mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-16 05:50:19 +00:00
a74a4b97b6
This creates one kthread for commits and one kthread for deleting old snapshots. All the work queues are removed. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2501 lines
62 KiB
C
2501 lines
62 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/random.h>
|
|
#include <asm/div64.h>
|
|
#include "ctree.h"
|
|
#include "extent_map.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "print-tree.h"
|
|
#include "volumes.h"
|
|
#include "async-thread.h"
|
|
|
|
struct map_lookup {
|
|
u64 type;
|
|
int io_align;
|
|
int io_width;
|
|
int stripe_len;
|
|
int sector_size;
|
|
int num_stripes;
|
|
int sub_stripes;
|
|
struct btrfs_bio_stripe stripes[];
|
|
};
|
|
|
|
#define map_lookup_size(n) (sizeof(struct map_lookup) + \
|
|
(sizeof(struct btrfs_bio_stripe) * (n)))
|
|
|
|
static DEFINE_MUTEX(uuid_mutex);
|
|
static LIST_HEAD(fs_uuids);
|
|
|
|
void btrfs_lock_volumes(void)
|
|
{
|
|
mutex_lock(&uuid_mutex);
|
|
}
|
|
|
|
void btrfs_unlock_volumes(void)
|
|
{
|
|
mutex_unlock(&uuid_mutex);
|
|
}
|
|
|
|
int btrfs_cleanup_fs_uuids(void)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
struct list_head *uuid_cur;
|
|
struct list_head *devices_cur;
|
|
struct btrfs_device *dev;
|
|
|
|
list_for_each(uuid_cur, &fs_uuids) {
|
|
fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
|
|
list);
|
|
while(!list_empty(&fs_devices->devices)) {
|
|
devices_cur = fs_devices->devices.next;
|
|
dev = list_entry(devices_cur, struct btrfs_device,
|
|
dev_list);
|
|
if (dev->bdev) {
|
|
close_bdev_excl(dev->bdev);
|
|
fs_devices->open_devices--;
|
|
}
|
|
list_del(&dev->dev_list);
|
|
kfree(dev->name);
|
|
kfree(dev);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
|
|
u8 *uuid)
|
|
{
|
|
struct btrfs_device *dev;
|
|
struct list_head *cur;
|
|
|
|
list_for_each(cur, head) {
|
|
dev = list_entry(cur, struct btrfs_device, dev_list);
|
|
if (dev->devid == devid &&
|
|
(!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
|
|
return dev;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct btrfs_fs_devices *find_fsid(u8 *fsid)
|
|
{
|
|
struct list_head *cur;
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
list_for_each(cur, &fs_uuids) {
|
|
fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
|
|
if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
|
|
return fs_devices;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* we try to collect pending bios for a device so we don't get a large
|
|
* number of procs sending bios down to the same device. This greatly
|
|
* improves the schedulers ability to collect and merge the bios.
|
|
*
|
|
* But, it also turns into a long list of bios to process and that is sure
|
|
* to eventually make the worker thread block. The solution here is to
|
|
* make some progress and then put this work struct back at the end of
|
|
* the list if the block device is congested. This way, multiple devices
|
|
* can make progress from a single worker thread.
|
|
*/
|
|
int run_scheduled_bios(struct btrfs_device *device)
|
|
{
|
|
struct bio *pending;
|
|
struct backing_dev_info *bdi;
|
|
struct bio *tail;
|
|
struct bio *cur;
|
|
int again = 0;
|
|
unsigned long num_run = 0;
|
|
|
|
bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
|
|
loop:
|
|
spin_lock(&device->io_lock);
|
|
|
|
/* take all the bios off the list at once and process them
|
|
* later on (without the lock held). But, remember the
|
|
* tail and other pointers so the bios can be properly reinserted
|
|
* into the list if we hit congestion
|
|
*/
|
|
pending = device->pending_bios;
|
|
tail = device->pending_bio_tail;
|
|
WARN_ON(pending && !tail);
|
|
device->pending_bios = NULL;
|
|
device->pending_bio_tail = NULL;
|
|
|
|
/*
|
|
* if pending was null this time around, no bios need processing
|
|
* at all and we can stop. Otherwise it'll loop back up again
|
|
* and do an additional check so no bios are missed.
|
|
*
|
|
* device->running_pending is used to synchronize with the
|
|
* schedule_bio code.
|
|
*/
|
|
if (pending) {
|
|
again = 1;
|
|
device->running_pending = 1;
|
|
} else {
|
|
again = 0;
|
|
device->running_pending = 0;
|
|
}
|
|
spin_unlock(&device->io_lock);
|
|
|
|
while(pending) {
|
|
cur = pending;
|
|
pending = pending->bi_next;
|
|
cur->bi_next = NULL;
|
|
atomic_dec(&device->dev_root->fs_info->nr_async_submits);
|
|
submit_bio(cur->bi_rw, cur);
|
|
num_run++;
|
|
|
|
/*
|
|
* we made progress, there is more work to do and the bdi
|
|
* is now congested. Back off and let other work structs
|
|
* run instead
|
|
*/
|
|
if (pending && num_run && bdi_write_congested(bdi)) {
|
|
struct bio *old_head;
|
|
|
|
spin_lock(&device->io_lock);
|
|
old_head = device->pending_bios;
|
|
device->pending_bios = pending;
|
|
if (device->pending_bio_tail)
|
|
tail->bi_next = old_head;
|
|
else
|
|
device->pending_bio_tail = tail;
|
|
|
|
spin_unlock(&device->io_lock);
|
|
btrfs_requeue_work(&device->work);
|
|
goto done;
|
|
}
|
|
}
|
|
if (again)
|
|
goto loop;
|
|
done:
|
|
return 0;
|
|
}
|
|
|
|
void pending_bios_fn(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_device *device;
|
|
|
|
device = container_of(work, struct btrfs_device, work);
|
|
run_scheduled_bios(device);
|
|
}
|
|
|
|
static int device_list_add(const char *path,
|
|
struct btrfs_super_block *disk_super,
|
|
u64 devid, struct btrfs_fs_devices **fs_devices_ret)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices;
|
|
u64 found_transid = btrfs_super_generation(disk_super);
|
|
|
|
fs_devices = find_fsid(disk_super->fsid);
|
|
if (!fs_devices) {
|
|
fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
|
|
if (!fs_devices)
|
|
return -ENOMEM;
|
|
INIT_LIST_HEAD(&fs_devices->devices);
|
|
INIT_LIST_HEAD(&fs_devices->alloc_list);
|
|
list_add(&fs_devices->list, &fs_uuids);
|
|
memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
|
|
fs_devices->latest_devid = devid;
|
|
fs_devices->latest_trans = found_transid;
|
|
device = NULL;
|
|
} else {
|
|
device = __find_device(&fs_devices->devices, devid,
|
|
disk_super->dev_item.uuid);
|
|
}
|
|
if (!device) {
|
|
device = kzalloc(sizeof(*device), GFP_NOFS);
|
|
if (!device) {
|
|
/* we can safely leave the fs_devices entry around */
|
|
return -ENOMEM;
|
|
}
|
|
device->devid = devid;
|
|
device->work.func = pending_bios_fn;
|
|
memcpy(device->uuid, disk_super->dev_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
device->barriers = 1;
|
|
spin_lock_init(&device->io_lock);
|
|
device->name = kstrdup(path, GFP_NOFS);
|
|
if (!device->name) {
|
|
kfree(device);
|
|
return -ENOMEM;
|
|
}
|
|
list_add(&device->dev_list, &fs_devices->devices);
|
|
list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
|
|
fs_devices->num_devices++;
|
|
}
|
|
|
|
if (found_transid > fs_devices->latest_trans) {
|
|
fs_devices->latest_devid = devid;
|
|
fs_devices->latest_trans = found_transid;
|
|
}
|
|
*fs_devices_ret = fs_devices;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct list_head *head = &fs_devices->devices;
|
|
struct list_head *cur;
|
|
struct btrfs_device *device;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
again:
|
|
list_for_each(cur, head) {
|
|
device = list_entry(cur, struct btrfs_device, dev_list);
|
|
if (!device->in_fs_metadata) {
|
|
struct block_device *bdev;
|
|
list_del(&device->dev_list);
|
|
list_del(&device->dev_alloc_list);
|
|
fs_devices->num_devices--;
|
|
if (device->bdev) {
|
|
bdev = device->bdev;
|
|
fs_devices->open_devices--;
|
|
mutex_unlock(&uuid_mutex);
|
|
close_bdev_excl(bdev);
|
|
mutex_lock(&uuid_mutex);
|
|
}
|
|
kfree(device->name);
|
|
kfree(device);
|
|
goto again;
|
|
}
|
|
}
|
|
mutex_unlock(&uuid_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct list_head *head = &fs_devices->devices;
|
|
struct list_head *cur;
|
|
struct btrfs_device *device;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
list_for_each(cur, head) {
|
|
device = list_entry(cur, struct btrfs_device, dev_list);
|
|
if (device->bdev) {
|
|
close_bdev_excl(device->bdev);
|
|
fs_devices->open_devices--;
|
|
}
|
|
device->bdev = NULL;
|
|
device->in_fs_metadata = 0;
|
|
}
|
|
fs_devices->mounted = 0;
|
|
mutex_unlock(&uuid_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
|
|
int flags, void *holder)
|
|
{
|
|
struct block_device *bdev;
|
|
struct list_head *head = &fs_devices->devices;
|
|
struct list_head *cur;
|
|
struct btrfs_device *device;
|
|
struct block_device *latest_bdev = NULL;
|
|
struct buffer_head *bh;
|
|
struct btrfs_super_block *disk_super;
|
|
u64 latest_devid = 0;
|
|
u64 latest_transid = 0;
|
|
u64 transid;
|
|
u64 devid;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
if (fs_devices->mounted)
|
|
goto out;
|
|
|
|
list_for_each(cur, head) {
|
|
device = list_entry(cur, struct btrfs_device, dev_list);
|
|
if (device->bdev)
|
|
continue;
|
|
|
|
if (!device->name)
|
|
continue;
|
|
|
|
bdev = open_bdev_excl(device->name, flags, holder);
|
|
|
|
if (IS_ERR(bdev)) {
|
|
printk("open %s failed\n", device->name);
|
|
goto error;
|
|
}
|
|
set_blocksize(bdev, 4096);
|
|
|
|
bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
|
|
if (!bh)
|
|
goto error_close;
|
|
|
|
disk_super = (struct btrfs_super_block *)bh->b_data;
|
|
if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
|
|
sizeof(disk_super->magic)))
|
|
goto error_brelse;
|
|
|
|
devid = le64_to_cpu(disk_super->dev_item.devid);
|
|
if (devid != device->devid)
|
|
goto error_brelse;
|
|
|
|
transid = btrfs_super_generation(disk_super);
|
|
if (!latest_transid || transid > latest_transid) {
|
|
latest_devid = devid;
|
|
latest_transid = transid;
|
|
latest_bdev = bdev;
|
|
}
|
|
|
|
device->bdev = bdev;
|
|
device->in_fs_metadata = 0;
|
|
fs_devices->open_devices++;
|
|
continue;
|
|
|
|
error_brelse:
|
|
brelse(bh);
|
|
error_close:
|
|
close_bdev_excl(bdev);
|
|
error:
|
|
continue;
|
|
}
|
|
if (fs_devices->open_devices == 0) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
fs_devices->mounted = 1;
|
|
fs_devices->latest_bdev = latest_bdev;
|
|
fs_devices->latest_devid = latest_devid;
|
|
fs_devices->latest_trans = latest_transid;
|
|
out:
|
|
mutex_unlock(&uuid_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_scan_one_device(const char *path, int flags, void *holder,
|
|
struct btrfs_fs_devices **fs_devices_ret)
|
|
{
|
|
struct btrfs_super_block *disk_super;
|
|
struct block_device *bdev;
|
|
struct buffer_head *bh;
|
|
int ret;
|
|
u64 devid;
|
|
u64 transid;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
|
|
bdev = open_bdev_excl(path, flags, holder);
|
|
|
|
if (IS_ERR(bdev)) {
|
|
ret = PTR_ERR(bdev);
|
|
goto error;
|
|
}
|
|
|
|
ret = set_blocksize(bdev, 4096);
|
|
if (ret)
|
|
goto error_close;
|
|
bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
|
|
if (!bh) {
|
|
ret = -EIO;
|
|
goto error_close;
|
|
}
|
|
disk_super = (struct btrfs_super_block *)bh->b_data;
|
|
if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
|
|
sizeof(disk_super->magic))) {
|
|
ret = -EINVAL;
|
|
goto error_brelse;
|
|
}
|
|
devid = le64_to_cpu(disk_super->dev_item.devid);
|
|
transid = btrfs_super_generation(disk_super);
|
|
if (disk_super->label[0])
|
|
printk("device label %s ", disk_super->label);
|
|
else {
|
|
/* FIXME, make a readl uuid parser */
|
|
printk("device fsid %llx-%llx ",
|
|
*(unsigned long long *)disk_super->fsid,
|
|
*(unsigned long long *)(disk_super->fsid + 8));
|
|
}
|
|
printk("devid %Lu transid %Lu %s\n", devid, transid, path);
|
|
ret = device_list_add(path, disk_super, devid, fs_devices_ret);
|
|
|
|
error_brelse:
|
|
brelse(bh);
|
|
error_close:
|
|
close_bdev_excl(bdev);
|
|
error:
|
|
mutex_unlock(&uuid_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this uses a pretty simple search, the expectation is that it is
|
|
* called very infrequently and that a given device has a small number
|
|
* of extents
|
|
*/
|
|
static int find_free_dev_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device,
|
|
struct btrfs_path *path,
|
|
u64 num_bytes, u64 *start)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_dev_extent *dev_extent = NULL;
|
|
u64 hole_size = 0;
|
|
u64 last_byte = 0;
|
|
u64 search_start = 0;
|
|
u64 search_end = device->total_bytes;
|
|
int ret;
|
|
int slot = 0;
|
|
int start_found;
|
|
struct extent_buffer *l;
|
|
|
|
start_found = 0;
|
|
path->reada = 2;
|
|
|
|
/* FIXME use last free of some kind */
|
|
|
|
/* we don't want to overwrite the superblock on the drive,
|
|
* so we make sure to start at an offset of at least 1MB
|
|
*/
|
|
search_start = max((u64)1024 * 1024, search_start);
|
|
|
|
if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
|
|
search_start = max(root->fs_info->alloc_start, search_start);
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = search_start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
ret = btrfs_previous_item(root, path, 0, key.type);
|
|
if (ret < 0)
|
|
goto error;
|
|
l = path->nodes[0];
|
|
btrfs_item_key_to_cpu(l, &key, path->slots[0]);
|
|
while (1) {
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(l)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto error;
|
|
no_more_items:
|
|
if (!start_found) {
|
|
if (search_start >= search_end) {
|
|
ret = -ENOSPC;
|
|
goto error;
|
|
}
|
|
*start = search_start;
|
|
start_found = 1;
|
|
goto check_pending;
|
|
}
|
|
*start = last_byte > search_start ?
|
|
last_byte : search_start;
|
|
if (search_end <= *start) {
|
|
ret = -ENOSPC;
|
|
goto error;
|
|
}
|
|
goto check_pending;
|
|
}
|
|
btrfs_item_key_to_cpu(l, &key, slot);
|
|
|
|
if (key.objectid < device->devid)
|
|
goto next;
|
|
|
|
if (key.objectid > device->devid)
|
|
goto no_more_items;
|
|
|
|
if (key.offset >= search_start && key.offset > last_byte &&
|
|
start_found) {
|
|
if (last_byte < search_start)
|
|
last_byte = search_start;
|
|
hole_size = key.offset - last_byte;
|
|
if (key.offset > last_byte &&
|
|
hole_size >= num_bytes) {
|
|
*start = last_byte;
|
|
goto check_pending;
|
|
}
|
|
}
|
|
if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
|
|
goto next;
|
|
}
|
|
|
|
start_found = 1;
|
|
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
|
|
last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
|
|
next:
|
|
path->slots[0]++;
|
|
cond_resched();
|
|
}
|
|
check_pending:
|
|
/* we have to make sure we didn't find an extent that has already
|
|
* been allocated by the map tree or the original allocation
|
|
*/
|
|
btrfs_release_path(root, path);
|
|
BUG_ON(*start < search_start);
|
|
|
|
if (*start + num_bytes > search_end) {
|
|
ret = -ENOSPC;
|
|
goto error;
|
|
}
|
|
/* check for pending inserts here */
|
|
return 0;
|
|
|
|
error:
|
|
btrfs_release_path(root, path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device,
|
|
u64 start)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf = NULL;
|
|
struct btrfs_dev_extent *extent = NULL;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, key.objectid,
|
|
BTRFS_DEV_EXTENT_KEY);
|
|
BUG_ON(ret);
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_extent);
|
|
BUG_ON(found_key.offset > start || found_key.offset +
|
|
btrfs_dev_extent_length(leaf, extent) < start);
|
|
ret = 0;
|
|
} else if (ret == 0) {
|
|
leaf = path->nodes[0];
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_extent);
|
|
}
|
|
BUG_ON(ret);
|
|
|
|
if (device->bytes_used > 0)
|
|
device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
|
|
ret = btrfs_del_item(trans, root, path);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device,
|
|
u64 chunk_tree, u64 chunk_objectid,
|
|
u64 chunk_offset,
|
|
u64 num_bytes, u64 *start)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_dev_extent *extent;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
|
|
WARN_ON(!device->in_fs_metadata);
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = find_free_dev_extent(trans, device, path, num_bytes, start);
|
|
if (ret) {
|
|
goto err;
|
|
}
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = *start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
sizeof(*extent));
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_extent);
|
|
btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
|
|
btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
|
|
btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
|
|
|
|
write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
|
|
(unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
|
|
BTRFS_UUID_SIZE);
|
|
|
|
btrfs_set_dev_extent_length(leaf, extent, num_bytes);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
err:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_key found_key;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
key.objectid = objectid;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
BUG_ON(ret == 0);
|
|
|
|
ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
|
|
if (ret) {
|
|
*offset = 0;
|
|
} else {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
if (found_key.objectid != objectid)
|
|
*offset = 0;
|
|
else {
|
|
chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_chunk);
|
|
*offset = found_key.offset +
|
|
btrfs_chunk_length(path->nodes[0], chunk);
|
|
}
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
|
|
u64 *objectid)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
BUG_ON(ret == 0);
|
|
|
|
ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
|
|
BTRFS_DEV_ITEM_KEY);
|
|
if (ret) {
|
|
*objectid = 1;
|
|
} else {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
*objectid = found_key.offset + 1;
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_release_path(root, path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* the device information is stored in the chunk root
|
|
* the btrfs_device struct should be fully filled in
|
|
*/
|
|
int btrfs_add_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_device *device)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
unsigned long ptr;
|
|
u64 free_devid = 0;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = find_next_devid(root, path, &free_devid);
|
|
if (ret)
|
|
goto out;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = free_devid;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
sizeof(*dev_item));
|
|
if (ret)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
|
|
|
|
device->devid = free_devid;
|
|
btrfs_set_device_id(leaf, dev_item, device->devid);
|
|
btrfs_set_device_type(leaf, dev_item, device->type);
|
|
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
|
|
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
|
|
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
|
|
btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
|
|
btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
|
|
btrfs_set_device_group(leaf, dev_item, 0);
|
|
btrfs_set_device_seek_speed(leaf, dev_item, 0);
|
|
btrfs_set_device_bandwidth(leaf, dev_item, 0);
|
|
|
|
ptr = (unsigned long)btrfs_device_uuid(dev_item);
|
|
write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
ret = 0;
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_rm_dev_item(struct btrfs_root *root,
|
|
struct btrfs_device *device)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct block_device *bdev = device->bdev;
|
|
struct btrfs_device *next_dev;
|
|
struct btrfs_key key;
|
|
u64 total_bytes;
|
|
struct btrfs_fs_devices *fs_devices;
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* at this point, the device is zero sized. We want to
|
|
* remove it from the devices list and zero out the old super
|
|
*/
|
|
list_del_init(&device->dev_list);
|
|
list_del_init(&device->dev_alloc_list);
|
|
fs_devices = root->fs_info->fs_devices;
|
|
|
|
next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
|
|
dev_list);
|
|
if (bdev == root->fs_info->sb->s_bdev)
|
|
root->fs_info->sb->s_bdev = next_dev->bdev;
|
|
if (bdev == fs_devices->latest_bdev)
|
|
fs_devices->latest_bdev = next_dev->bdev;
|
|
|
|
total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
|
|
btrfs_set_super_num_devices(&root->fs_info->super_copy,
|
|
total_bytes - 1);
|
|
out:
|
|
btrfs_free_path(path);
|
|
btrfs_commit_transaction(trans, root);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_rm_device(struct btrfs_root *root, char *device_path)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct block_device *bdev;
|
|
struct buffer_head *bh = NULL;
|
|
struct btrfs_super_block *disk_super;
|
|
u64 all_avail;
|
|
u64 devid;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&root->fs_info->alloc_mutex);
|
|
mutex_lock(&root->fs_info->chunk_mutex);
|
|
mutex_lock(&uuid_mutex);
|
|
|
|
all_avail = root->fs_info->avail_data_alloc_bits |
|
|
root->fs_info->avail_system_alloc_bits |
|
|
root->fs_info->avail_metadata_alloc_bits;
|
|
|
|
if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
|
|
btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
|
|
printk("btrfs: unable to go below four devices on raid10\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
|
|
btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
|
|
printk("btrfs: unable to go below two devices on raid1\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (strcmp(device_path, "missing") == 0) {
|
|
struct list_head *cur;
|
|
struct list_head *devices;
|
|
struct btrfs_device *tmp;
|
|
|
|
device = NULL;
|
|
devices = &root->fs_info->fs_devices->devices;
|
|
list_for_each(cur, devices) {
|
|
tmp = list_entry(cur, struct btrfs_device, dev_list);
|
|
if (tmp->in_fs_metadata && !tmp->bdev) {
|
|
device = tmp;
|
|
break;
|
|
}
|
|
}
|
|
bdev = NULL;
|
|
bh = NULL;
|
|
disk_super = NULL;
|
|
if (!device) {
|
|
printk("btrfs: no missing devices found to remove\n");
|
|
goto out;
|
|
}
|
|
|
|
} else {
|
|
bdev = open_bdev_excl(device_path, 0,
|
|
root->fs_info->bdev_holder);
|
|
if (IS_ERR(bdev)) {
|
|
ret = PTR_ERR(bdev);
|
|
goto out;
|
|
}
|
|
|
|
bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
|
|
if (!bh) {
|
|
ret = -EIO;
|
|
goto error_close;
|
|
}
|
|
disk_super = (struct btrfs_super_block *)bh->b_data;
|
|
if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
|
|
sizeof(disk_super->magic))) {
|
|
ret = -ENOENT;
|
|
goto error_brelse;
|
|
}
|
|
if (memcmp(disk_super->fsid, root->fs_info->fsid,
|
|
BTRFS_FSID_SIZE)) {
|
|
ret = -ENOENT;
|
|
goto error_brelse;
|
|
}
|
|
devid = le64_to_cpu(disk_super->dev_item.devid);
|
|
device = btrfs_find_device(root, devid, NULL);
|
|
if (!device) {
|
|
ret = -ENOENT;
|
|
goto error_brelse;
|
|
}
|
|
|
|
}
|
|
root->fs_info->fs_devices->num_devices--;
|
|
root->fs_info->fs_devices->open_devices--;
|
|
|
|
ret = btrfs_shrink_device(device, 0);
|
|
if (ret)
|
|
goto error_brelse;
|
|
|
|
|
|
ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
|
|
if (ret)
|
|
goto error_brelse;
|
|
|
|
if (bh) {
|
|
/* make sure this device isn't detected as part of
|
|
* the FS anymore
|
|
*/
|
|
memset(&disk_super->magic, 0, sizeof(disk_super->magic));
|
|
set_buffer_dirty(bh);
|
|
sync_dirty_buffer(bh);
|
|
|
|
brelse(bh);
|
|
}
|
|
|
|
if (device->bdev) {
|
|
/* one close for the device struct or super_block */
|
|
close_bdev_excl(device->bdev);
|
|
}
|
|
if (bdev) {
|
|
/* one close for us */
|
|
close_bdev_excl(bdev);
|
|
}
|
|
kfree(device->name);
|
|
kfree(device);
|
|
ret = 0;
|
|
goto out;
|
|
|
|
error_brelse:
|
|
brelse(bh);
|
|
error_close:
|
|
if (bdev)
|
|
close_bdev_excl(bdev);
|
|
out:
|
|
mutex_unlock(&uuid_mutex);
|
|
mutex_unlock(&root->fs_info->chunk_mutex);
|
|
mutex_unlock(&root->fs_info->alloc_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_device *device;
|
|
struct block_device *bdev;
|
|
struct list_head *cur;
|
|
struct list_head *devices;
|
|
u64 total_bytes;
|
|
int ret = 0;
|
|
|
|
|
|
bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
|
|
if (!bdev) {
|
|
return -EIO;
|
|
}
|
|
|
|
mutex_lock(&root->fs_info->alloc_mutex);
|
|
mutex_lock(&root->fs_info->chunk_mutex);
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
devices = &root->fs_info->fs_devices->devices;
|
|
list_for_each(cur, devices) {
|
|
device = list_entry(cur, struct btrfs_device, dev_list);
|
|
if (device->bdev == bdev) {
|
|
ret = -EEXIST;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
device = kzalloc(sizeof(*device), GFP_NOFS);
|
|
if (!device) {
|
|
/* we can safely leave the fs_devices entry around */
|
|
ret = -ENOMEM;
|
|
goto out_close_bdev;
|
|
}
|
|
|
|
device->barriers = 1;
|
|
device->work.func = pending_bios_fn;
|
|
generate_random_uuid(device->uuid);
|
|
spin_lock_init(&device->io_lock);
|
|
device->name = kstrdup(device_path, GFP_NOFS);
|
|
if (!device->name) {
|
|
kfree(device);
|
|
goto out_close_bdev;
|
|
}
|
|
device->io_width = root->sectorsize;
|
|
device->io_align = root->sectorsize;
|
|
device->sector_size = root->sectorsize;
|
|
device->total_bytes = i_size_read(bdev->bd_inode);
|
|
device->dev_root = root->fs_info->dev_root;
|
|
device->bdev = bdev;
|
|
device->in_fs_metadata = 1;
|
|
|
|
ret = btrfs_add_device(trans, root, device);
|
|
if (ret)
|
|
goto out_close_bdev;
|
|
|
|
total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
|
|
btrfs_set_super_total_bytes(&root->fs_info->super_copy,
|
|
total_bytes + device->total_bytes);
|
|
|
|
total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
|
|
btrfs_set_super_num_devices(&root->fs_info->super_copy,
|
|
total_bytes + 1);
|
|
|
|
list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
|
|
list_add(&device->dev_alloc_list,
|
|
&root->fs_info->fs_devices->alloc_list);
|
|
root->fs_info->fs_devices->num_devices++;
|
|
root->fs_info->fs_devices->open_devices++;
|
|
out:
|
|
btrfs_end_transaction(trans, root);
|
|
mutex_unlock(&root->fs_info->chunk_mutex);
|
|
mutex_unlock(&root->fs_info->alloc_mutex);
|
|
|
|
return ret;
|
|
|
|
out_close_bdev:
|
|
close_bdev_excl(bdev);
|
|
goto out;
|
|
}
|
|
|
|
int btrfs_update_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
|
|
root = device->dev_root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
|
|
|
|
btrfs_set_device_id(leaf, dev_item, device->devid);
|
|
btrfs_set_device_type(leaf, dev_item, device->type);
|
|
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
|
|
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
|
|
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
|
|
btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
|
|
btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_grow_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device, u64 new_size)
|
|
{
|
|
struct btrfs_super_block *super_copy =
|
|
&device->dev_root->fs_info->super_copy;
|
|
u64 old_total = btrfs_super_total_bytes(super_copy);
|
|
u64 diff = new_size - device->total_bytes;
|
|
|
|
btrfs_set_super_total_bytes(super_copy, old_total + diff);
|
|
return btrfs_update_device(trans, device);
|
|
}
|
|
|
|
static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 chunk_tree, u64 chunk_objectid,
|
|
u64 chunk_offset)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = chunk_objectid;
|
|
key.offset = chunk_offset;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
|
|
chunk_offset)
|
|
{
|
|
struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_chunk *chunk;
|
|
u8 *ptr;
|
|
int ret = 0;
|
|
u32 num_stripes;
|
|
u32 array_size;
|
|
u32 len = 0;
|
|
u32 cur;
|
|
struct btrfs_key key;
|
|
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
|
|
ptr = super_copy->sys_chunk_array;
|
|
cur = 0;
|
|
|
|
while (cur < array_size) {
|
|
disk_key = (struct btrfs_disk_key *)ptr;
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
len = sizeof(*disk_key);
|
|
|
|
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
chunk = (struct btrfs_chunk *)(ptr + len);
|
|
num_stripes = btrfs_stack_chunk_num_stripes(chunk);
|
|
len += btrfs_chunk_item_size(num_stripes);
|
|
} else {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
if (key.objectid == chunk_objectid &&
|
|
key.offset == chunk_offset) {
|
|
memmove(ptr, ptr + len, array_size - (cur + len));
|
|
array_size -= len;
|
|
btrfs_set_super_sys_array_size(super_copy, array_size);
|
|
} else {
|
|
ptr += len;
|
|
cur += len;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
int btrfs_relocate_chunk(struct btrfs_root *root,
|
|
u64 chunk_tree, u64 chunk_objectid,
|
|
u64 chunk_offset)
|
|
{
|
|
struct extent_map_tree *em_tree;
|
|
struct btrfs_root *extent_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
int ret;
|
|
int i;
|
|
|
|
printk("btrfs relocating chunk %llu\n",
|
|
(unsigned long long)chunk_offset);
|
|
root = root->fs_info->chunk_root;
|
|
extent_root = root->fs_info->extent_root;
|
|
em_tree = &root->fs_info->mapping_tree.map_tree;
|
|
|
|
/* step one, relocate all the extents inside this chunk */
|
|
ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
|
|
BUG_ON(ret);
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
BUG_ON(!trans);
|
|
|
|
/*
|
|
* step two, delete the device extents and the
|
|
* chunk tree entries
|
|
*/
|
|
spin_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, chunk_offset, 1);
|
|
spin_unlock(&em_tree->lock);
|
|
|
|
BUG_ON(em->start > chunk_offset ||
|
|
em->start + em->len < chunk_offset);
|
|
map = (struct map_lookup *)em->bdev;
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
|
|
map->stripes[i].physical);
|
|
BUG_ON(ret);
|
|
|
|
if (map->stripes[i].dev) {
|
|
ret = btrfs_update_device(trans, map->stripes[i].dev);
|
|
BUG_ON(ret);
|
|
}
|
|
}
|
|
ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
|
|
chunk_offset);
|
|
|
|
BUG_ON(ret);
|
|
|
|
if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
spin_lock(&em_tree->lock);
|
|
remove_extent_mapping(em_tree, em);
|
|
kfree(map);
|
|
em->bdev = NULL;
|
|
|
|
/* once for the tree */
|
|
free_extent_map(em);
|
|
spin_unlock(&em_tree->lock);
|
|
|
|
/* once for us */
|
|
free_extent_map(em);
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
return 0;
|
|
}
|
|
|
|
static u64 div_factor(u64 num, int factor)
|
|
{
|
|
if (factor == 10)
|
|
return num;
|
|
num *= factor;
|
|
do_div(num, 10);
|
|
return num;
|
|
}
|
|
|
|
|
|
int btrfs_balance(struct btrfs_root *dev_root)
|
|
{
|
|
int ret;
|
|
struct list_head *cur;
|
|
struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
|
|
struct btrfs_device *device;
|
|
u64 old_size;
|
|
u64 size_to_free;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_key found_key;
|
|
|
|
|
|
BUG(); /* FIXME, needs locking */
|
|
|
|
dev_root = dev_root->fs_info->dev_root;
|
|
|
|
/* step one make some room on all the devices */
|
|
list_for_each(cur, devices) {
|
|
device = list_entry(cur, struct btrfs_device, dev_list);
|
|
old_size = device->total_bytes;
|
|
size_to_free = div_factor(old_size, 1);
|
|
size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
|
|
if (device->total_bytes - device->bytes_used > size_to_free)
|
|
continue;
|
|
|
|
ret = btrfs_shrink_device(device, old_size - size_to_free);
|
|
BUG_ON(ret);
|
|
|
|
trans = btrfs_start_transaction(dev_root, 1);
|
|
BUG_ON(!trans);
|
|
|
|
ret = btrfs_grow_device(trans, device, old_size);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_end_transaction(trans, dev_root);
|
|
}
|
|
|
|
/* step two, relocate all the chunks */
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
|
|
while(1) {
|
|
ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/*
|
|
* this shouldn't happen, it means the last relocate
|
|
* failed
|
|
*/
|
|
if (ret == 0)
|
|
break;
|
|
|
|
ret = btrfs_previous_item(chunk_root, path, 0,
|
|
BTRFS_CHUNK_ITEM_KEY);
|
|
if (ret) {
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
if (found_key.objectid != key.objectid)
|
|
break;
|
|
chunk = btrfs_item_ptr(path->nodes[0],
|
|
path->slots[0],
|
|
struct btrfs_chunk);
|
|
key.offset = found_key.offset;
|
|
/* chunk zero is special */
|
|
if (key.offset == 0)
|
|
break;
|
|
|
|
ret = btrfs_relocate_chunk(chunk_root,
|
|
chunk_root->root_key.objectid,
|
|
found_key.objectid,
|
|
found_key.offset);
|
|
BUG_ON(ret);
|
|
btrfs_release_path(chunk_root, path);
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* shrinking a device means finding all of the device extents past
|
|
* the new size, and then following the back refs to the chunks.
|
|
* The chunk relocation code actually frees the device extent
|
|
*/
|
|
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_dev_extent *dev_extent = NULL;
|
|
struct btrfs_path *path;
|
|
u64 length;
|
|
u64 chunk_tree;
|
|
u64 chunk_objectid;
|
|
u64 chunk_offset;
|
|
int ret;
|
|
int slot;
|
|
struct extent_buffer *l;
|
|
struct btrfs_key key;
|
|
struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
|
|
u64 old_total = btrfs_super_total_bytes(super_copy);
|
|
u64 diff = device->total_bytes - new_size;
|
|
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (!trans) {
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
path->reada = 2;
|
|
|
|
device->total_bytes = new_size;
|
|
ret = btrfs_update_device(trans, device);
|
|
if (ret) {
|
|
btrfs_end_transaction(trans, root);
|
|
goto done;
|
|
}
|
|
WARN_ON(diff > old_total);
|
|
btrfs_set_super_total_bytes(super_copy, old_total - diff);
|
|
btrfs_end_transaction(trans, root);
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto done;
|
|
|
|
ret = btrfs_previous_item(root, path, 0, key.type);
|
|
if (ret < 0)
|
|
goto done;
|
|
if (ret) {
|
|
ret = 0;
|
|
goto done;
|
|
}
|
|
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(l, &key, path->slots[0]);
|
|
|
|
if (key.objectid != device->devid)
|
|
goto done;
|
|
|
|
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
|
|
length = btrfs_dev_extent_length(l, dev_extent);
|
|
|
|
if (key.offset + length <= new_size)
|
|
goto done;
|
|
|
|
chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
|
|
chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
|
|
chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
|
|
btrfs_release_path(root, path);
|
|
|
|
ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
|
|
chunk_offset);
|
|
if (ret)
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_key *key,
|
|
struct btrfs_chunk *chunk, int item_size)
|
|
{
|
|
struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
|
|
struct btrfs_disk_key disk_key;
|
|
u32 array_size;
|
|
u8 *ptr;
|
|
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
|
|
return -EFBIG;
|
|
|
|
ptr = super_copy->sys_chunk_array + array_size;
|
|
btrfs_cpu_key_to_disk(&disk_key, key);
|
|
memcpy(ptr, &disk_key, sizeof(disk_key));
|
|
ptr += sizeof(disk_key);
|
|
memcpy(ptr, chunk, item_size);
|
|
item_size += sizeof(disk_key);
|
|
btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
|
|
return 0;
|
|
}
|
|
|
|
static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
|
|
int sub_stripes)
|
|
{
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
|
|
return calc_size;
|
|
else if (type & BTRFS_BLOCK_GROUP_RAID10)
|
|
return calc_size * (num_stripes / sub_stripes);
|
|
else
|
|
return calc_size * num_stripes;
|
|
}
|
|
|
|
|
|
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 *start,
|
|
u64 *num_bytes, u64 type)
|
|
{
|
|
u64 dev_offset;
|
|
struct btrfs_fs_info *info = extent_root->fs_info;
|
|
struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_stripe *stripes;
|
|
struct btrfs_device *device = NULL;
|
|
struct btrfs_chunk *chunk;
|
|
struct list_head private_devs;
|
|
struct list_head *dev_list;
|
|
struct list_head *cur;
|
|
struct extent_map_tree *em_tree;
|
|
struct map_lookup *map;
|
|
struct extent_map *em;
|
|
int min_stripe_size = 1 * 1024 * 1024;
|
|
u64 physical;
|
|
u64 calc_size = 1024 * 1024 * 1024;
|
|
u64 max_chunk_size = calc_size;
|
|
u64 min_free;
|
|
u64 avail;
|
|
u64 max_avail = 0;
|
|
u64 percent_max;
|
|
int num_stripes = 1;
|
|
int min_stripes = 1;
|
|
int sub_stripes = 0;
|
|
int looped = 0;
|
|
int ret;
|
|
int index;
|
|
int stripe_len = 64 * 1024;
|
|
struct btrfs_key key;
|
|
|
|
if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
|
|
(type & BTRFS_BLOCK_GROUP_DUP)) {
|
|
WARN_ON(1);
|
|
type &= ~BTRFS_BLOCK_GROUP_DUP;
|
|
}
|
|
dev_list = &extent_root->fs_info->fs_devices->alloc_list;
|
|
if (list_empty(dev_list))
|
|
return -ENOSPC;
|
|
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
|
|
num_stripes = extent_root->fs_info->fs_devices->open_devices;
|
|
min_stripes = 2;
|
|
}
|
|
if (type & (BTRFS_BLOCK_GROUP_DUP)) {
|
|
num_stripes = 2;
|
|
min_stripes = 2;
|
|
}
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
|
|
num_stripes = min_t(u64, 2,
|
|
extent_root->fs_info->fs_devices->open_devices);
|
|
if (num_stripes < 2)
|
|
return -ENOSPC;
|
|
min_stripes = 2;
|
|
}
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
|
|
num_stripes = extent_root->fs_info->fs_devices->open_devices;
|
|
if (num_stripes < 4)
|
|
return -ENOSPC;
|
|
num_stripes &= ~(u32)1;
|
|
sub_stripes = 2;
|
|
min_stripes = 4;
|
|
}
|
|
|
|
if (type & BTRFS_BLOCK_GROUP_DATA) {
|
|
max_chunk_size = 10 * calc_size;
|
|
min_stripe_size = 64 * 1024 * 1024;
|
|
} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
|
|
max_chunk_size = 4 * calc_size;
|
|
min_stripe_size = 32 * 1024 * 1024;
|
|
} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
calc_size = 8 * 1024 * 1024;
|
|
max_chunk_size = calc_size * 2;
|
|
min_stripe_size = 1 * 1024 * 1024;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/* we don't want a chunk larger than 10% of the FS */
|
|
percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
|
|
max_chunk_size = min(percent_max, max_chunk_size);
|
|
|
|
again:
|
|
if (calc_size * num_stripes > max_chunk_size) {
|
|
calc_size = max_chunk_size;
|
|
do_div(calc_size, num_stripes);
|
|
do_div(calc_size, stripe_len);
|
|
calc_size *= stripe_len;
|
|
}
|
|
/* we don't want tiny stripes */
|
|
calc_size = max_t(u64, min_stripe_size, calc_size);
|
|
|
|
do_div(calc_size, stripe_len);
|
|
calc_size *= stripe_len;
|
|
|
|
INIT_LIST_HEAD(&private_devs);
|
|
cur = dev_list->next;
|
|
index = 0;
|
|
|
|
if (type & BTRFS_BLOCK_GROUP_DUP)
|
|
min_free = calc_size * 2;
|
|
else
|
|
min_free = calc_size;
|
|
|
|
/* we add 1MB because we never use the first 1MB of the device */
|
|
min_free += 1024 * 1024;
|
|
|
|
/* build a private list of devices we will allocate from */
|
|
while(index < num_stripes) {
|
|
device = list_entry(cur, struct btrfs_device, dev_alloc_list);
|
|
|
|
if (device->total_bytes > device->bytes_used)
|
|
avail = device->total_bytes - device->bytes_used;
|
|
else
|
|
avail = 0;
|
|
cur = cur->next;
|
|
|
|
if (device->in_fs_metadata && avail >= min_free) {
|
|
u64 ignored_start = 0;
|
|
ret = find_free_dev_extent(trans, device, path,
|
|
min_free,
|
|
&ignored_start);
|
|
if (ret == 0) {
|
|
list_move_tail(&device->dev_alloc_list,
|
|
&private_devs);
|
|
index++;
|
|
if (type & BTRFS_BLOCK_GROUP_DUP)
|
|
index++;
|
|
}
|
|
} else if (device->in_fs_metadata && avail > max_avail)
|
|
max_avail = avail;
|
|
if (cur == dev_list)
|
|
break;
|
|
}
|
|
if (index < num_stripes) {
|
|
list_splice(&private_devs, dev_list);
|
|
if (index >= min_stripes) {
|
|
num_stripes = index;
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
|
|
num_stripes /= sub_stripes;
|
|
num_stripes *= sub_stripes;
|
|
}
|
|
looped = 1;
|
|
goto again;
|
|
}
|
|
if (!looped && max_avail > 0) {
|
|
looped = 1;
|
|
calc_size = max_avail;
|
|
goto again;
|
|
}
|
|
btrfs_free_path(path);
|
|
return -ENOSPC;
|
|
}
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
&key.offset);
|
|
if (ret) {
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
|
|
if (!chunk) {
|
|
btrfs_free_path(path);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
|
|
if (!map) {
|
|
kfree(chunk);
|
|
btrfs_free_path(path);
|
|
return -ENOMEM;
|
|
}
|
|
btrfs_free_path(path);
|
|
path = NULL;
|
|
|
|
stripes = &chunk->stripe;
|
|
*num_bytes = chunk_bytes_by_type(type, calc_size,
|
|
num_stripes, sub_stripes);
|
|
|
|
index = 0;
|
|
while(index < num_stripes) {
|
|
struct btrfs_stripe *stripe;
|
|
BUG_ON(list_empty(&private_devs));
|
|
cur = private_devs.next;
|
|
device = list_entry(cur, struct btrfs_device, dev_alloc_list);
|
|
|
|
/* loop over this device again if we're doing a dup group */
|
|
if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
|
|
(index == num_stripes - 1))
|
|
list_move_tail(&device->dev_alloc_list, dev_list);
|
|
|
|
ret = btrfs_alloc_dev_extent(trans, device,
|
|
info->chunk_root->root_key.objectid,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
|
|
calc_size, &dev_offset);
|
|
BUG_ON(ret);
|
|
device->bytes_used += calc_size;
|
|
ret = btrfs_update_device(trans, device);
|
|
BUG_ON(ret);
|
|
|
|
map->stripes[index].dev = device;
|
|
map->stripes[index].physical = dev_offset;
|
|
stripe = stripes + index;
|
|
btrfs_set_stack_stripe_devid(stripe, device->devid);
|
|
btrfs_set_stack_stripe_offset(stripe, dev_offset);
|
|
memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
|
|
physical = dev_offset;
|
|
index++;
|
|
}
|
|
BUG_ON(!list_empty(&private_devs));
|
|
|
|
/* key was set above */
|
|
btrfs_set_stack_chunk_length(chunk, *num_bytes);
|
|
btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
|
|
btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
|
|
btrfs_set_stack_chunk_type(chunk, type);
|
|
btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
|
|
btrfs_set_stack_chunk_io_align(chunk, stripe_len);
|
|
btrfs_set_stack_chunk_io_width(chunk, stripe_len);
|
|
btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
|
|
btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
|
|
map->sector_size = extent_root->sectorsize;
|
|
map->stripe_len = stripe_len;
|
|
map->io_align = stripe_len;
|
|
map->io_width = stripe_len;
|
|
map->type = type;
|
|
map->num_stripes = num_stripes;
|
|
map->sub_stripes = sub_stripes;
|
|
|
|
ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
|
|
btrfs_chunk_item_size(num_stripes));
|
|
BUG_ON(ret);
|
|
*start = key.offset;;
|
|
|
|
em = alloc_extent_map(GFP_NOFS);
|
|
if (!em)
|
|
return -ENOMEM;
|
|
em->bdev = (struct block_device *)map;
|
|
em->start = key.offset;
|
|
em->len = *num_bytes;
|
|
em->block_start = 0;
|
|
|
|
if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
ret = btrfs_add_system_chunk(trans, chunk_root, &key,
|
|
chunk, btrfs_chunk_item_size(num_stripes));
|
|
BUG_ON(ret);
|
|
}
|
|
kfree(chunk);
|
|
|
|
em_tree = &extent_root->fs_info->mapping_tree.map_tree;
|
|
spin_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em);
|
|
spin_unlock(&em_tree->lock);
|
|
BUG_ON(ret);
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
|
|
{
|
|
extent_map_tree_init(&tree->map_tree, GFP_NOFS);
|
|
}
|
|
|
|
void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
|
|
{
|
|
struct extent_map *em;
|
|
|
|
while(1) {
|
|
spin_lock(&tree->map_tree.lock);
|
|
em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
|
|
if (em)
|
|
remove_extent_mapping(&tree->map_tree, em);
|
|
spin_unlock(&tree->map_tree.lock);
|
|
if (!em)
|
|
break;
|
|
kfree(em->bdev);
|
|
/* once for us */
|
|
free_extent_map(em);
|
|
/* once for the tree */
|
|
free_extent_map(em);
|
|
}
|
|
}
|
|
|
|
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct extent_map_tree *em_tree = &map_tree->map_tree;
|
|
int ret;
|
|
|
|
spin_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, logical, len);
|
|
spin_unlock(&em_tree->lock);
|
|
BUG_ON(!em);
|
|
|
|
BUG_ON(em->start > logical || em->start + em->len < logical);
|
|
map = (struct map_lookup *)em->bdev;
|
|
if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
|
|
ret = map->num_stripes;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
|
|
ret = map->sub_stripes;
|
|
else
|
|
ret = 1;
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
static int find_live_mirror(struct map_lookup *map, int first, int num,
|
|
int optimal)
|
|
{
|
|
int i;
|
|
if (map->stripes[optimal].dev->bdev)
|
|
return optimal;
|
|
for (i = first; i < first + num; i++) {
|
|
if (map->stripes[i].dev->bdev)
|
|
return i;
|
|
}
|
|
/* we couldn't find one that doesn't fail. Just return something
|
|
* and the io error handling code will clean up eventually
|
|
*/
|
|
return optimal;
|
|
}
|
|
|
|
static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
|
|
u64 logical, u64 *length,
|
|
struct btrfs_multi_bio **multi_ret,
|
|
int mirror_num, struct page *unplug_page)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct extent_map_tree *em_tree = &map_tree->map_tree;
|
|
u64 offset;
|
|
u64 stripe_offset;
|
|
u64 stripe_nr;
|
|
int stripes_allocated = 8;
|
|
int stripes_required = 1;
|
|
int stripe_index;
|
|
int i;
|
|
int num_stripes;
|
|
int max_errors = 0;
|
|
struct btrfs_multi_bio *multi = NULL;
|
|
|
|
if (multi_ret && !(rw & (1 << BIO_RW))) {
|
|
stripes_allocated = 1;
|
|
}
|
|
again:
|
|
if (multi_ret) {
|
|
multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
|
|
GFP_NOFS);
|
|
if (!multi)
|
|
return -ENOMEM;
|
|
|
|
atomic_set(&multi->error, 0);
|
|
}
|
|
|
|
spin_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, logical, *length);
|
|
spin_unlock(&em_tree->lock);
|
|
|
|
if (!em && unplug_page)
|
|
return 0;
|
|
|
|
if (!em) {
|
|
printk("unable to find logical %Lu len %Lu\n", logical, *length);
|
|
BUG();
|
|
}
|
|
|
|
BUG_ON(em->start > logical || em->start + em->len < logical);
|
|
map = (struct map_lookup *)em->bdev;
|
|
offset = logical - em->start;
|
|
|
|
if (mirror_num > map->num_stripes)
|
|
mirror_num = 0;
|
|
|
|
/* if our multi bio struct is too small, back off and try again */
|
|
if (rw & (1 << BIO_RW)) {
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_DUP)) {
|
|
stripes_required = map->num_stripes;
|
|
max_errors = 1;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
stripes_required = map->sub_stripes;
|
|
max_errors = 1;
|
|
}
|
|
}
|
|
if (multi_ret && rw == WRITE &&
|
|
stripes_allocated < stripes_required) {
|
|
stripes_allocated = map->num_stripes;
|
|
free_extent_map(em);
|
|
kfree(multi);
|
|
goto again;
|
|
}
|
|
stripe_nr = offset;
|
|
/*
|
|
* stripe_nr counts the total number of stripes we have to stride
|
|
* to get to this block
|
|
*/
|
|
do_div(stripe_nr, map->stripe_len);
|
|
|
|
stripe_offset = stripe_nr * map->stripe_len;
|
|
BUG_ON(offset < stripe_offset);
|
|
|
|
/* stripe_offset is the offset of this block in its stripe*/
|
|
stripe_offset = offset - stripe_offset;
|
|
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_DUP)) {
|
|
/* we limit the length of each bio to what fits in a stripe */
|
|
*length = min_t(u64, em->len - offset,
|
|
map->stripe_len - stripe_offset);
|
|
} else {
|
|
*length = em->len - offset;
|
|
}
|
|
|
|
if (!multi_ret && !unplug_page)
|
|
goto out;
|
|
|
|
num_stripes = 1;
|
|
stripe_index = 0;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
|
|
if (unplug_page || (rw & (1 << BIO_RW)))
|
|
num_stripes = map->num_stripes;
|
|
else if (mirror_num)
|
|
stripe_index = mirror_num - 1;
|
|
else {
|
|
stripe_index = find_live_mirror(map, 0,
|
|
map->num_stripes,
|
|
current->pid % map->num_stripes);
|
|
}
|
|
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
|
|
if (rw & (1 << BIO_RW))
|
|
num_stripes = map->num_stripes;
|
|
else if (mirror_num)
|
|
stripe_index = mirror_num - 1;
|
|
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
int factor = map->num_stripes / map->sub_stripes;
|
|
|
|
stripe_index = do_div(stripe_nr, factor);
|
|
stripe_index *= map->sub_stripes;
|
|
|
|
if (unplug_page || (rw & (1 << BIO_RW)))
|
|
num_stripes = map->sub_stripes;
|
|
else if (mirror_num)
|
|
stripe_index += mirror_num - 1;
|
|
else {
|
|
stripe_index = find_live_mirror(map, stripe_index,
|
|
map->sub_stripes, stripe_index +
|
|
current->pid % map->sub_stripes);
|
|
}
|
|
} else {
|
|
/*
|
|
* after this do_div call, stripe_nr is the number of stripes
|
|
* on this device we have to walk to find the data, and
|
|
* stripe_index is the number of our device in the stripe array
|
|
*/
|
|
stripe_index = do_div(stripe_nr, map->num_stripes);
|
|
}
|
|
BUG_ON(stripe_index >= map->num_stripes);
|
|
|
|
for (i = 0; i < num_stripes; i++) {
|
|
if (unplug_page) {
|
|
struct btrfs_device *device;
|
|
struct backing_dev_info *bdi;
|
|
|
|
device = map->stripes[stripe_index].dev;
|
|
if (device->bdev) {
|
|
bdi = blk_get_backing_dev_info(device->bdev);
|
|
if (bdi->unplug_io_fn) {
|
|
bdi->unplug_io_fn(bdi, unplug_page);
|
|
}
|
|
}
|
|
} else {
|
|
multi->stripes[i].physical =
|
|
map->stripes[stripe_index].physical +
|
|
stripe_offset + stripe_nr * map->stripe_len;
|
|
multi->stripes[i].dev = map->stripes[stripe_index].dev;
|
|
}
|
|
stripe_index++;
|
|
}
|
|
if (multi_ret) {
|
|
*multi_ret = multi;
|
|
multi->num_stripes = num_stripes;
|
|
multi->max_errors = max_errors;
|
|
}
|
|
out:
|
|
free_extent_map(em);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
|
|
u64 logical, u64 *length,
|
|
struct btrfs_multi_bio **multi_ret, int mirror_num)
|
|
{
|
|
return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
|
|
mirror_num, NULL);
|
|
}
|
|
|
|
int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
|
|
u64 logical, struct page *page)
|
|
{
|
|
u64 length = PAGE_CACHE_SIZE;
|
|
return __btrfs_map_block(map_tree, READ, logical, &length,
|
|
NULL, 0, page);
|
|
}
|
|
|
|
|
|
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
|
|
static void end_bio_multi_stripe(struct bio *bio, int err)
|
|
#else
|
|
static int end_bio_multi_stripe(struct bio *bio,
|
|
unsigned int bytes_done, int err)
|
|
#endif
|
|
{
|
|
struct btrfs_multi_bio *multi = bio->bi_private;
|
|
|
|
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
|
|
if (bio->bi_size)
|
|
return 1;
|
|
#endif
|
|
if (err)
|
|
atomic_inc(&multi->error);
|
|
|
|
if (atomic_dec_and_test(&multi->stripes_pending)) {
|
|
bio->bi_private = multi->private;
|
|
bio->bi_end_io = multi->end_io;
|
|
/* only send an error to the higher layers if it is
|
|
* beyond the tolerance of the multi-bio
|
|
*/
|
|
if (atomic_read(&multi->error) > multi->max_errors) {
|
|
err = -EIO;
|
|
} else if (err) {
|
|
/*
|
|
* this bio is actually up to date, we didn't
|
|
* go over the max number of errors
|
|
*/
|
|
set_bit(BIO_UPTODATE, &bio->bi_flags);
|
|
err = 0;
|
|
}
|
|
kfree(multi);
|
|
|
|
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
|
|
bio_endio(bio, bio->bi_size, err);
|
|
#else
|
|
bio_endio(bio, err);
|
|
#endif
|
|
} else {
|
|
bio_put(bio);
|
|
}
|
|
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
struct async_sched {
|
|
struct bio *bio;
|
|
int rw;
|
|
struct btrfs_fs_info *info;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
/*
|
|
* see run_scheduled_bios for a description of why bios are collected for
|
|
* async submit.
|
|
*
|
|
* This will add one bio to the pending list for a device and make sure
|
|
* the work struct is scheduled.
|
|
*/
|
|
int schedule_bio(struct btrfs_root *root, struct btrfs_device *device,
|
|
int rw, struct bio *bio)
|
|
{
|
|
int should_queue = 1;
|
|
|
|
/* don't bother with additional async steps for reads, right now */
|
|
if (!(rw & (1 << BIO_RW))) {
|
|
submit_bio(rw, bio);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* nr_async_sumbits allows us to reliably return congestion to the
|
|
* higher layers. Otherwise, the async bio makes it appear we have
|
|
* made progress against dirty pages when we've really just put it
|
|
* on a queue for later
|
|
*/
|
|
atomic_inc(&root->fs_info->nr_async_submits);
|
|
bio->bi_next = NULL;
|
|
bio->bi_rw |= rw;
|
|
|
|
spin_lock(&device->io_lock);
|
|
|
|
if (device->pending_bio_tail)
|
|
device->pending_bio_tail->bi_next = bio;
|
|
|
|
device->pending_bio_tail = bio;
|
|
if (!device->pending_bios)
|
|
device->pending_bios = bio;
|
|
if (device->running_pending)
|
|
should_queue = 0;
|
|
|
|
spin_unlock(&device->io_lock);
|
|
|
|
if (should_queue)
|
|
btrfs_queue_worker(&root->fs_info->submit_workers,
|
|
&device->work);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
|
|
int mirror_num, int async_submit)
|
|
{
|
|
struct btrfs_mapping_tree *map_tree;
|
|
struct btrfs_device *dev;
|
|
struct bio *first_bio = bio;
|
|
u64 logical = bio->bi_sector << 9;
|
|
u64 length = 0;
|
|
u64 map_length;
|
|
struct btrfs_multi_bio *multi = NULL;
|
|
int ret;
|
|
int dev_nr = 0;
|
|
int total_devs = 1;
|
|
|
|
length = bio->bi_size;
|
|
map_tree = &root->fs_info->mapping_tree;
|
|
map_length = length;
|
|
|
|
ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
|
|
mirror_num);
|
|
BUG_ON(ret);
|
|
|
|
total_devs = multi->num_stripes;
|
|
if (map_length < length) {
|
|
printk("mapping failed logical %Lu bio len %Lu "
|
|
"len %Lu\n", logical, length, map_length);
|
|
BUG();
|
|
}
|
|
multi->end_io = first_bio->bi_end_io;
|
|
multi->private = first_bio->bi_private;
|
|
atomic_set(&multi->stripes_pending, multi->num_stripes);
|
|
|
|
while(dev_nr < total_devs) {
|
|
if (total_devs > 1) {
|
|
if (dev_nr < total_devs - 1) {
|
|
bio = bio_clone(first_bio, GFP_NOFS);
|
|
BUG_ON(!bio);
|
|
} else {
|
|
bio = first_bio;
|
|
}
|
|
bio->bi_private = multi;
|
|
bio->bi_end_io = end_bio_multi_stripe;
|
|
}
|
|
bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
|
|
dev = multi->stripes[dev_nr].dev;
|
|
if (dev && dev->bdev) {
|
|
bio->bi_bdev = dev->bdev;
|
|
if (async_submit)
|
|
schedule_bio(root, dev, rw, bio);
|
|
else
|
|
submit_bio(rw, bio);
|
|
} else {
|
|
bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
|
|
bio->bi_sector = logical >> 9;
|
|
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
|
|
bio_endio(bio, bio->bi_size, -EIO);
|
|
#else
|
|
bio_endio(bio, -EIO);
|
|
#endif
|
|
}
|
|
dev_nr++;
|
|
}
|
|
if (total_devs == 1)
|
|
kfree(multi);
|
|
return 0;
|
|
}
|
|
|
|
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
|
|
u8 *uuid)
|
|
{
|
|
struct list_head *head = &root->fs_info->fs_devices->devices;
|
|
|
|
return __find_device(head, devid, uuid);
|
|
}
|
|
|
|
static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
|
|
u64 devid, u8 *dev_uuid)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
|
|
|
|
device = kzalloc(sizeof(*device), GFP_NOFS);
|
|
list_add(&device->dev_list,
|
|
&fs_devices->devices);
|
|
list_add(&device->dev_alloc_list,
|
|
&fs_devices->alloc_list);
|
|
device->barriers = 1;
|
|
device->dev_root = root->fs_info->dev_root;
|
|
device->devid = devid;
|
|
device->work.func = pending_bios_fn;
|
|
fs_devices->num_devices++;
|
|
spin_lock_init(&device->io_lock);
|
|
memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
|
|
return device;
|
|
}
|
|
|
|
|
|
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk)
|
|
{
|
|
struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
|
|
struct map_lookup *map;
|
|
struct extent_map *em;
|
|
u64 logical;
|
|
u64 length;
|
|
u64 devid;
|
|
u8 uuid[BTRFS_UUID_SIZE];
|
|
int num_stripes;
|
|
int ret;
|
|
int i;
|
|
|
|
logical = key->offset;
|
|
length = btrfs_chunk_length(leaf, chunk);
|
|
|
|
spin_lock(&map_tree->map_tree.lock);
|
|
em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
|
|
spin_unlock(&map_tree->map_tree.lock);
|
|
|
|
/* already mapped? */
|
|
if (em && em->start <= logical && em->start + em->len > logical) {
|
|
free_extent_map(em);
|
|
return 0;
|
|
} else if (em) {
|
|
free_extent_map(em);
|
|
}
|
|
|
|
map = kzalloc(sizeof(*map), GFP_NOFS);
|
|
if (!map)
|
|
return -ENOMEM;
|
|
|
|
em = alloc_extent_map(GFP_NOFS);
|
|
if (!em)
|
|
return -ENOMEM;
|
|
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
|
|
if (!map) {
|
|
free_extent_map(em);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
em->bdev = (struct block_device *)map;
|
|
em->start = logical;
|
|
em->len = length;
|
|
em->block_start = 0;
|
|
|
|
map->num_stripes = num_stripes;
|
|
map->io_width = btrfs_chunk_io_width(leaf, chunk);
|
|
map->io_align = btrfs_chunk_io_align(leaf, chunk);
|
|
map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
|
|
map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
|
|
map->type = btrfs_chunk_type(leaf, chunk);
|
|
map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
|
|
for (i = 0; i < num_stripes; i++) {
|
|
map->stripes[i].physical =
|
|
btrfs_stripe_offset_nr(leaf, chunk, i);
|
|
devid = btrfs_stripe_devid_nr(leaf, chunk, i);
|
|
read_extent_buffer(leaf, uuid, (unsigned long)
|
|
btrfs_stripe_dev_uuid_nr(chunk, i),
|
|
BTRFS_UUID_SIZE);
|
|
map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
|
|
|
|
if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
|
|
kfree(map);
|
|
free_extent_map(em);
|
|
return -EIO;
|
|
}
|
|
if (!map->stripes[i].dev) {
|
|
map->stripes[i].dev =
|
|
add_missing_dev(root, devid, uuid);
|
|
if (!map->stripes[i].dev) {
|
|
kfree(map);
|
|
free_extent_map(em);
|
|
return -EIO;
|
|
}
|
|
}
|
|
map->stripes[i].dev->in_fs_metadata = 1;
|
|
}
|
|
|
|
spin_lock(&map_tree->map_tree.lock);
|
|
ret = add_extent_mapping(&map_tree->map_tree, em);
|
|
spin_unlock(&map_tree->map_tree.lock);
|
|
BUG_ON(ret);
|
|
free_extent_map(em);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fill_device_from_item(struct extent_buffer *leaf,
|
|
struct btrfs_dev_item *dev_item,
|
|
struct btrfs_device *device)
|
|
{
|
|
unsigned long ptr;
|
|
|
|
device->devid = btrfs_device_id(leaf, dev_item);
|
|
device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
|
|
device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
|
|
device->type = btrfs_device_type(leaf, dev_item);
|
|
device->io_align = btrfs_device_io_align(leaf, dev_item);
|
|
device->io_width = btrfs_device_io_width(leaf, dev_item);
|
|
device->sector_size = btrfs_device_sector_size(leaf, dev_item);
|
|
|
|
ptr = (unsigned long)btrfs_device_uuid(dev_item);
|
|
read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_one_dev(struct btrfs_root *root,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_dev_item *dev_item)
|
|
{
|
|
struct btrfs_device *device;
|
|
u64 devid;
|
|
int ret;
|
|
u8 dev_uuid[BTRFS_UUID_SIZE];
|
|
|
|
devid = btrfs_device_id(leaf, dev_item);
|
|
read_extent_buffer(leaf, dev_uuid,
|
|
(unsigned long)btrfs_device_uuid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
device = btrfs_find_device(root, devid, dev_uuid);
|
|
if (!device) {
|
|
printk("warning devid %Lu missing\n", devid);
|
|
device = add_missing_dev(root, devid, dev_uuid);
|
|
if (!device)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
fill_device_from_item(leaf, dev_item, device);
|
|
device->dev_root = root->fs_info->dev_root;
|
|
device->in_fs_metadata = 1;
|
|
ret = 0;
|
|
#if 0
|
|
ret = btrfs_open_device(device);
|
|
if (ret) {
|
|
kfree(device);
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
|
|
{
|
|
struct btrfs_dev_item *dev_item;
|
|
|
|
dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
|
|
dev_item);
|
|
return read_one_dev(root, buf, dev_item);
|
|
}
|
|
|
|
int btrfs_read_sys_array(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
|
|
struct extent_buffer *sb;
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_chunk *chunk;
|
|
u8 *ptr;
|
|
unsigned long sb_ptr;
|
|
int ret = 0;
|
|
u32 num_stripes;
|
|
u32 array_size;
|
|
u32 len = 0;
|
|
u32 cur;
|
|
struct btrfs_key key;
|
|
|
|
sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!sb)
|
|
return -ENOMEM;
|
|
btrfs_set_buffer_uptodate(sb);
|
|
write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
|
|
ptr = super_copy->sys_chunk_array;
|
|
sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
|
|
cur = 0;
|
|
|
|
while (cur < array_size) {
|
|
disk_key = (struct btrfs_disk_key *)ptr;
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
len = sizeof(*disk_key); ptr += len;
|
|
sb_ptr += len;
|
|
cur += len;
|
|
|
|
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
chunk = (struct btrfs_chunk *)sb_ptr;
|
|
ret = read_one_chunk(root, &key, sb, chunk);
|
|
if (ret)
|
|
break;
|
|
num_stripes = btrfs_chunk_num_stripes(sb, chunk);
|
|
len = btrfs_chunk_item_size(num_stripes);
|
|
} else {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
ptr += len;
|
|
sb_ptr += len;
|
|
cur += len;
|
|
}
|
|
free_extent_buffer(sb);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_read_chunk_tree(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
int ret;
|
|
int slot;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/* first we search for all of the device items, and then we
|
|
* read in all of the chunk items. This way we can create chunk
|
|
* mappings that reference all of the devices that are afound
|
|
*/
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.offset = 0;
|
|
key.type = 0;
|
|
again:
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
while(1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto error;
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
|
|
if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
|
|
break;
|
|
if (found_key.type == BTRFS_DEV_ITEM_KEY) {
|
|
struct btrfs_dev_item *dev_item;
|
|
dev_item = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_dev_item);
|
|
ret = read_one_dev(root, leaf, dev_item);
|
|
BUG_ON(ret);
|
|
}
|
|
} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
struct btrfs_chunk *chunk;
|
|
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
|
|
ret = read_one_chunk(root, &found_key, leaf, chunk);
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
|
|
key.objectid = 0;
|
|
btrfs_release_path(root, path);
|
|
goto again;
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
ret = 0;
|
|
error:
|
|
return ret;
|
|
}
|
|
|