mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-23 09:56:00 +00:00
1afd3c98b5
Borislav: Fail f10_early_channel_count() if error encountered while reading a NB register since those cached register contents are accessed afterwards. - fix/cleanup comments - fix function return value patterns - cleanup debug calls Reviewed-by: Mauro Carvalho Chehab <mchehab@redhat.com> Signed-off-by: Doug Thompson <dougthompson@xmission.com> Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
1370 lines
40 KiB
C
1370 lines
40 KiB
C
#include "amd64_edac.h"
|
|
|
|
static struct edac_pci_ctl_info *amd64_ctl_pci;
|
|
|
|
static int report_gart_errors;
|
|
module_param(report_gart_errors, int, 0644);
|
|
|
|
/*
|
|
* Set by command line parameter. If BIOS has enabled the ECC, this override is
|
|
* cleared to prevent re-enabling the hardware by this driver.
|
|
*/
|
|
static int ecc_enable_override;
|
|
module_param(ecc_enable_override, int, 0644);
|
|
|
|
/* Lookup table for all possible MC control instances */
|
|
struct amd64_pvt;
|
|
static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
|
|
static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
|
|
|
|
/*
|
|
* Memory scrubber control interface. For K8, memory scrubbing is handled by
|
|
* hardware and can involve L2 cache, dcache as well as the main memory. With
|
|
* F10, this is extended to L3 cache scrubbing on CPU models sporting that
|
|
* functionality.
|
|
*
|
|
* This causes the "units" for the scrubbing speed to vary from 64 byte blocks
|
|
* (dram) over to cache lines. This is nasty, so we will use bandwidth in
|
|
* bytes/sec for the setting.
|
|
*
|
|
* Currently, we only do dram scrubbing. If the scrubbing is done in software on
|
|
* other archs, we might not have access to the caches directly.
|
|
*/
|
|
|
|
/*
|
|
* scan the scrub rate mapping table for a close or matching bandwidth value to
|
|
* issue. If requested is too big, then use last maximum value found.
|
|
*/
|
|
static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
|
|
u32 min_scrubrate)
|
|
{
|
|
u32 scrubval;
|
|
int i;
|
|
|
|
/*
|
|
* map the configured rate (new_bw) to a value specific to the AMD64
|
|
* memory controller and apply to register. Search for the first
|
|
* bandwidth entry that is greater or equal than the setting requested
|
|
* and program that. If at last entry, turn off DRAM scrubbing.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
|
|
/*
|
|
* skip scrub rates which aren't recommended
|
|
* (see F10 BKDG, F3x58)
|
|
*/
|
|
if (scrubrates[i].scrubval < min_scrubrate)
|
|
continue;
|
|
|
|
if (scrubrates[i].bandwidth <= new_bw)
|
|
break;
|
|
|
|
/*
|
|
* if no suitable bandwidth found, turn off DRAM scrubbing
|
|
* entirely by falling back to the last element in the
|
|
* scrubrates array.
|
|
*/
|
|
}
|
|
|
|
scrubval = scrubrates[i].scrubval;
|
|
if (scrubval)
|
|
edac_printk(KERN_DEBUG, EDAC_MC,
|
|
"Setting scrub rate bandwidth: %u\n",
|
|
scrubrates[i].bandwidth);
|
|
else
|
|
edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
|
|
|
|
pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u32 min_scrubrate = 0x0;
|
|
|
|
switch (boot_cpu_data.x86) {
|
|
case 0xf:
|
|
min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
|
|
break;
|
|
case 0x10:
|
|
min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
|
|
break;
|
|
case 0x11:
|
|
min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
|
|
break;
|
|
|
|
default:
|
|
amd64_printk(KERN_ERR, "Unsupported family!\n");
|
|
break;
|
|
}
|
|
return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
|
|
min_scrubrate);
|
|
}
|
|
|
|
static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u32 scrubval = 0;
|
|
int status = -1, i, ret = 0;
|
|
|
|
ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
|
|
if (ret)
|
|
debugf0("Reading K8_SCRCTRL failed\n");
|
|
|
|
scrubval = scrubval & 0x001F;
|
|
|
|
edac_printk(KERN_DEBUG, EDAC_MC,
|
|
"pci-read, sdram scrub control value: %d \n", scrubval);
|
|
|
|
for (i = 0; ARRAY_SIZE(scrubrates); i++) {
|
|
if (scrubrates[i].scrubval == scrubval) {
|
|
*bw = scrubrates[i].bandwidth;
|
|
status = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/* Map from a CSROW entry to the mask entry that operates on it */
|
|
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
|
|
{
|
|
return csrow >> (pvt->num_dcsm >> 3);
|
|
}
|
|
|
|
/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
|
|
static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
|
|
{
|
|
if (dct == 0)
|
|
return pvt->dcsb0[csrow];
|
|
else
|
|
return pvt->dcsb1[csrow];
|
|
}
|
|
|
|
/*
|
|
* Return the 'mask' address the i'th CS entry. This function is needed because
|
|
* there number of DCSM registers on Rev E and prior vs Rev F and later is
|
|
* different.
|
|
*/
|
|
static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
|
|
{
|
|
if (dct == 0)
|
|
return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
|
|
else
|
|
return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
|
|
}
|
|
|
|
|
|
/*
|
|
* In *base and *limit, pass back the full 40-bit base and limit physical
|
|
* addresses for the node given by node_id. This information is obtained from
|
|
* DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
|
|
* base and limit addresses are of type SysAddr, as defined at the start of
|
|
* section 3.4.4 (p. 70). They are the lowest and highest physical addresses
|
|
* in the address range they represent.
|
|
*/
|
|
static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
|
|
u64 *base, u64 *limit)
|
|
{
|
|
*base = pvt->dram_base[node_id];
|
|
*limit = pvt->dram_limit[node_id];
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the SysAddr given by sys_addr matches the base/limit associated
|
|
* with node_id
|
|
*/
|
|
static int amd64_base_limit_match(struct amd64_pvt *pvt,
|
|
u64 sys_addr, int node_id)
|
|
{
|
|
u64 base, limit, addr;
|
|
|
|
amd64_get_base_and_limit(pvt, node_id, &base, &limit);
|
|
|
|
/* The K8 treats this as a 40-bit value. However, bits 63-40 will be
|
|
* all ones if the most significant implemented address bit is 1.
|
|
* Here we discard bits 63-40. See section 3.4.2 of AMD publication
|
|
* 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
|
|
* Application Programming.
|
|
*/
|
|
addr = sys_addr & 0x000000ffffffffffull;
|
|
|
|
return (addr >= base) && (addr <= limit);
|
|
}
|
|
|
|
/*
|
|
* Attempt to map a SysAddr to a node. On success, return a pointer to the
|
|
* mem_ctl_info structure for the node that the SysAddr maps to.
|
|
*
|
|
* On failure, return NULL.
|
|
*/
|
|
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
|
|
u64 sys_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
int node_id;
|
|
u32 intlv_en, bits;
|
|
|
|
/*
|
|
* Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
|
|
* 3.4.4.2) registers to map the SysAddr to a node ID.
|
|
*/
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* The value of this field should be the same for all DRAM Base
|
|
* registers. Therefore we arbitrarily choose to read it from the
|
|
* register for node 0.
|
|
*/
|
|
intlv_en = pvt->dram_IntlvEn[0];
|
|
|
|
if (intlv_en == 0) {
|
|
for (node_id = 0; ; ) {
|
|
if (amd64_base_limit_match(pvt, sys_addr, node_id))
|
|
break;
|
|
|
|
if (++node_id >= DRAM_REG_COUNT)
|
|
goto err_no_match;
|
|
}
|
|
goto found;
|
|
}
|
|
|
|
if (unlikely((intlv_en != (0x01 << 8)) &&
|
|
(intlv_en != (0x03 << 8)) &&
|
|
(intlv_en != (0x07 << 8)))) {
|
|
amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
|
|
"IntlvEn field of DRAM Base Register for node 0: "
|
|
"This probably indicates a BIOS bug.\n", intlv_en);
|
|
return NULL;
|
|
}
|
|
|
|
bits = (((u32) sys_addr) >> 12) & intlv_en;
|
|
|
|
for (node_id = 0; ; ) {
|
|
if ((pvt->dram_limit[node_id] & intlv_en) == bits)
|
|
break; /* intlv_sel field matches */
|
|
|
|
if (++node_id >= DRAM_REG_COUNT)
|
|
goto err_no_match;
|
|
}
|
|
|
|
/* sanity test for sys_addr */
|
|
if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
|
|
amd64_printk(KERN_WARNING,
|
|
"%s(): sys_addr 0x%lx falls outside base/limit "
|
|
"address range for node %d with node interleaving "
|
|
"enabled.\n", __func__, (unsigned long)sys_addr,
|
|
node_id);
|
|
return NULL;
|
|
}
|
|
|
|
found:
|
|
return edac_mc_find(node_id);
|
|
|
|
err_no_match:
|
|
debugf2("sys_addr 0x%lx doesn't match any node\n",
|
|
(unsigned long)sys_addr);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Extract the DRAM CS base address from selected csrow register.
|
|
*/
|
|
static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
|
|
{
|
|
return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
|
|
pvt->dcs_shift;
|
|
}
|
|
|
|
/*
|
|
* Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
|
|
*/
|
|
static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
|
|
{
|
|
u64 dcsm_bits, other_bits;
|
|
u64 mask;
|
|
|
|
/* Extract bits from DRAM CS Mask. */
|
|
dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
|
|
|
|
other_bits = pvt->dcsm_mask;
|
|
other_bits = ~(other_bits << pvt->dcs_shift);
|
|
|
|
/*
|
|
* The extracted bits from DCSM belong in the spaces represented by
|
|
* the cleared bits in other_bits.
|
|
*/
|
|
mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
|
|
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
* @input_addr is an InputAddr associated with the node given by mci. Return the
|
|
* csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
|
|
*/
|
|
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
int csrow;
|
|
u64 base, mask;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
|
|
* base/mask register pair, test the condition shown near the start of
|
|
* section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
|
|
*/
|
|
for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
|
|
|
|
/* This DRAM chip select is disabled on this node */
|
|
if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
|
|
continue;
|
|
|
|
base = base_from_dct_base(pvt, csrow);
|
|
mask = ~mask_from_dct_mask(pvt, csrow);
|
|
|
|
if ((input_addr & mask) == (base & mask)) {
|
|
debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
|
|
(unsigned long)input_addr, csrow,
|
|
pvt->mc_node_id);
|
|
|
|
return csrow;
|
|
}
|
|
}
|
|
|
|
debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
|
|
(unsigned long)input_addr, pvt->mc_node_id);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Return the base value defined by the DRAM Base register for the node
|
|
* represented by mci. This function returns the full 40-bit value despite the
|
|
* fact that the register only stores bits 39-24 of the value. See section
|
|
* 3.4.4.1 (BKDG #26094, K8, revA-E)
|
|
*/
|
|
static inline u64 get_dram_base(struct mem_ctl_info *mci)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
|
|
return pvt->dram_base[pvt->mc_node_id];
|
|
}
|
|
|
|
/*
|
|
* Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
|
|
* for the node represented by mci. Info is passed back in *hole_base,
|
|
* *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
|
|
* info is invalid. Info may be invalid for either of the following reasons:
|
|
*
|
|
* - The revision of the node is not E or greater. In this case, the DRAM Hole
|
|
* Address Register does not exist.
|
|
*
|
|
* - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
|
|
* indicating that its contents are not valid.
|
|
*
|
|
* The values passed back in *hole_base, *hole_offset, and *hole_size are
|
|
* complete 32-bit values despite the fact that the bitfields in the DHAR
|
|
* only represent bits 31-24 of the base and offset values.
|
|
*/
|
|
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
|
|
u64 *hole_offset, u64 *hole_size)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u64 base;
|
|
|
|
/* only revE and later have the DRAM Hole Address Register */
|
|
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
|
|
debugf1(" revision %d for node %d does not support DHAR\n",
|
|
pvt->ext_model, pvt->mc_node_id);
|
|
return 1;
|
|
}
|
|
|
|
/* only valid for Fam10h */
|
|
if (boot_cpu_data.x86 == 0x10 &&
|
|
(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
|
|
debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
|
|
return 1;
|
|
}
|
|
|
|
if ((pvt->dhar & DHAR_VALID) == 0) {
|
|
debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
|
|
pvt->mc_node_id);
|
|
return 1;
|
|
}
|
|
|
|
/* This node has Memory Hoisting */
|
|
|
|
/* +------------------+--------------------+--------------------+-----
|
|
* | memory | DRAM hole | relocated |
|
|
* | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
|
|
* | | | DRAM hole |
|
|
* | | | [0x100000000, |
|
|
* | | | (0x100000000+ |
|
|
* | | | (0xffffffff-x))] |
|
|
* +------------------+--------------------+--------------------+-----
|
|
*
|
|
* Above is a diagram of physical memory showing the DRAM hole and the
|
|
* relocated addresses from the DRAM hole. As shown, the DRAM hole
|
|
* starts at address x (the base address) and extends through address
|
|
* 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
|
|
* addresses in the hole so that they start at 0x100000000.
|
|
*/
|
|
|
|
base = dhar_base(pvt->dhar);
|
|
|
|
*hole_base = base;
|
|
*hole_size = (0x1ull << 32) - base;
|
|
|
|
if (boot_cpu_data.x86 > 0xf)
|
|
*hole_offset = f10_dhar_offset(pvt->dhar);
|
|
else
|
|
*hole_offset = k8_dhar_offset(pvt->dhar);
|
|
|
|
debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
|
|
pvt->mc_node_id, (unsigned long)*hole_base,
|
|
(unsigned long)*hole_offset, (unsigned long)*hole_size);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
|
|
|
|
/*
|
|
* Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
|
|
* assumed that sys_addr maps to the node given by mci.
|
|
*
|
|
* The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
|
|
* 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
|
|
* SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
|
|
* then it is also involved in translating a SysAddr to a DramAddr. Sections
|
|
* 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
|
|
* These parts of the documentation are unclear. I interpret them as follows:
|
|
*
|
|
* When node n receives a SysAddr, it processes the SysAddr as follows:
|
|
*
|
|
* 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
|
|
* Limit registers for node n. If the SysAddr is not within the range
|
|
* specified by the base and limit values, then node n ignores the Sysaddr
|
|
* (since it does not map to node n). Otherwise continue to step 2 below.
|
|
*
|
|
* 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
|
|
* disabled so skip to step 3 below. Otherwise see if the SysAddr is within
|
|
* the range of relocated addresses (starting at 0x100000000) from the DRAM
|
|
* hole. If not, skip to step 3 below. Else get the value of the
|
|
* DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
|
|
* offset defined by this value from the SysAddr.
|
|
*
|
|
* 3. Obtain the base address for node n from the DRAMBase field of the DRAM
|
|
* Base register for node n. To obtain the DramAddr, subtract the base
|
|
* address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
|
|
*/
|
|
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
|
|
{
|
|
u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
|
|
int ret = 0;
|
|
|
|
dram_base = get_dram_base(mci);
|
|
|
|
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
|
|
&hole_size);
|
|
if (!ret) {
|
|
if ((sys_addr >= (1ull << 32)) &&
|
|
(sys_addr < ((1ull << 32) + hole_size))) {
|
|
/* use DHAR to translate SysAddr to DramAddr */
|
|
dram_addr = sys_addr - hole_offset;
|
|
|
|
debugf2("using DHAR to translate SysAddr 0x%lx to "
|
|
"DramAddr 0x%lx\n",
|
|
(unsigned long)sys_addr,
|
|
(unsigned long)dram_addr);
|
|
|
|
return dram_addr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Translate the SysAddr to a DramAddr as shown near the start of
|
|
* section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
|
|
* only deals with 40-bit values. Therefore we discard bits 63-40 of
|
|
* sys_addr below. If bit 39 of sys_addr is 1 then the bits we
|
|
* discard are all 1s. Otherwise the bits we discard are all 0s. See
|
|
* section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
|
|
* Programmer's Manual Volume 1 Application Programming.
|
|
*/
|
|
dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
|
|
|
|
debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
|
|
"DramAddr 0x%lx\n", (unsigned long)sys_addr,
|
|
(unsigned long)dram_addr);
|
|
return dram_addr;
|
|
}
|
|
|
|
/*
|
|
* @intlv_en is the value of the IntlvEn field from a DRAM Base register
|
|
* (section 3.4.4.1). Return the number of bits from a SysAddr that are used
|
|
* for node interleaving.
|
|
*/
|
|
static int num_node_interleave_bits(unsigned intlv_en)
|
|
{
|
|
static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
|
|
int n;
|
|
|
|
BUG_ON(intlv_en > 7);
|
|
n = intlv_shift_table[intlv_en];
|
|
return n;
|
|
}
|
|
|
|
/* Translate the DramAddr given by @dram_addr to an InputAddr. */
|
|
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
int intlv_shift;
|
|
u64 input_addr;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
|
|
* concerning translating a DramAddr to an InputAddr.
|
|
*/
|
|
intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
|
|
input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
|
|
(dram_addr & 0xfff);
|
|
|
|
debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
|
|
intlv_shift, (unsigned long)dram_addr,
|
|
(unsigned long)input_addr);
|
|
|
|
return input_addr;
|
|
}
|
|
|
|
/*
|
|
* Translate the SysAddr represented by @sys_addr to an InputAddr. It is
|
|
* assumed that @sys_addr maps to the node given by mci.
|
|
*/
|
|
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
|
|
{
|
|
u64 input_addr;
|
|
|
|
input_addr =
|
|
dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
|
|
|
|
debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
|
|
(unsigned long)sys_addr, (unsigned long)input_addr);
|
|
|
|
return input_addr;
|
|
}
|
|
|
|
|
|
/*
|
|
* @input_addr is an InputAddr associated with the node represented by mci.
|
|
* Translate @input_addr to a DramAddr and return the result.
|
|
*/
|
|
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
int node_id, intlv_shift;
|
|
u64 bits, dram_addr;
|
|
u32 intlv_sel;
|
|
|
|
/*
|
|
* Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
|
|
* shows how to translate a DramAddr to an InputAddr. Here we reverse
|
|
* this procedure. When translating from a DramAddr to an InputAddr, the
|
|
* bits used for node interleaving are discarded. Here we recover these
|
|
* bits from the IntlvSel field of the DRAM Limit register (section
|
|
* 3.4.4.2) for the node that input_addr is associated with.
|
|
*/
|
|
pvt = mci->pvt_info;
|
|
node_id = pvt->mc_node_id;
|
|
BUG_ON((node_id < 0) || (node_id > 7));
|
|
|
|
intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
|
|
|
|
if (intlv_shift == 0) {
|
|
debugf1(" InputAddr 0x%lx translates to DramAddr of "
|
|
"same value\n", (unsigned long)input_addr);
|
|
|
|
return input_addr;
|
|
}
|
|
|
|
bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
|
|
(input_addr & 0xfff);
|
|
|
|
intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
|
|
dram_addr = bits + (intlv_sel << 12);
|
|
|
|
debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
|
|
"(%d node interleave bits)\n", (unsigned long)input_addr,
|
|
(unsigned long)dram_addr, intlv_shift);
|
|
|
|
return dram_addr;
|
|
}
|
|
|
|
/*
|
|
* @dram_addr is a DramAddr that maps to the node represented by mci. Convert
|
|
* @dram_addr to a SysAddr.
|
|
*/
|
|
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
|
|
int ret = 0;
|
|
|
|
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
|
|
&hole_size);
|
|
if (!ret) {
|
|
if ((dram_addr >= hole_base) &&
|
|
(dram_addr < (hole_base + hole_size))) {
|
|
sys_addr = dram_addr + hole_offset;
|
|
|
|
debugf1("using DHAR to translate DramAddr 0x%lx to "
|
|
"SysAddr 0x%lx\n", (unsigned long)dram_addr,
|
|
(unsigned long)sys_addr);
|
|
|
|
return sys_addr;
|
|
}
|
|
}
|
|
|
|
amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
|
|
sys_addr = dram_addr + base;
|
|
|
|
/*
|
|
* The sys_addr we have computed up to this point is a 40-bit value
|
|
* because the k8 deals with 40-bit values. However, the value we are
|
|
* supposed to return is a full 64-bit physical address. The AMD
|
|
* x86-64 architecture specifies that the most significant implemented
|
|
* address bit through bit 63 of a physical address must be either all
|
|
* 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
|
|
* 64-bit value below. See section 3.4.2 of AMD publication 24592:
|
|
* AMD x86-64 Architecture Programmer's Manual Volume 1 Application
|
|
* Programming.
|
|
*/
|
|
sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
|
|
|
|
debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
|
|
pvt->mc_node_id, (unsigned long)dram_addr,
|
|
(unsigned long)sys_addr);
|
|
|
|
return sys_addr;
|
|
}
|
|
|
|
/*
|
|
* @input_addr is an InputAddr associated with the node given by mci. Translate
|
|
* @input_addr to a SysAddr.
|
|
*/
|
|
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
|
|
u64 input_addr)
|
|
{
|
|
return dram_addr_to_sys_addr(mci,
|
|
input_addr_to_dram_addr(mci, input_addr));
|
|
}
|
|
|
|
/*
|
|
* Find the minimum and maximum InputAddr values that map to the given @csrow.
|
|
* Pass back these values in *input_addr_min and *input_addr_max.
|
|
*/
|
|
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
|
|
u64 *input_addr_min, u64 *input_addr_max)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
u64 base, mask;
|
|
|
|
pvt = mci->pvt_info;
|
|
BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
|
|
|
|
base = base_from_dct_base(pvt, csrow);
|
|
mask = mask_from_dct_mask(pvt, csrow);
|
|
|
|
*input_addr_min = base & ~mask;
|
|
*input_addr_max = base | mask | pvt->dcs_mask_notused;
|
|
}
|
|
|
|
/*
|
|
* Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
|
|
* Address High (section 3.6.4.6) register values and return the result. Address
|
|
* is located in the info structure (nbeah and nbeal), the encoding is device
|
|
* specific.
|
|
*/
|
|
static u64 extract_error_address(struct mem_ctl_info *mci,
|
|
struct amd64_error_info_regs *info)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
|
|
return pvt->ops->get_error_address(mci, info);
|
|
}
|
|
|
|
|
|
/* Map the Error address to a PAGE and PAGE OFFSET. */
|
|
static inline void error_address_to_page_and_offset(u64 error_address,
|
|
u32 *page, u32 *offset)
|
|
{
|
|
*page = (u32) (error_address >> PAGE_SHIFT);
|
|
*offset = ((u32) error_address) & ~PAGE_MASK;
|
|
}
|
|
|
|
/*
|
|
* @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
|
|
* Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
|
|
* of a node that detected an ECC memory error. mci represents the node that
|
|
* the error address maps to (possibly different from the node that detected
|
|
* the error). Return the number of the csrow that sys_addr maps to, or -1 on
|
|
* error.
|
|
*/
|
|
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
|
|
{
|
|
int csrow;
|
|
|
|
csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
|
|
|
|
if (csrow == -1)
|
|
amd64_mc_printk(mci, KERN_ERR,
|
|
"Failed to translate InputAddr to csrow for "
|
|
"address 0x%lx\n", (unsigned long)sys_addr);
|
|
return csrow;
|
|
}
|
|
|
|
static int get_channel_from_ecc_syndrome(unsigned short syndrome);
|
|
|
|
static void amd64_cpu_display_info(struct amd64_pvt *pvt)
|
|
{
|
|
if (boot_cpu_data.x86 == 0x11)
|
|
edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
|
|
else if (boot_cpu_data.x86 == 0x10)
|
|
edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
|
|
else if (boot_cpu_data.x86 == 0xf)
|
|
edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
|
|
(pvt->ext_model >= OPTERON_CPU_REV_F) ?
|
|
"Rev F or later" : "Rev E or earlier");
|
|
else
|
|
/* we'll hardly ever ever get here */
|
|
edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
|
|
}
|
|
|
|
/*
|
|
* Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
|
|
* are ECC capable.
|
|
*/
|
|
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
|
|
{
|
|
int bit;
|
|
enum dev_type edac_cap = EDAC_NONE;
|
|
|
|
bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
|
|
? 19
|
|
: 17;
|
|
|
|
if (pvt->dclr0 >> BIT(bit))
|
|
edac_cap = EDAC_FLAG_SECDED;
|
|
|
|
return edac_cap;
|
|
}
|
|
|
|
|
|
static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
|
|
int ganged);
|
|
|
|
/* Display and decode various NB registers for debug purposes. */
|
|
static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
|
|
{
|
|
int ganged;
|
|
|
|
debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
|
|
pvt->nbcap,
|
|
(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
|
|
(pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
|
|
(pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
|
|
debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
|
|
(pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
|
|
(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
|
|
debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
|
|
pvt->dclr0,
|
|
(pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
|
|
(pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
|
|
(pvt->dclr0 & BIT(11)) ? "128b" : "64b");
|
|
debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
|
|
(pvt->dclr0 & BIT(12)) ? "Y" : "N",
|
|
(pvt->dclr0 & BIT(13)) ? "Y" : "N",
|
|
(pvt->dclr0 & BIT(14)) ? "Y" : "N",
|
|
(pvt->dclr0 & BIT(15)) ? "Y" : "N",
|
|
(pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
|
|
|
|
|
|
debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
|
|
|
|
if (boot_cpu_data.x86 == 0xf) {
|
|
debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
|
|
pvt->dhar, dhar_base(pvt->dhar),
|
|
k8_dhar_offset(pvt->dhar));
|
|
debugf1(" DramHoleValid=%s\n",
|
|
(pvt->dhar & DHAR_VALID) ? "True" : "False");
|
|
|
|
debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
|
|
|
|
/* everything below this point is Fam10h and above */
|
|
return;
|
|
|
|
} else {
|
|
debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
|
|
pvt->dhar, dhar_base(pvt->dhar),
|
|
f10_dhar_offset(pvt->dhar));
|
|
debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
|
|
(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
|
|
"True" : "False",
|
|
(pvt->dhar & DHAR_VALID) ?
|
|
"True" : "False");
|
|
}
|
|
|
|
/* Only if NOT ganged does dcl1 have valid info */
|
|
if (!dct_ganging_enabled(pvt)) {
|
|
debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
|
|
"Width=%s\n", pvt->dclr1,
|
|
(pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
|
|
(pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
|
|
(pvt->dclr1 & BIT(11)) ? "128b" : "64b");
|
|
debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
|
|
"DIMM Type=%s\n",
|
|
(pvt->dclr1 & BIT(12)) ? "Y" : "N",
|
|
(pvt->dclr1 & BIT(13)) ? "Y" : "N",
|
|
(pvt->dclr1 & BIT(14)) ? "Y" : "N",
|
|
(pvt->dclr1 & BIT(15)) ? "Y" : "N",
|
|
(pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
|
|
}
|
|
|
|
/*
|
|
* Determine if ganged and then dump memory sizes for first controller,
|
|
* and if NOT ganged dump info for 2nd controller.
|
|
*/
|
|
ganged = dct_ganging_enabled(pvt);
|
|
|
|
f10_debug_display_dimm_sizes(0, pvt, ganged);
|
|
|
|
if (!ganged)
|
|
f10_debug_display_dimm_sizes(1, pvt, ganged);
|
|
}
|
|
|
|
/* Read in both of DBAM registers */
|
|
static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
|
|
{
|
|
int err = 0;
|
|
unsigned int reg;
|
|
|
|
reg = DBAM0;
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
if (boot_cpu_data.x86 >= 0x10) {
|
|
reg = DBAM1;
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
|
|
|
|
if (err)
|
|
goto err_reg;
|
|
}
|
|
|
|
err_reg:
|
|
debugf0("Error reading F2x%03x.\n", reg);
|
|
}
|
|
|
|
/*
|
|
* NOTE: CPU Revision Dependent code: Rev E and Rev F
|
|
*
|
|
* Set the DCSB and DCSM mask values depending on the CPU revision value. Also
|
|
* set the shift factor for the DCSB and DCSM values.
|
|
*
|
|
* ->dcs_mask_notused, RevE:
|
|
*
|
|
* To find the max InputAddr for the csrow, start with the base address and set
|
|
* all bits that are "don't care" bits in the test at the start of section
|
|
* 3.5.4 (p. 84).
|
|
*
|
|
* The "don't care" bits are all set bits in the mask and all bits in the gaps
|
|
* between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
|
|
* represents bits [24:20] and [12:0], which are all bits in the above-mentioned
|
|
* gaps.
|
|
*
|
|
* ->dcs_mask_notused, RevF and later:
|
|
*
|
|
* To find the max InputAddr for the csrow, start with the base address and set
|
|
* all bits that are "don't care" bits in the test at the start of NPT section
|
|
* 4.5.4 (p. 87).
|
|
*
|
|
* The "don't care" bits are all set bits in the mask and all bits in the gaps
|
|
* between bit ranges [36:27] and [21:13].
|
|
*
|
|
* The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
|
|
* which are all bits in the above-mentioned gaps.
|
|
*/
|
|
static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
|
|
{
|
|
if (pvt->ext_model >= OPTERON_CPU_REV_F) {
|
|
pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
|
|
pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
|
|
pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
|
|
pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
|
|
|
|
switch (boot_cpu_data.x86) {
|
|
case 0xf:
|
|
pvt->num_dcsm = REV_F_DCSM_COUNT;
|
|
break;
|
|
|
|
case 0x10:
|
|
pvt->num_dcsm = F10_DCSM_COUNT;
|
|
break;
|
|
|
|
case 0x11:
|
|
pvt->num_dcsm = F11_DCSM_COUNT;
|
|
break;
|
|
|
|
default:
|
|
amd64_printk(KERN_ERR, "Unsupported family!\n");
|
|
break;
|
|
}
|
|
} else {
|
|
pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
|
|
pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
|
|
pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
|
|
pvt->dcs_shift = REV_E_DCS_SHIFT;
|
|
pvt->num_dcsm = REV_E_DCSM_COUNT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
|
|
*/
|
|
static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
|
|
{
|
|
int cs, reg, err = 0;
|
|
|
|
amd64_set_dct_base_and_mask(pvt);
|
|
|
|
for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
|
|
reg = K8_DCSB0 + (cs * 4);
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
|
|
&pvt->dcsb0[cs]);
|
|
if (unlikely(err))
|
|
debugf0("Reading K8_DCSB0[%d] failed\n", cs);
|
|
else
|
|
debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
|
|
cs, pvt->dcsb0[cs], reg);
|
|
|
|
/* If DCT are NOT ganged, then read in DCT1's base */
|
|
if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
|
|
reg = F10_DCSB1 + (cs * 4);
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
|
|
&pvt->dcsb1[cs]);
|
|
if (unlikely(err))
|
|
debugf0("Reading F10_DCSB1[%d] failed\n", cs);
|
|
else
|
|
debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
|
|
cs, pvt->dcsb1[cs], reg);
|
|
} else {
|
|
pvt->dcsb1[cs] = 0;
|
|
}
|
|
}
|
|
|
|
for (cs = 0; cs < pvt->num_dcsm; cs++) {
|
|
reg = K8_DCSB0 + (cs * 4);
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
|
|
&pvt->dcsm0[cs]);
|
|
if (unlikely(err))
|
|
debugf0("Reading K8_DCSM0 failed\n");
|
|
else
|
|
debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
|
|
cs, pvt->dcsm0[cs], reg);
|
|
|
|
/* If DCT are NOT ganged, then read in DCT1's mask */
|
|
if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
|
|
reg = F10_DCSM1 + (cs * 4);
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
|
|
&pvt->dcsm1[cs]);
|
|
if (unlikely(err))
|
|
debugf0("Reading F10_DCSM1[%d] failed\n", cs);
|
|
else
|
|
debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
|
|
cs, pvt->dcsm1[cs], reg);
|
|
} else
|
|
pvt->dcsm1[cs] = 0;
|
|
}
|
|
}
|
|
|
|
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
|
|
{
|
|
enum mem_type type;
|
|
|
|
if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
|
|
/* Rev F and later */
|
|
type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
|
|
} else {
|
|
/* Rev E and earlier */
|
|
type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
|
|
}
|
|
|
|
debugf1(" Memory type is: %s\n",
|
|
(type == MEM_DDR2) ? "MEM_DDR2" :
|
|
(type == MEM_RDDR2) ? "MEM_RDDR2" :
|
|
(type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
|
|
|
|
return type;
|
|
}
|
|
|
|
/*
|
|
* Read the DRAM Configuration Low register. It differs between CG, D & E revs
|
|
* and the later RevF memory controllers (DDR vs DDR2)
|
|
*
|
|
* Return:
|
|
* number of memory channels in operation
|
|
* Pass back:
|
|
* contents of the DCL0_LOW register
|
|
*/
|
|
static int k8_early_channel_count(struct amd64_pvt *pvt)
|
|
{
|
|
int flag, err = 0;
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
|
|
if (err)
|
|
return err;
|
|
|
|
if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
|
|
/* RevF (NPT) and later */
|
|
flag = pvt->dclr0 & F10_WIDTH_128;
|
|
} else {
|
|
/* RevE and earlier */
|
|
flag = pvt->dclr0 & REVE_WIDTH_128;
|
|
}
|
|
|
|
/* not used */
|
|
pvt->dclr1 = 0;
|
|
|
|
return (flag) ? 2 : 1;
|
|
}
|
|
|
|
/* extract the ERROR ADDRESS for the K8 CPUs */
|
|
static u64 k8_get_error_address(struct mem_ctl_info *mci,
|
|
struct amd64_error_info_regs *info)
|
|
{
|
|
return (((u64) (info->nbeah & 0xff)) << 32) +
|
|
(info->nbeal & ~0x03);
|
|
}
|
|
|
|
/*
|
|
* Read the Base and Limit registers for K8 based Memory controllers; extract
|
|
* fields from the 'raw' reg into separate data fields
|
|
*
|
|
* Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
|
|
*/
|
|
static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
|
|
{
|
|
u32 low;
|
|
u32 off = dram << 3; /* 8 bytes between DRAM entries */
|
|
int err;
|
|
|
|
err = pci_read_config_dword(pvt->addr_f1_ctl,
|
|
K8_DRAM_BASE_LOW + off, &low);
|
|
if (err)
|
|
debugf0("Reading K8_DRAM_BASE_LOW failed\n");
|
|
|
|
/* Extract parts into separate data entries */
|
|
pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
|
|
pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
|
|
pvt->dram_rw_en[dram] = (low & 0x3);
|
|
|
|
err = pci_read_config_dword(pvt->addr_f1_ctl,
|
|
K8_DRAM_LIMIT_LOW + off, &low);
|
|
if (err)
|
|
debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
|
|
|
|
/*
|
|
* Extract parts into separate data entries. Limit is the HIGHEST memory
|
|
* location of the region, so lower 24 bits need to be all ones
|
|
*/
|
|
pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
|
|
pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
|
|
pvt->dram_DstNode[dram] = (low & 0x7);
|
|
}
|
|
|
|
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
|
|
struct amd64_error_info_regs *info,
|
|
u64 SystemAddress)
|
|
{
|
|
struct mem_ctl_info *src_mci;
|
|
unsigned short syndrome;
|
|
int channel, csrow;
|
|
u32 page, offset;
|
|
|
|
/* Extract the syndrome parts and form a 16-bit syndrome */
|
|
syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
|
|
syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
|
|
|
|
/* CHIPKILL enabled */
|
|
if (info->nbcfg & K8_NBCFG_CHIPKILL) {
|
|
channel = get_channel_from_ecc_syndrome(syndrome);
|
|
if (channel < 0) {
|
|
/*
|
|
* Syndrome didn't map, so we don't know which of the
|
|
* 2 DIMMs is in error. So we need to ID 'both' of them
|
|
* as suspect.
|
|
*/
|
|
amd64_mc_printk(mci, KERN_WARNING,
|
|
"unknown syndrome 0x%x - possible error "
|
|
"reporting race\n", syndrome);
|
|
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
|
|
return;
|
|
}
|
|
} else {
|
|
/*
|
|
* non-chipkill ecc mode
|
|
*
|
|
* The k8 documentation is unclear about how to determine the
|
|
* channel number when using non-chipkill memory. This method
|
|
* was obtained from email communication with someone at AMD.
|
|
* (Wish the email was placed in this comment - norsk)
|
|
*/
|
|
channel = ((SystemAddress & BIT(3)) != 0);
|
|
}
|
|
|
|
/*
|
|
* Find out which node the error address belongs to. This may be
|
|
* different from the node that detected the error.
|
|
*/
|
|
src_mci = find_mc_by_sys_addr(mci, SystemAddress);
|
|
if (src_mci) {
|
|
amd64_mc_printk(mci, KERN_ERR,
|
|
"failed to map error address 0x%lx to a node\n",
|
|
(unsigned long)SystemAddress);
|
|
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
|
|
return;
|
|
}
|
|
|
|
/* Now map the SystemAddress to a CSROW */
|
|
csrow = sys_addr_to_csrow(src_mci, SystemAddress);
|
|
if (csrow < 0) {
|
|
edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
|
|
} else {
|
|
error_address_to_page_and_offset(SystemAddress, &page, &offset);
|
|
|
|
edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
|
|
channel, EDAC_MOD_STR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* determrine the number of PAGES in for this DIMM's size based on its DRAM
|
|
* Address Mapping.
|
|
*
|
|
* First step is to calc the number of bits to shift a value of 1 left to
|
|
* indicate show many pages. Start with the DBAM value as the starting bits,
|
|
* then proceed to adjust those shift bits, based on CPU rev and the table.
|
|
* See BKDG on the DBAM
|
|
*/
|
|
static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
|
|
{
|
|
int nr_pages;
|
|
|
|
if (pvt->ext_model >= OPTERON_CPU_REV_F) {
|
|
nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
|
|
} else {
|
|
/*
|
|
* RevE and less section; this line is tricky. It collapses the
|
|
* table used by RevD and later to one that matches revisions CG
|
|
* and earlier.
|
|
*/
|
|
dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
|
|
(dram_map > 8 ? 4 : (dram_map > 5 ?
|
|
3 : (dram_map > 2 ? 1 : 0))) : 0;
|
|
|
|
/* 25 shift is 32MiB minimum DIMM size in RevE and prior */
|
|
nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
|
|
}
|
|
|
|
return nr_pages;
|
|
}
|
|
|
|
/*
|
|
* Get the number of DCT channels in use.
|
|
*
|
|
* Return:
|
|
* number of Memory Channels in operation
|
|
* Pass back:
|
|
* contents of the DCL0_LOW register
|
|
*/
|
|
static int f10_early_channel_count(struct amd64_pvt *pvt)
|
|
{
|
|
int err = 0, channels = 0;
|
|
u32 dbam;
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
/* If we are in 128 bit mode, then we are using 2 channels */
|
|
if (pvt->dclr0 & F10_WIDTH_128) {
|
|
debugf0("Data WIDTH is 128 bits - 2 channels\n");
|
|
channels = 2;
|
|
return channels;
|
|
}
|
|
|
|
/*
|
|
* Need to check if in UN-ganged mode: In such, there are 2 channels,
|
|
* but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
|
|
* will be OFF.
|
|
*
|
|
* Need to check DCT0[0] and DCT1[0] to see if only one of them has
|
|
* their CSEnable bit on. If so, then SINGLE DIMM case.
|
|
*/
|
|
debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
|
|
|
|
/*
|
|
* Check DRAM Bank Address Mapping values for each DIMM to see if there
|
|
* is more than just one DIMM present in unganged mode. Need to check
|
|
* both controllers since DIMMs can be placed in either one.
|
|
*/
|
|
channels = 0;
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
if (DBAM_DIMM(0, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(1, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(2, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(3, dbam) > 0)
|
|
channels++;
|
|
|
|
/* If more than 2 DIMMs are present, then we have 2 channels */
|
|
if (channels > 2)
|
|
channels = 2;
|
|
else if (channels == 0) {
|
|
/* No DIMMs on DCT0, so look at DCT1 */
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
if (DBAM_DIMM(0, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(1, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(2, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(3, dbam) > 0)
|
|
channels++;
|
|
|
|
if (channels > 2)
|
|
channels = 2;
|
|
}
|
|
|
|
/* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
|
|
if (channels == 0)
|
|
channels = 1;
|
|
|
|
debugf0("DIMM count= %d\n", channels);
|
|
|
|
return channels;
|
|
|
|
err_reg:
|
|
return -1;
|
|
|
|
}
|
|
|
|
static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
|
|
{
|
|
return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
|
|
}
|
|
|
|
/* Enable extended configuration access via 0xCF8 feature */
|
|
static void amd64_setup(struct amd64_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®);
|
|
|
|
pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
|
|
reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
|
|
pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
|
|
}
|
|
|
|
/* Restore the extended configuration access via 0xCF8 feature */
|
|
static void amd64_teardown(struct amd64_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®);
|
|
|
|
reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
|
|
if (pvt->flags.cf8_extcfg)
|
|
reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
|
|
pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
|
|
}
|
|
|
|
static u64 f10_get_error_address(struct mem_ctl_info *mci,
|
|
struct amd64_error_info_regs *info)
|
|
{
|
|
return (((u64) (info->nbeah & 0xffff)) << 32) +
|
|
(info->nbeal & ~0x01);
|
|
}
|
|
|
|
/*
|
|
* Read the Base and Limit registers for F10 based Memory controllers. Extract
|
|
* fields from the 'raw' reg into separate data fields.
|
|
*
|
|
* Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
|
|
*/
|
|
static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
|
|
{
|
|
u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
|
|
|
|
low_offset = K8_DRAM_BASE_LOW + (dram << 3);
|
|
high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
|
|
|
|
/* read the 'raw' DRAM BASE Address register */
|
|
pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
|
|
|
|
/* Read from the ECS data register */
|
|
pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
|
|
|
|
/* Extract parts into separate data entries */
|
|
pvt->dram_rw_en[dram] = (low_base & 0x3);
|
|
|
|
if (pvt->dram_rw_en[dram] == 0)
|
|
return;
|
|
|
|
pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
|
|
|
|
pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
|
|
((u64) low_base & 0xFFFF0000))) << 8;
|
|
|
|
low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
|
|
high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
|
|
|
|
/* read the 'raw' LIMIT registers */
|
|
pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
|
|
|
|
/* Read from the ECS data register for the HIGH portion */
|
|
pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
|
|
|
|
debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
|
|
high_base, low_base, high_limit, low_limit);
|
|
|
|
pvt->dram_DstNode[dram] = (low_limit & 0x7);
|
|
pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
|
|
|
|
/*
|
|
* Extract address values and form a LIMIT address. Limit is the HIGHEST
|
|
* memory location of the region, so low 24 bits need to be all ones.
|
|
*/
|
|
low_limit |= 0x0000FFFF;
|
|
pvt->dram_limit[dram] =
|
|
((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
|
|
}
|