorder_next(znode);
|
|
if (!znode)
|
|
break;
|
|
|
|
/*
|
|
* If the last key of this znode is equivalent to the first key
|
|
* of the next znode (collision), then check order of the keys.
|
|
*/
|
|
last = prev->child_cnt - 1;
|
|
if (prev->level == 0 && znode->level == 0 && !c->replaying &&
|
|
!keys_cmp(c, &prev->zbranch[last].key,
|
|
&znode->zbranch[0].key)) {
|
|
err = dbg_check_key_order(c, &prev->zbranch[last],
|
|
&znode->zbranch[0]);
|
|
if (err < 0)
|
|
return err;
|
|
if (err) {
|
|
ubifs_msg("first znode");
|
|
dbg_dump_znode(c, prev);
|
|
ubifs_msg("second znode");
|
|
dbg_dump_znode(c, znode);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (extra) {
|
|
if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
|
|
ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
|
|
atomic_long_read(&c->clean_zn_cnt),
|
|
clean_cnt);
|
|
return -EINVAL;
|
|
}
|
|
if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
|
|
ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
|
|
atomic_long_read(&c->dirty_zn_cnt),
|
|
dirty_cnt);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dbg_walk_index - walk the on-flash index.
|
|
* @c: UBIFS file-system description object
|
|
* @leaf_cb: called for each leaf node
|
|
* @znode_cb: called for each indexing node
|
|
* @priv: private data which is passed to callbacks
|
|
*
|
|
* This function walks the UBIFS index and calls the @leaf_cb for each leaf
|
|
* node and @znode_cb for each indexing node. Returns zero in case of success
|
|
* and a negative error code in case of failure.
|
|
*
|
|
* It would be better if this function removed every znode it pulled to into
|
|
* the TNC, so that the behavior more closely matched the non-debugging
|
|
* behavior.
|
|
*/
|
|
int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
|
|
dbg_znode_callback znode_cb, void *priv)
|
|
{
|
|
int err;
|
|
struct ubifs_zbranch *zbr;
|
|
struct ubifs_znode *znode, *child;
|
|
|
|
mutex_lock(&c->tnc_mutex);
|
|
/* If the root indexing node is not in TNC - pull it */
|
|
if (!c->zroot.znode) {
|
|
c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
|
|
if (IS_ERR(c->zroot.znode)) {
|
|
err = PTR_ERR(c->zroot.znode);
|
|
c->zroot.znode = NULL;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We are going to traverse the indexing tree in the postorder manner.
|
|
* Go down and find the leftmost indexing node where we are going to
|
|
* start from.
|
|
*/
|
|
znode = c->zroot.znode;
|
|
while (znode->level > 0) {
|
|
zbr = &znode->zbranch[0];
|
|
child = zbr->znode;
|
|
if (!child) {
|
|
child = ubifs_load_znode(c, zbr, znode, 0);
|
|
if (IS_ERR(child)) {
|
|
err = PTR_ERR(child);
|
|
goto out_unlock;
|
|
}
|
|
zbr->znode = child;
|
|
}
|
|
|
|
znode = child;
|
|
}
|
|
|
|
/* Iterate over all indexing nodes */
|
|
while (1) {
|
|
int idx;
|
|
|
|
cond_resched();
|
|
|
|
if (znode_cb) {
|
|
err = znode_cb(c, znode, priv);
|
|
if (err) {
|
|
ubifs_err("znode checking function returned "
|
|
"error %d", err);
|
|
dbg_dump_znode(c, znode);
|
|
goto out_dump;
|
|
}
|
|
}
|
|
if (leaf_cb && znode->level == 0) {
|
|
for (idx = 0; idx < znode->child_cnt; idx++) {
|
|
zbr = &znode->zbranch[idx];
|
|
err = leaf_cb(c, zbr, priv);
|
|
if (err) {
|
|
ubifs_err("leaf checking function "
|
|
"returned error %d, for leaf "
|
|
"at LEB %d:%d",
|
|
err, zbr->lnum, zbr->offs);
|
|
goto out_dump;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!znode->parent)
|
|
break;
|
|
|
|
idx = znode->iip + 1;
|
|
znode = znode->parent;
|
|
if (idx < znode->child_cnt) {
|
|
/* Switch to the next index in the parent */
|
|
zbr = &znode->zbranch[idx];
|
|
child = zbr->znode;
|
|
if (!child) {
|
|
child = ubifs_load_znode(c, zbr, znode, idx);
|
|
if (IS_ERR(child)) {
|
|
err = PTR_ERR(child);
|
|
goto out_unlock;
|
|
}
|
|
zbr->znode = child;
|
|
}
|
|
znode = child;
|
|
} else
|
|
/*
|
|
* This is the last child, switch to the parent and
|
|
* continue.
|
|
*/
|
|
continue;
|
|
|
|
/* Go to the lowest leftmost znode in the new sub-tree */
|
|
while (znode->level > 0) {
|
|
zbr = &znode->zbranch[0];
|
|
child = zbr->znode;
|
|
if (!child) {
|
|
child = ubifs_load_znode(c, zbr, znode, 0);
|
|
if (IS_ERR(child)) {
|
|
err = PTR_ERR(child);
|
|
goto out_unlock;
|
|
}
|
|
zbr->znode = child;
|
|
}
|
|
znode = child;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&c->tnc_mutex);
|
|
return 0;
|
|
|
|
out_dump:
|
|
if (znode->parent)
|
|
zbr = &znode->parent->zbranch[znode->iip];
|
|
else
|
|
zbr = &c->zroot;
|
|
ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
|
|
dbg_dump_znode(c, znode);
|
|
out_unlock:
|
|
mutex_unlock(&c->tnc_mutex);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* add_size - add znode size to partially calculated index size.
|
|
* @c: UBIFS file-system description object
|
|
* @znode: znode to add size for
|
|
* @priv: partially calculated index size
|
|
*
|
|
* This is a helper function for 'dbg_check_idx_size()' which is called for
|
|
* every indexing node and adds its size to the 'long long' variable pointed to
|
|
* by @priv.
|
|
*/
|
|
static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
|
|
{
|
|
long long *idx_size = priv;
|
|
int add;
|
|
|
|
add = ubifs_idx_node_sz(c, znode->child_cnt);
|
|
add = ALIGN(add, 8);
|
|
*idx_size += add;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dbg_check_idx_size - check index size.
|
|
* @c: UBIFS file-system description object
|
|
* @idx_size: size to check
|
|
*
|
|
* This function walks the UBIFS index, calculates its size and checks that the
|
|
* size is equivalent to @idx_size. Returns zero in case of success and a
|
|
* negative error code in case of failure.
|
|
*/
|
|
int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
|
|
{
|
|
int err;
|
|
long long calc = 0;
|
|
|
|
if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
|
|
return 0;
|
|
|
|
err = dbg_walk_index(c, NULL, add_size, &calc);
|
|
if (err) {
|
|
ubifs_err("error %d while walking the index", err);
|
|
return err;
|
|
}
|
|
|
|
if (calc != idx_size) {
|
|
ubifs_err("index size check failed: calculated size is %lld, "
|
|
"should be %lld", calc, idx_size);
|
|
dump_stack();
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* struct fsck_inode - information about an inode used when checking the file-system.
|
|
* @rb: link in the RB-tree of inodes
|
|
* @inum: inode number
|
|
* @mode: inode type, permissions, etc
|
|
* @nlink: inode link count
|
|
* @xattr_cnt: count of extended attributes
|
|
* @references: how many directory/xattr entries refer this inode (calculated
|
|
* while walking the index)
|
|
* @calc_cnt: for directory inode count of child directories
|
|
* @size: inode size (read from on-flash inode)
|
|
* @xattr_sz: summary size of all extended attributes (read from on-flash
|
|
* inode)
|
|
* @calc_sz: for directories calculated directory size
|
|
* @calc_xcnt: count of extended attributes
|
|
* @calc_xsz: calculated summary size of all extended attributes
|
|
* @xattr_nms: sum of lengths of all extended attribute names belonging to this
|
|
* inode (read from on-flash inode)
|
|
* @calc_xnms: calculated sum of lengths of all extended attribute names
|
|
*/
|
|
struct fsck_inode {
|
|
struct rb_node rb;
|
|
ino_t inum;
|
|
umode_t mode;
|
|
unsigned int nlink;
|
|
unsigned int xattr_cnt;
|
|
int references;
|
|
int calc_cnt;
|
|
long long size;
|
|
unsigned int xattr_sz;
|
|
long long calc_sz;
|
|
long long calc_xcnt;
|
|
long long calc_xsz;
|
|
unsigned int xattr_nms;
|
|
long long calc_xnms;
|
|
};
|
|
|
|
/**
|
|
* struct fsck_data - private FS checking information.
|
|
* @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
|
|
*/
|
|
struct fsck_data {
|
|
struct rb_root inodes;
|
|
};
|
|
|
|
/**
|
|
* add_inode - add inode information to RB-tree of inodes.
|
|
* @c: UBIFS file-system description object
|
|
* @fsckd: FS checking information
|
|
* @ino: raw UBIFS inode to add
|
|
*
|
|
* This is a helper function for 'check_leaf()' which adds information about
|
|
* inode @ino to the RB-tree of inodes. Returns inode information pointer in
|
|
* case of success and a negative error code in case of failure.
|
|
*/
|
|
static struct fsck_inode *add_inode(struct ubifs_info *c,
|
|
struct fsck_data *fsckd,
|
|
struct ubifs_ino_node *ino)
|
|
{
|
|
struct rb_node **p, *parent = NULL;
|
|
struct fsck_inode *fscki;
|
|
ino_t inum = key_inum_flash(c, &ino->key);
|
|
|
|
p = &fsckd->inodes.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
fscki = rb_entry(parent, struct fsck_inode, rb);
|
|
if (inum < fscki->inum)
|
|
p = &(*p)->rb_left;
|
|
else if (inum > fscki->inum)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return fscki;
|
|
}
|
|
|
|
if (inum > c->highest_inum) {
|
|
ubifs_err("too high inode number, max. is %lu",
|
|
(unsigned long)c->highest_inum);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
|
|
if (!fscki)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
fscki->inum = inum;
|
|
fscki->nlink = le32_to_cpu(ino->nlink);
|
|
fscki->size = le64_to_cpu(ino->size);
|
|
fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
|
|
fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
|
|
fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
|
|
fscki->mode = le32_to_cpu(ino->mode);
|
|
if (S_ISDIR(fscki->mode)) {
|
|
fscki->calc_sz = UBIFS_INO_NODE_SZ;
|
|
fscki->calc_cnt = 2;
|
|
}
|
|
rb_link_node(&fscki->rb, parent, p);
|
|
rb_insert_color(&fscki->rb, &fsckd->inodes);
|
|
return fscki;
|
|
}
|
|
|
|
/**
|
|
* search_inode - search inode in the RB-tree of inodes.
|
|
* @fsckd: FS checking information
|
|
* @inum: inode number to search
|
|
*
|
|
* This is a helper function for 'check_leaf()' which searches inode @inum in
|
|
* the RB-tree of inodes and returns an inode information pointer or %NULL if
|
|
* the inode was not found.
|
|
*/
|
|
static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
|
|
{
|
|
struct rb_node *p;
|
|
struct fsck_inode *fscki;
|
|
|
|
p = fsckd->inodes.rb_node;
|
|
while (p) {
|
|
fscki = rb_entry(p, struct fsck_inode, rb);
|
|
if (inum < fscki->inum)
|
|
p = p->rb_left;
|
|
else if (inum > fscki->inum)
|
|
p = p->rb_right;
|
|
else
|
|
return fscki;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* read_add_inode - read inode node and add it to RB-tree of inodes.
|
|
* @c: UBIFS file-system description object
|
|
* @fsckd: FS checking information
|
|
* @inum: inode number to read
|
|
*
|
|
* This is a helper function for 'check_leaf()' which finds inode node @inum in
|
|
* the index, reads it, and adds it to the RB-tree of inodes. Returns inode
|
|
* information pointer in case of success and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
static struct fsck_inode *read_add_inode(struct ubifs_info *c,
|
|
struct fsck_data *fsckd, ino_t inum)
|
|
{
|
|
int n, err;
|
|
union ubifs_key key;
|
|
struct ubifs_znode *znode;
|
|
struct ubifs_zbranch *zbr;
|
|
struct ubifs_ino_node *ino;
|
|
struct fsck_inode *fscki;
|
|
|
|
fscki = search_inode(fsckd, inum);
|
|
if (fscki)
|
|
return fscki;
|
|
|
|
ino_key_init(c, &key, inum);
|
|
err = ubifs_lookup_level0(c, &key, &znode, &n);
|
|
if (!err) {
|
|
ubifs_err("inode %lu not found in index", (unsigned long)inum);
|
|
return ERR_PTR(-ENOENT);
|
|
} else if (err < 0) {
|
|
ubifs_err("error %d while looking up inode %lu",
|
|
err, (unsigned long)inum);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
zbr = &znode->zbranch[n];
|
|
if (zbr->len < UBIFS_INO_NODE_SZ) {
|
|
ubifs_err("bad node %lu node length %d",
|
|
(unsigned long)inum, zbr->len);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
ino = kmalloc(zbr->len, GFP_NOFS);
|
|
if (!ino)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = ubifs_tnc_read_node(c, zbr, ino);
|
|
if (err) {
|
|
ubifs_err("cannot read inode node at LEB %d:%d, error %d",
|
|
zbr->lnum, zbr->offs, err);
|
|
kfree(ino);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
fscki = add_inode(c, fsckd, ino);
|
|
kfree(ino);
|
|
if (IS_ERR(fscki)) {
|
|
ubifs_err("error %ld while adding inode %lu node",
|
|
PTR_ERR(fscki), (unsigned long)inum);
|
|
return fscki;
|
|
}
|
|
|
|
return fscki;
|
|
}
|
|
|
|
/**
|
|
* check_leaf - check leaf node.
|
|
* @c: UBIFS file-system description object
|
|
* @zbr: zbranch of the leaf node to check
|
|
* @priv: FS checking information
|
|
*
|
|
* This is a helper function for 'dbg_check_filesystem()' which is called for
|
|
* every single leaf node while walking the indexing tree. It checks that the
|
|
* leaf node referred from the indexing tree exists, has correct CRC, and does
|
|
* some other basic validation. This function is also responsible for building
|
|
* an RB-tree of inodes - it adds all inodes into the RB-tree. It also
|
|
* calculates reference count, size, etc for each inode in order to later
|
|
* compare them to the information stored inside the inodes and detect possible
|
|
* inconsistencies. Returns zero in case of success and a negative error code
|
|
* in case of failure.
|
|
*/
|
|
static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
|
|
void *priv)
|
|
{
|
|
ino_t inum;
|
|
void *node;
|
|
struct ubifs_ch *ch;
|
|
int err, type = key_type(c, &zbr->key);
|
|
struct fsck_inode *fscki;
|
|
|
|
if (zbr->len < UBIFS_CH_SZ) {
|
|
ubifs_err("bad leaf length %d (LEB %d:%d)",
|
|
zbr->len, zbr->lnum, zbr->offs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
node = kmalloc(zbr->len, GFP_NOFS);
|
|
if (!node)
|
|
return -ENOMEM;
|
|
|
|
err = ubifs_tnc_read_node(c, zbr, node);
|
|
if (err) {
|
|
ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
|
|
zbr->lnum, zbr->offs, err);
|
|
goto out_free;
|
|
}
|
|
|
|
/* If this is an inode node, add it to RB-tree of inodes */
|
|
if (type == UBIFS_INO_KEY) {
|
|
fscki = add_inode(c, priv, node);
|
|
if (IS_ERR(fscki)) {
|
|
err = PTR_ERR(fscki);
|
|
ubifs_err("error %d while adding inode node", err);
|
|
goto out_dump;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
|
|
type != UBIFS_DATA_KEY) {
|
|
ubifs_err("unexpected node type %d at LEB %d:%d",
|
|
type, zbr->lnum, zbr->offs);
|
|
err = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
ch = node;
|
|
if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
|
|
ubifs_err("too high sequence number, max. is %llu",
|
|
c->max_sqnum);
|
|
err = -EINVAL;
|
|
goto out_dump;
|
|
}
|
|
|
|
if (type == UBIFS_DATA_KEY) {
|
|
long long blk_offs;
|
|
struct ubifs_data_node *dn = node;
|
|
|
|
/*
|
|
* Search the inode node this data node belongs to and insert
|
|
* it to the RB-tree of inodes.
|
|
*/
|
|
inum = key_inum_flash(c, &dn->key);
|
|
fscki = read_add_inode(c, priv, inum);
|
|
if (IS_ERR(fscki)) {
|
|
err = PTR_ERR(fscki);
|
|
ubifs_err("error %d while processing data node and "
|
|
"trying to find inode node %lu",
|
|
err, (unsigned long)inum);
|
|
goto out_dump;
|
|
}
|
|
|
|
/* Make sure the data node is within inode size */
|
|
blk_offs = key_block_flash(c, &dn->key);
|
|
blk_offs <<= UBIFS_BLOCK_SHIFT;
|
|
blk_offs += le32_to_cpu(dn->size);
|
|
if (blk_offs > fscki->size) {
|
|
ubifs_err("data node at LEB %d:%d is not within inode "
|
|
"size %lld", zbr->lnum, zbr->offs,
|
|
fscki->size);
|
|
err = -EINVAL;
|
|
goto out_dump;
|
|
}
|
|
} else {
|
|
int nlen;
|
|
struct ubifs_dent_node *dent = node;
|
|
struct fsck_inode *fscki1;
|
|
|
|
err = ubifs_validate_entry(c, dent);
|
|
if (err)
|
|
goto out_dump;
|
|
|
|
/*
|
|
* Search the inode node this entry refers to and the parent
|
|
* inode node and insert them to the RB-tree of inodes.
|
|
*/
|
|
inum = le64_to_cpu(dent->inum);
|
|
fscki = read_add_inode(c, priv, inum);
|
|
if (IS_ERR(fscki)) {
|
|
err = PTR_ERR(fscki);
|
|
ubifs_err("error %d while processing entry node and "
|
|
"trying to find inode node %lu",
|
|
err, (unsigned long)inum);
|
|
goto out_dump;
|
|
}
|
|
|
|
/* Count how many direntries or xentries refers this inode */
|
|
fscki->references += 1;
|
|
|
|
inum = key_inum_flash(c, &dent->key);
|
|
fscki1 = read_add_inode(c, priv, inum);
|
|
if (IS_ERR(fscki1)) {
|
|
err = PTR_ERR(fscki1);
|
|
ubifs_err("error %d while processing entry node and "
|
|
"trying to find parent inode node %lu",
|
|
err, (unsigned long)inum);
|
|
goto out_dump;
|
|
}
|
|
|
|
nlen = le16_to_cpu(dent->nlen);
|
|
if (type == UBIFS_XENT_KEY) {
|
|
fscki1->calc_xcnt += 1;
|
|
fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
|
|
fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
|
|
fscki1->calc_xnms += nlen;
|
|
} else {
|
|
fscki1->calc_sz += CALC_DENT_SIZE(nlen);
|
|
if (dent->type == UBIFS_ITYPE_DIR)
|
|
fscki1->calc_cnt += 1;
|
|
}
|
|
}
|
|
|
|
out:
|
|
kfree(node);
|
|
return 0;
|
|
|
|
out_dump:
|
|
ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
|
|
dbg_dump_node(c, node);
|
|
out_free:
|
|
kfree(node);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* free_inodes - free RB-tree of inodes.
|
|
* @fsckd: FS checking information
|
|
*/
|
|
static void free_inodes(struct fsck_data *fsckd)
|
|
{
|
|
struct rb_node *this = fsckd->inodes.rb_node;
|
|
struct fsck_inode *fscki;
|
|
|
|
while (this) {
|
|
if (this->rb_left)
|
|
this = this->rb_left;
|
|
else if (this->rb_right)
|
|
this = this->rb_right;
|
|
else {
|
|
fscki = rb_entry(this, struct fsck_inode, rb);
|
|
this = rb_parent(this);
|
|
if (this) {
|
|
if (this->rb_left == &fscki->rb)
|
|
this->rb_left = NULL;
|
|
else
|
|
this->rb_right = NULL;
|
|
}
|
|
kfree(fscki);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* check_inodes - checks all inodes.
|
|
* @c: UBIFS file-system description object
|
|
* @fsckd: FS checking information
|
|
*
|
|
* This is a helper function for 'dbg_check_filesystem()' which walks the
|
|
* RB-tree of inodes after the index scan has been finished, and checks that
|
|
* inode nlink, size, etc are correct. Returns zero if inodes are fine,
|
|
* %-EINVAL if not, and a negative error code in case of failure.
|
|
*/
|
|
static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
|
|
{
|
|
int n, err;
|
|
union ubifs_key key;
|
|
struct ubifs_znode *znode;
|
|
struct ubifs_zbranch *zbr;
|
|
struct ubifs_ino_node *ino;
|
|
struct fsck_inode *fscki;
|
|
struct rb_node *this = rb_first(&fsckd->inodes);
|
|
|
|
while (this) {
|
|
fscki = rb_entry(this, struct fsck_inode, rb);
|
|
this = rb_next(this);
|
|
|
|
if (S_ISDIR(fscki->mode)) {
|
|
/*
|
|
* Directories have to have exactly one reference (they
|
|
* cannot have hardlinks), although root inode is an
|
|
* exception.
|
|
*/
|
|
if (fscki->inum != UBIFS_ROOT_INO &&
|
|
fscki->references != 1) {
|
|
ubifs_err("directory inode %lu has %d "
|
|
"direntries which refer it, but "
|
|
"should be 1",
|
|
(unsigned long)fscki->inum,
|
|
fscki->references);
|
|
goto out_dump;
|
|
}
|
|
if (fscki->inum == UBIFS_ROOT_INO &&
|
|
fscki->references != 0) {
|
|
ubifs_err("root inode %lu has non-zero (%d) "
|
|
"direntries which refer it",
|
|
(unsigned long)fscki->inum,
|
|
fscki->references);
|
|
goto out_dump;
|
|
}
|
|
if (fscki->calc_sz != fscki->size) {
|
|
ubifs_err("directory inode %lu size is %lld, "
|
|
"but calculated size is %lld",
|
|
(unsigned long)fscki->inum,
|
|
fscki->size, fscki->calc_sz);
|
|
goto out_dump;
|
|
}
|
|
if (fscki->calc_cnt != fscki->nlink) {
|
|
ubifs_err("directory inode %lu nlink is %d, "
|
|
"but calculated nlink is %d",
|
|
(unsigned long)fscki->inum,
|
|
fscki->nlink, fscki->calc_cnt);
|
|
goto out_dump;
|
|
}
|
|
} else {
|
|
if (fscki->references != fscki->nlink) {
|
|
ubifs_err("inode %lu nlink is %d, but "
|
|
"calculated nlink is %d",
|
|
(unsigned long)fscki->inum,
|
|
fscki->nlink, fscki->references);
|
|
goto out_dump;
|
|
}
|
|
}
|
|
if (fscki->xattr_sz != fscki->calc_xsz) {
|
|
ubifs_err("inode %lu has xattr size %u, but "
|
|
"calculated size is %lld",
|
|
(unsigned long)fscki->inum, fscki->xattr_sz,
|
|
fscki->calc_xsz);
|
|
goto out_dump;
|
|
}
|
|
if (fscki->xattr_cnt != fscki->calc_xcnt) {
|
|
ubifs_err("inode %lu has %u xattrs, but "
|
|
"calculated count is %lld",
|
|
(unsigned long)fscki->inum,
|
|
fscki->xattr_cnt, fscki->calc_xcnt);
|
|
goto out_dump;
|
|
}
|
|
if (fscki->xattr_nms != fscki->calc_xnms) {
|
|
ubifs_err("inode %lu has xattr names' size %u, but "
|
|
"calculated names' size is %lld",
|
|
(unsigned long)fscki->inum, fscki->xattr_nms,
|
|
fscki->calc_xnms);
|
|
goto out_dump;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_dump:
|
|
/* Read the bad inode and dump it */
|
|
ino_key_init(c, &key, fscki->inum);
|
|
err = ubifs_lookup_level0(c, &key, &znode, &n);
|
|
if (!err) {
|
|
ubifs_err("inode %lu not found in index",
|
|
(unsigned long)fscki->inum);
|
|
return -ENOENT;
|
|
} else if (err < 0) {
|
|
ubifs_err("error %d while looking up inode %lu",
|
|
err, (unsigned long)fscki->inum);
|
|
return err;
|
|
}
|
|
|
|
zbr = &znode->zbranch[n];
|
|
ino = kmalloc(zbr->len, GFP_NOFS);
|
|
if (!ino)
|
|
return -ENOMEM;
|
|
|
|
err = ubifs_tnc_read_node(c, zbr, ino);
|
|
if (err) {
|
|
ubifs_err("cannot read inode node at LEB %d:%d, error %d",
|
|
zbr->lnum, zbr->offs, err);
|
|
kfree(ino);
|
|
return err;
|
|
}
|
|
|
|
ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
|
|
(unsigned long)fscki->inum, zbr->lnum, zbr->offs);
|
|
dbg_dump_node(c, ino);
|
|
kfree(ino);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* dbg_check_filesystem - check the file-system.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function checks the file system, namely:
|
|
* o makes sure that all leaf nodes exist and their CRCs are correct;
|
|
* o makes sure inode nlink, size, xattr size/count are correct (for all
|
|
* inodes).
|
|
*
|
|
* The function reads whole indexing tree and all nodes, so it is pretty
|
|
* heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
|
|
* not, and a negative error code in case of failure.
|
|
*/
|
|
int dbg_check_filesystem(struct ubifs_info *c)
|
|
{
|
|
int err;
|
|
struct fsck_data fsckd;
|
|
|
|
if (!(ubifs_chk_flags & UBIFS_CHK_FS))
|
|
return 0;
|
|
|
|
fsckd.inodes = RB_ROOT;
|
|
err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
|
|
if (err)
|
|
goto out_free;
|
|
|
|
err = check_inodes(c, &fsckd);
|
|
if (err)
|
|
goto out_free;
|
|
|
|
free_inodes(&fsckd);
|
|
return 0;
|
|
|
|
out_free:
|
|
ubifs_err("file-system check failed with error %d", err);
|
|
dump_stack();
|
|
free_inodes(&fsckd);
|
|
return err;
|
|
}
|
|
|
|
static int invocation_cnt;
|
|
|
|
int dbg_force_in_the_gaps(void)
|
|
{
|
|
if (!dbg_force_in_the_gaps_enabled)
|
|
return 0;
|
|
/* Force in-the-gaps every 8th commit */
|
|
return !((invocation_cnt++) & 0x7);
|
|
}
|
|
|
|
/* Failure mode for recovery testing */
|
|
|
|
#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
|
|
|
|
struct failure_mode_info {
|
|
struct list_head list;
|
|
struct ubifs_info *c;
|
|
};
|
|
|
|
static LIST_HEAD(fmi_list);
|
|
static DEFINE_SPINLOCK(fmi_lock);
|
|
|
|
static unsigned int next;
|
|
|
|
static int simple_rand(void)
|
|
{
|
|
if (next == 0)
|
|
next = current->pid;
|
|
next = next * 1103515245 + 12345;
|
|
return (next >> 16) & 32767;
|
|
}
|
|
|
|
static void failure_mode_init(struct ubifs_info *c)
|
|
{
|
|
struct failure_mode_info *fmi;
|
|
|
|
fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
|
|
if (!fmi) {
|
|
ubifs_err("Failed to register failure mode - no memory");
|
|
return;
|
|
}
|
|
fmi->c = c;
|
|
spin_lock(&fmi_lock);
|
|
list_add_tail(&fmi->list, &fmi_list);
|
|
spin_unlock(&fmi_lock);
|
|
}
|
|
|
|
static void failure_mode_exit(struct ubifs_info *c)
|
|
{
|
|
struct failure_mode_info *fmi, *tmp;
|
|
|
|
spin_lock(&fmi_lock);
|
|
list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
|
|
if (fmi->c == c) {
|
|
list_del(&fmi->list);
|
|
kfree(fmi);
|
|
}
|
|
spin_unlock(&fmi_lock);
|
|
}
|
|
|
|
static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
|
|
{
|
|
struct failure_mode_info *fmi;
|
|
|
|
spin_lock(&fmi_lock);
|
|
list_for_each_entry(fmi, &fmi_list, list)
|
|
if (fmi->c->ubi == desc) {
|
|
struct ubifs_info *c = fmi->c;
|
|
|
|
spin_unlock(&fmi_lock);
|
|
return c;
|
|
}
|
|
spin_unlock(&fmi_lock);
|
|
return NULL;
|
|
}
|
|
|
|
static int in_failure_mode(struct ubi_volume_desc *desc)
|
|
{
|
|
struct ubifs_info *c = dbg_find_info(desc);
|
|
|
|
if (c && dbg_failure_mode)
|
|
return c->dbg->failure_mode;
|
|
return 0;
|
|
}
|
|
|
|
static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
|
|
{
|
|
struct ubifs_info *c = dbg_find_info(desc);
|
|
struct ubifs_debug_info *d;
|
|
|
|
if (!c || !dbg_failure_mode)
|
|
return 0;
|
|
d = c->dbg;
|
|
if (d->failure_mode)
|
|
return 1;
|
|
if (!d->fail_cnt) {
|
|
/* First call - decide delay to failure */
|
|
if (chance(1, 2)) {
|
|
unsigned int delay = 1 << (simple_rand() >> 11);
|
|
|
|
if (chance(1, 2)) {
|
|
d->fail_delay = 1;
|
|
d->fail_timeout = jiffies +
|
|
msecs_to_jiffies(delay);
|
|
dbg_rcvry("failing after %ums", delay);
|
|
} else {
|
|
d->fail_delay = 2;
|
|
d->fail_cnt_max = delay;
|
|
dbg_rcvry("failing after %u calls", delay);
|
|
}
|
|
}
|
|
d->fail_cnt += 1;
|
|
}
|
|
/* Determine if failure delay has expired */
|
|
if (d->fail_delay == 1) {
|
|
if (time_before(jiffies, d->fail_timeout))
|
|
return 0;
|
|
} else if (d->fail_delay == 2)
|
|
if (d->fail_cnt++ < d->fail_cnt_max)
|
|
return 0;
|
|
if (lnum == UBIFS_SB_LNUM) {
|
|
if (write) {
|
|
if (chance(1, 2))
|
|
return 0;
|
|
} else if (chance(19, 20))
|
|
return 0;
|
|
dbg_rcvry("failing in super block LEB %d", lnum);
|
|
} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
|
|
if (chance(19, 20))
|
|
return 0;
|
|
dbg_rcvry("failing in master LEB %d", lnum);
|
|
} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
|
|
if (write) {
|
|
if (chance(99, 100))
|
|
return 0;
|
|
} else if (chance(399, 400))
|
|
return 0;
|
|
dbg_rcvry("failing in log LEB %d", lnum);
|
|
} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
|
|
if (write) {
|
|
if (chance(7, 8))
|
|
return 0;
|
|
} else if (chance(19, 20))
|
|
return 0;
|
|
dbg_rcvry("failing in LPT LEB %d", lnum);
|
|
} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
|
|
if (write) {
|
|
if (chance(1, 2))
|
|
return 0;
|
|
} else if (chance(9, 10))
|
|
return 0;
|
|
dbg_rcvry("failing in orphan LEB %d", lnum);
|
|
} else if (lnum == c->ihead_lnum) {
|
|
if (chance(99, 100))
|
|
return 0;
|
|
dbg_rcvry("failing in index head LEB %d", lnum);
|
|
} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
|
|
if (chance(9, 10))
|
|
return 0;
|
|
dbg_rcvry("failing in GC head LEB %d", lnum);
|
|
} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
|
|
!ubifs_search_bud(c, lnum)) {
|
|
if (chance(19, 20))
|
|
return 0;
|
|
dbg_rcvry("failing in non-bud LEB %d", lnum);
|
|
} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
|
|
c->cmt_state == COMMIT_RUNNING_REQUIRED) {
|
|
if (chance(999, 1000))
|
|
return 0;
|
|
dbg_rcvry("failing in bud LEB %d commit running", lnum);
|
|
} else {
|
|
if (chance(9999, 10000))
|
|
return 0;
|
|
dbg_rcvry("failing in bud LEB %d commit not running", lnum);
|
|
}
|
|
ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
|
|
d->failure_mode = 1;
|
|
dump_stack();
|
|
return 1;
|
|
}
|
|
|
|
static void cut_data(const void *buf, int len)
|
|
{
|
|
int flen, i;
|
|
unsigned char *p = (void *)buf;
|
|
|
|
flen = (len * (long long)simple_rand()) >> 15;
|
|
for (i = flen; i < len; i++)
|
|
p[i] = 0xff;
|
|
}
|
|
|
|
int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
|
|
int len, int check)
|
|
{
|
|
if (in_failure_mode(desc))
|
|
return -EIO;
|
|
return ubi_leb_read(desc, lnum, buf, offset, len, check);
|
|
}
|
|
|
|
int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
|
|
int offset, int len, int dtype)
|
|
{
|
|
int err, failing;
|
|
|
|
if (in_failure_mode(desc))
|
|
return -EIO;
|
|
failing = do_fail(desc, lnum, 1);
|
|
if (failing)
|
|
cut_data(buf, len);
|
|
err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
|
|
if (err)
|
|
return err;
|
|
if (failing)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
|
|
int len, int dtype)
|
|
{
|
|
int err;
|
|
|
|
if (do_fail(desc, lnum, 1))
|
|
return -EIO;
|
|
err = ubi_leb_change(desc, lnum, buf, len, dtype);
|
|
if (err)
|
|
return err;
|
|
if (do_fail(desc, lnum, 1))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
|
|
{
|
|
int err;
|
|
|
|
if (do_fail(desc, lnum, 0))
|
|
return -EIO;
|
|
err = ubi_leb_erase(desc, lnum);
|
|
if (err)
|
|
return err;
|
|
if (do_fail(desc, lnum, 0))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
|
|
{
|
|
int err;
|
|
|
|
if (do_fail(desc, lnum, 0))
|
|
return -EIO;
|
|
err = ubi_leb_unmap(desc, lnum);
|
|
if (err)
|
|
return err;
|
|
if (do_fail(desc, lnum, 0))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
|
|
{
|
|
if (in_failure_mode(desc))
|
|
return -EIO;
|
|
return ubi_is_mapped(desc, lnum);
|
|
}
|
|
|
|
int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
|
|
{
|
|
int err;
|
|
|
|
if (do_fail(desc, lnum, 0))
|
|
return -EIO;
|
|
err = ubi_leb_map(desc, lnum, dtype);
|
|
if (err)
|
|
return err;
|
|
if (do_fail(desc, lnum, 0))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubifs_debugging_init - initialize UBIFS debugging.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function initializes debugging-related data for the file system.
|
|
* Returns zero in case of success and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
int ubifs_debugging_init(struct ubifs_info *c)
|
|
{
|
|
c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
|
|
if (!c->dbg)
|
|
return -ENOMEM;
|
|
|
|
c->dbg->buf = vmalloc(c->leb_size);
|
|
if (!c->dbg->buf)
|
|
goto out;
|
|
|
|
failure_mode_init(c);
|
|
return 0;
|
|
|
|
out:
|
|
kfree(c->dbg);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* ubifs_debugging_exit - free debugging data.
|
|
* @c: UBIFS file-system description object
|
|
*/
|
|
void ubifs_debugging_exit(struct ubifs_info *c)
|
|
{
|
|
failure_mode_exit(c);
|
|
vfree(c->dbg->buf);
|
|
kfree(c->dbg);
|
|
}
|
|
|
|
/*
|
|
* Root directory for UBIFS stuff in debugfs. Contains sub-directories which
|
|
* contain the stuff specific to particular file-system mounts.
|
|
*/
|
|
static struct dentry *dfs_rootdir;
|
|
|
|
/**
|
|
* dbg_debugfs_init - initialize debugfs file-system.
|
|
*
|
|
* UBIFS uses debugfs file-system to expose various debugging knobs to
|
|
* user-space. This function creates "ubifs" directory in the debugfs
|
|
* file-system. Returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
int dbg_debugfs_init(void)
|
|
{
|
|
dfs_rootdir = debugfs_create_dir("ubifs", NULL);
|
|
if (IS_ERR(dfs_rootdir)) {
|
|
int err = PTR_ERR(dfs_rootdir);
|
|
ubifs_err("cannot create \"ubifs\" debugfs directory, "
|
|
"error %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
|
|
*/
|
|
void dbg_debugfs_exit(void)
|
|
{
|
|
debugfs_remove(dfs_rootdir);
|
|
}
|
|
|
|
static int open_debugfs_file(struct inode *inode, struct file *file)
|
|
{
|
|
file->private_data = inode->i_private;
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct ubifs_info *c = file->private_data;
|
|
struct ubifs_debug_info *d = c->dbg;
|
|
|
|
if (file->f_path.dentry == d->dfs_dump_lprops)
|
|
dbg_dump_lprops(c);
|
|
else if (file->f_path.dentry == d->dfs_dump_budg) {
|
|
spin_lock(&c->space_lock);
|
|
dbg_dump_budg(c);
|
|
spin_unlock(&c->space_lock);
|
|
} else if (file->f_path.dentry == d->dfs_dump_tnc) {
|
|
mutex_lock(&c->tnc_mutex);
|
|
dbg_dump_tnc(c);
|
|
mutex_unlock(&c->tnc_mutex);
|
|
} else
|
|
return -EINVAL;
|
|
|
|
*ppos += count;
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations dfs_fops = {
|
|
.open = open_debugfs_file,
|
|
.write = write_debugfs_file,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
/**
|
|
* dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function creates all debugfs files for this instance of UBIFS. Returns
|
|
* zero in case of success and a negative error code in case of failure.
|
|
*
|
|
* Note, the only reason we have not merged this function with the
|
|
* 'ubifs_debugging_init()' function is because it is better to initialize
|
|
* debugfs interfaces at the very end of the mount process, and remove them at
|
|
* the very beginning of the mount process.
|
|
*/
|
|
int dbg_debugfs_init_fs(struct ubifs_info *c)
|
|
{
|
|
int err;
|
|
const char *fname;
|
|
struct dentry *dent;
|
|
struct ubifs_debug_info *d = c->dbg;
|
|
|
|
sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
|
|
d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
|
|
if (IS_ERR(d->dfs_dir)) {
|
|
err = PTR_ERR(d->dfs_dir);
|
|
ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
|
|
d->dfs_dir_name, err);
|
|
goto out;
|
|
}
|
|
|
|
fname = "dump_lprops";
|
|
dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
|
|
if (IS_ERR(dent))
|
|
goto out_remove;
|
|
d->dfs_dump_lprops = dent;
|
|
|
|
fname = "dump_budg";
|
|
dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
|
|
if (IS_ERR(dent))
|
|
goto out_remove;
|
|
d->dfs_dump_budg = dent;
|
|
|
|
fname = "dump_tnc";
|
|
dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
|
|
if (IS_ERR(dent))
|
|
goto out_remove;
|
|
d->dfs_dump_tnc = dent;
|
|
|
|
return 0;
|
|
|
|
out_remove:
|
|
err = PTR_ERR(dent);
|
|
ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
|
|
fname, err);
|
|
debugfs_remove_recursive(d->dfs_dir);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* dbg_debugfs_exit_fs - remove all debugfs files.
|
|
* @c: UBIFS file-system description object
|
|
*/
|
|
void dbg_debugfs_exit_fs(struct ubifs_info *c)
|
|
{
|
|
debugfs_remove_recursive(c->dbg->dfs_dir);
|
|
}
|
|
|
|
#endif /* CONFIG_UBIFS_FS_DEBUG */
|