mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-10 19:43:29 +00:00
4c881ca181
This patch fixes a bug of change_page_attr/change_page_attr_addr on Intel i386/x86_64 CPUs. After changing page attribute to be executable with these functions, the page remains un-executable on Intel i386/x86_64 CPU. Because on Intel i386/x86_64 CPU, only if the "NX" bits of all three level page tables are cleared (PAE is enabled), the corresponding page is executable (refer to section 4.13.2 of Intel 64 and IA-32 Architectures Software Developer's Manual). So, the bug is fixed through clearing the "NX" bit of PMD when splitting the huge PMD. Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
315 lines
7.3 KiB
C
315 lines
7.3 KiB
C
/*
|
|
* Copyright 2002 Andi Kleen, SuSE Labs.
|
|
* Thanks to Ben LaHaise for precious feedback.
|
|
*/
|
|
#include <linux/highmem.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
|
|
void clflush_cache_range(void *addr, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i += boot_cpu_data.x86_clflush_size)
|
|
clflush(addr+i);
|
|
}
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
/*
|
|
* We allow the BIOS range to be executable:
|
|
*/
|
|
#define BIOS_BEGIN 0x000a0000
|
|
#define BIOS_END 0x00100000
|
|
|
|
static inline pgprot_t check_exec(pgprot_t prot, unsigned long address)
|
|
{
|
|
if (__pa(address) >= BIOS_BEGIN && __pa(address) < BIOS_END)
|
|
pgprot_val(prot) &= ~_PAGE_NX;
|
|
/*
|
|
* Better fail early if someone sets the kernel text to NX.
|
|
* Does not cover __inittext
|
|
*/
|
|
BUG_ON(address >= (unsigned long)&_text &&
|
|
address < (unsigned long)&_etext &&
|
|
(pgprot_val(prot) & _PAGE_NX));
|
|
|
|
return prot;
|
|
}
|
|
|
|
pte_t *lookup_address(unsigned long address, int *level)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(address);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
*level = PG_LEVEL_NONE;
|
|
|
|
if (pgd_none(*pgd))
|
|
return NULL;
|
|
pud = pud_offset(pgd, address);
|
|
if (pud_none(*pud))
|
|
return NULL;
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none(*pmd))
|
|
return NULL;
|
|
|
|
*level = PG_LEVEL_2M;
|
|
if (pmd_large(*pmd))
|
|
return (pte_t *)pmd;
|
|
|
|
*level = PG_LEVEL_4K;
|
|
return pte_offset_kernel(pmd, address);
|
|
}
|
|
|
|
static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
|
|
{
|
|
/* change init_mm */
|
|
set_pte_atomic(kpte, pte);
|
|
#ifdef CONFIG_X86_32
|
|
if (!SHARED_KERNEL_PMD) {
|
|
struct page *page;
|
|
|
|
for (page = pgd_list; page; page = (struct page *)page->index) {
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = (pgd_t *)page_address(page) + pgd_index(address);
|
|
pud = pud_offset(pgd, address);
|
|
pmd = pmd_offset(pud, address);
|
|
set_pte_atomic((pte_t *)pmd, pte);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int split_large_page(pte_t *kpte, unsigned long address)
|
|
{
|
|
pgprot_t ref_prot = pte_pgprot(pte_clrhuge(*kpte));
|
|
gfp_t gfp_flags = GFP_KERNEL;
|
|
unsigned long flags;
|
|
unsigned long addr;
|
|
pte_t *pbase, *tmp;
|
|
struct page *base;
|
|
int i, level;
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
gfp_flags = GFP_ATOMIC;
|
|
#endif
|
|
base = alloc_pages(gfp_flags, 0);
|
|
if (!base)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
/*
|
|
* Check for races, another CPU might have split this page
|
|
* up for us already:
|
|
*/
|
|
tmp = lookup_address(address, &level);
|
|
if (tmp != kpte) {
|
|
WARN_ON_ONCE(1);
|
|
goto out_unlock;
|
|
}
|
|
|
|
address = __pa(address);
|
|
addr = address & LARGE_PAGE_MASK;
|
|
pbase = (pte_t *)page_address(base);
|
|
#ifdef CONFIG_X86_32
|
|
paravirt_alloc_pt(&init_mm, page_to_pfn(base));
|
|
#endif
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE)
|
|
set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT, ref_prot));
|
|
|
|
/*
|
|
* Install the new, split up pagetable. Important detail here:
|
|
*
|
|
* On Intel the NX bit of all levels must be cleared to make a
|
|
* page executable. See section 4.13.2 of Intel 64 and IA-32
|
|
* Architectures Software Developer's Manual).
|
|
*/
|
|
ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
|
|
__set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
|
|
base = NULL;
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
|
if (base)
|
|
__free_pages(base, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
__change_page_attr(unsigned long address, unsigned long pfn, pgprot_t prot)
|
|
{
|
|
struct page *kpte_page;
|
|
int level, err = 0;
|
|
pte_t *kpte;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
BUG_ON(pfn > max_low_pfn);
|
|
#endif
|
|
|
|
repeat:
|
|
kpte = lookup_address(address, &level);
|
|
if (!kpte)
|
|
return -EINVAL;
|
|
|
|
kpte_page = virt_to_page(kpte);
|
|
BUG_ON(PageLRU(kpte_page));
|
|
BUG_ON(PageCompound(kpte_page));
|
|
|
|
prot = check_exec(prot, address);
|
|
|
|
if (level == PG_LEVEL_4K) {
|
|
set_pte_atomic(kpte, pfn_pte(pfn, canon_pgprot(prot)));
|
|
} else {
|
|
err = split_large_page(kpte, address);
|
|
if (!err)
|
|
goto repeat;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* change_page_attr_addr - Change page table attributes in linear mapping
|
|
* @address: Virtual address in linear mapping.
|
|
* @numpages: Number of pages to change
|
|
* @prot: New page table attribute (PAGE_*)
|
|
*
|
|
* Change page attributes of a page in the direct mapping. This is a variant
|
|
* of change_page_attr() that also works on memory holes that do not have
|
|
* mem_map entry (pfn_valid() is false).
|
|
*
|
|
* See change_page_attr() documentation for more details.
|
|
*/
|
|
|
|
int change_page_attr_addr(unsigned long address, int numpages, pgprot_t prot)
|
|
{
|
|
int err = 0, kernel_map = 0, i;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (address >= __START_KERNEL_map &&
|
|
address < __START_KERNEL_map + KERNEL_TEXT_SIZE) {
|
|
|
|
address = (unsigned long)__va(__pa(address));
|
|
kernel_map = 1;
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < numpages; i++, address += PAGE_SIZE) {
|
|
unsigned long pfn = __pa(address) >> PAGE_SHIFT;
|
|
|
|
if (!kernel_map || pte_present(pfn_pte(0, prot))) {
|
|
err = __change_page_attr(address, pfn, prot);
|
|
if (err)
|
|
break;
|
|
}
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Handle kernel mapping too which aliases part of
|
|
* lowmem:
|
|
*/
|
|
if (__pa(address) < KERNEL_TEXT_SIZE) {
|
|
unsigned long addr2;
|
|
pgprot_t prot2;
|
|
|
|
addr2 = __START_KERNEL_map + __pa(address);
|
|
/* Make sure the kernel mappings stay executable */
|
|
prot2 = pte_pgprot(pte_mkexec(pfn_pte(0, prot)));
|
|
err = __change_page_attr(addr2, pfn, prot2);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* change_page_attr - Change page table attributes in the linear mapping.
|
|
* @page: First page to change
|
|
* @numpages: Number of pages to change
|
|
* @prot: New protection/caching type (PAGE_*)
|
|
*
|
|
* Returns 0 on success, otherwise a negated errno.
|
|
*
|
|
* This should be used when a page is mapped with a different caching policy
|
|
* than write-back somewhere - some CPUs do not like it when mappings with
|
|
* different caching policies exist. This changes the page attributes of the
|
|
* in kernel linear mapping too.
|
|
*
|
|
* Caller must call global_flush_tlb() later to make the changes active.
|
|
*
|
|
* The caller needs to ensure that there are no conflicting mappings elsewhere
|
|
* (e.g. in user space) * This function only deals with the kernel linear map.
|
|
*
|
|
* For MMIO areas without mem_map use change_page_attr_addr() instead.
|
|
*/
|
|
int change_page_attr(struct page *page, int numpages, pgprot_t prot)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return change_page_attr_addr(addr, numpages, prot);
|
|
}
|
|
EXPORT_SYMBOL(change_page_attr);
|
|
|
|
static void flush_kernel_map(void *arg)
|
|
{
|
|
/*
|
|
* Flush all to work around Errata in early athlons regarding
|
|
* large page flushing.
|
|
*/
|
|
__flush_tlb_all();
|
|
|
|
if (boot_cpu_data.x86_model >= 4)
|
|
wbinvd();
|
|
}
|
|
|
|
void global_flush_tlb(void)
|
|
{
|
|
BUG_ON(irqs_disabled());
|
|
|
|
on_each_cpu(flush_kernel_map, NULL, 1, 1);
|
|
}
|
|
EXPORT_SYMBOL(global_flush_tlb);
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
void kernel_map_pages(struct page *page, int numpages, int enable)
|
|
{
|
|
if (PageHighMem(page))
|
|
return;
|
|
if (!enable) {
|
|
debug_check_no_locks_freed(page_address(page),
|
|
numpages * PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* If page allocator is not up yet then do not call c_p_a():
|
|
*/
|
|
if (!debug_pagealloc_enabled)
|
|
return;
|
|
|
|
/*
|
|
* The return value is ignored - the calls cannot fail,
|
|
* large pages are disabled at boot time:
|
|
*/
|
|
change_page_attr(page, numpages, enable ? PAGE_KERNEL : __pgprot(0));
|
|
|
|
/*
|
|
* We should perform an IPI and flush all tlbs,
|
|
* but that can deadlock->flush only current cpu:
|
|
*/
|
|
__flush_tlb_all();
|
|
}
|
|
#endif
|