mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-10 11:30:49 +00:00
737292a3c0
There's currently two places where the gma500 fault handler relies upon dev->struct_mutex: - To protect r->mappping - To make sure vm_insert_pfn isn't called concurrently (in which case the 2nd thread would get an error code). Everything else (specifically psb_gtt_pin) is already protected by some other locks. Hence just create a new driver-private mmap_mutex just for this function. With this gma500 is complete dev->struct_mutex free! Cc: Patrik Jakobsson <patrik.r.jakobsson@gmail.com> Acked-by: Patrik Jakobsson <patrik.r.jakobsson@gmail.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1448271183-20523-21-git-send-email-daniel.vetter@ffwll.ch
589 lines
16 KiB
C
589 lines
16 KiB
C
/*
|
|
* Copyright (c) 2007, Intel Corporation.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com>
|
|
* Alan Cox <alan@linux.intel.com>
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include "psb_drv.h"
|
|
#include "blitter.h"
|
|
|
|
|
|
/*
|
|
* GTT resource allocator - manage page mappings in GTT space
|
|
*/
|
|
|
|
/**
|
|
* psb_gtt_mask_pte - generate GTT pte entry
|
|
* @pfn: page number to encode
|
|
* @type: type of memory in the GTT
|
|
*
|
|
* Set the GTT entry for the appropriate memory type.
|
|
*/
|
|
static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type)
|
|
{
|
|
uint32_t mask = PSB_PTE_VALID;
|
|
|
|
/* Ensure we explode rather than put an invalid low mapping of
|
|
a high mapping page into the gtt */
|
|
BUG_ON(pfn & ~(0xFFFFFFFF >> PAGE_SHIFT));
|
|
|
|
if (type & PSB_MMU_CACHED_MEMORY)
|
|
mask |= PSB_PTE_CACHED;
|
|
if (type & PSB_MMU_RO_MEMORY)
|
|
mask |= PSB_PTE_RO;
|
|
if (type & PSB_MMU_WO_MEMORY)
|
|
mask |= PSB_PTE_WO;
|
|
|
|
return (pfn << PAGE_SHIFT) | mask;
|
|
}
|
|
|
|
/**
|
|
* psb_gtt_entry - find the GTT entries for a gtt_range
|
|
* @dev: our DRM device
|
|
* @r: our GTT range
|
|
*
|
|
* Given a gtt_range object return the GTT offset of the page table
|
|
* entries for this gtt_range
|
|
*/
|
|
static u32 __iomem *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r)
|
|
{
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
unsigned long offset;
|
|
|
|
offset = r->resource.start - dev_priv->gtt_mem->start;
|
|
|
|
return dev_priv->gtt_map + (offset >> PAGE_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* psb_gtt_insert - put an object into the GTT
|
|
* @dev: our DRM device
|
|
* @r: our GTT range
|
|
*
|
|
* Take our preallocated GTT range and insert the GEM object into
|
|
* the GTT. This is protected via the gtt mutex which the caller
|
|
* must hold.
|
|
*/
|
|
static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r,
|
|
int resume)
|
|
{
|
|
u32 __iomem *gtt_slot;
|
|
u32 pte;
|
|
struct page **pages;
|
|
int i;
|
|
|
|
if (r->pages == NULL) {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
WARN_ON(r->stolen); /* refcount these maybe ? */
|
|
|
|
gtt_slot = psb_gtt_entry(dev, r);
|
|
pages = r->pages;
|
|
|
|
if (!resume) {
|
|
/* Make sure changes are visible to the GPU */
|
|
set_pages_array_wc(pages, r->npage);
|
|
}
|
|
|
|
/* Write our page entries into the GTT itself */
|
|
for (i = r->roll; i < r->npage; i++) {
|
|
pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]),
|
|
PSB_MMU_CACHED_MEMORY);
|
|
iowrite32(pte, gtt_slot++);
|
|
}
|
|
for (i = 0; i < r->roll; i++) {
|
|
pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]),
|
|
PSB_MMU_CACHED_MEMORY);
|
|
iowrite32(pte, gtt_slot++);
|
|
}
|
|
/* Make sure all the entries are set before we return */
|
|
ioread32(gtt_slot - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* psb_gtt_remove - remove an object from the GTT
|
|
* @dev: our DRM device
|
|
* @r: our GTT range
|
|
*
|
|
* Remove a preallocated GTT range from the GTT. Overwrite all the
|
|
* page table entries with the dummy page. This is protected via the gtt
|
|
* mutex which the caller must hold.
|
|
*/
|
|
void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r)
|
|
{
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
u32 __iomem *gtt_slot;
|
|
u32 pte;
|
|
int i;
|
|
|
|
WARN_ON(r->stolen);
|
|
|
|
gtt_slot = psb_gtt_entry(dev, r);
|
|
pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page),
|
|
PSB_MMU_CACHED_MEMORY);
|
|
|
|
for (i = 0; i < r->npage; i++)
|
|
iowrite32(pte, gtt_slot++);
|
|
ioread32(gtt_slot - 1);
|
|
set_pages_array_wb(r->pages, r->npage);
|
|
}
|
|
|
|
/**
|
|
* psb_gtt_roll - set scrolling position
|
|
* @dev: our DRM device
|
|
* @r: the gtt mapping we are using
|
|
* @roll: roll offset
|
|
*
|
|
* Roll an existing pinned mapping by moving the pages through the GTT.
|
|
* This allows us to implement hardware scrolling on the consoles without
|
|
* a 2D engine
|
|
*/
|
|
void psb_gtt_roll(struct drm_device *dev, struct gtt_range *r, int roll)
|
|
{
|
|
u32 __iomem *gtt_slot;
|
|
u32 pte;
|
|
int i;
|
|
|
|
if (roll >= r->npage) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
r->roll = roll;
|
|
|
|
/* Not currently in the GTT - no worry we will write the mapping at
|
|
the right position when it gets pinned */
|
|
if (!r->stolen && !r->in_gart)
|
|
return;
|
|
|
|
gtt_slot = psb_gtt_entry(dev, r);
|
|
|
|
for (i = r->roll; i < r->npage; i++) {
|
|
pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]),
|
|
PSB_MMU_CACHED_MEMORY);
|
|
iowrite32(pte, gtt_slot++);
|
|
}
|
|
for (i = 0; i < r->roll; i++) {
|
|
pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]),
|
|
PSB_MMU_CACHED_MEMORY);
|
|
iowrite32(pte, gtt_slot++);
|
|
}
|
|
ioread32(gtt_slot - 1);
|
|
}
|
|
|
|
/**
|
|
* psb_gtt_attach_pages - attach and pin GEM pages
|
|
* @gt: the gtt range
|
|
*
|
|
* Pin and build an in kernel list of the pages that back our GEM object.
|
|
* While we hold this the pages cannot be swapped out. This is protected
|
|
* via the gtt mutex which the caller must hold.
|
|
*/
|
|
static int psb_gtt_attach_pages(struct gtt_range *gt)
|
|
{
|
|
struct page **pages;
|
|
|
|
WARN_ON(gt->pages);
|
|
|
|
pages = drm_gem_get_pages(>->gem);
|
|
if (IS_ERR(pages))
|
|
return PTR_ERR(pages);
|
|
|
|
gt->npage = gt->gem.size / PAGE_SIZE;
|
|
gt->pages = pages;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* psb_gtt_detach_pages - attach and pin GEM pages
|
|
* @gt: the gtt range
|
|
*
|
|
* Undo the effect of psb_gtt_attach_pages. At this point the pages
|
|
* must have been removed from the GTT as they could now be paged out
|
|
* and move bus address. This is protected via the gtt mutex which the
|
|
* caller must hold.
|
|
*/
|
|
static void psb_gtt_detach_pages(struct gtt_range *gt)
|
|
{
|
|
drm_gem_put_pages(>->gem, gt->pages, true, false);
|
|
gt->pages = NULL;
|
|
}
|
|
|
|
/**
|
|
* psb_gtt_pin - pin pages into the GTT
|
|
* @gt: range to pin
|
|
*
|
|
* Pin a set of pages into the GTT. The pins are refcounted so that
|
|
* multiple pins need multiple unpins to undo.
|
|
*
|
|
* Non GEM backed objects treat this as a no-op as they are always GTT
|
|
* backed objects.
|
|
*/
|
|
int psb_gtt_pin(struct gtt_range *gt)
|
|
{
|
|
int ret = 0;
|
|
struct drm_device *dev = gt->gem.dev;
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
u32 gpu_base = dev_priv->gtt.gatt_start;
|
|
|
|
mutex_lock(&dev_priv->gtt_mutex);
|
|
|
|
if (gt->in_gart == 0 && gt->stolen == 0) {
|
|
ret = psb_gtt_attach_pages(gt);
|
|
if (ret < 0)
|
|
goto out;
|
|
ret = psb_gtt_insert(dev, gt, 0);
|
|
if (ret < 0) {
|
|
psb_gtt_detach_pages(gt);
|
|
goto out;
|
|
}
|
|
psb_mmu_insert_pages(psb_mmu_get_default_pd(dev_priv->mmu),
|
|
gt->pages, (gpu_base + gt->offset),
|
|
gt->npage, 0, 0, PSB_MMU_CACHED_MEMORY);
|
|
}
|
|
gt->in_gart++;
|
|
out:
|
|
mutex_unlock(&dev_priv->gtt_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* psb_gtt_unpin - Drop a GTT pin requirement
|
|
* @gt: range to pin
|
|
*
|
|
* Undoes the effect of psb_gtt_pin. On the last drop the GEM object
|
|
* will be removed from the GTT which will also drop the page references
|
|
* and allow the VM to clean up or page stuff.
|
|
*
|
|
* Non GEM backed objects treat this as a no-op as they are always GTT
|
|
* backed objects.
|
|
*/
|
|
void psb_gtt_unpin(struct gtt_range *gt)
|
|
{
|
|
struct drm_device *dev = gt->gem.dev;
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
u32 gpu_base = dev_priv->gtt.gatt_start;
|
|
int ret;
|
|
|
|
/* While holding the gtt_mutex no new blits can be initiated */
|
|
mutex_lock(&dev_priv->gtt_mutex);
|
|
|
|
/* Wait for any possible usage of the memory to be finished */
|
|
ret = gma_blt_wait_idle(dev_priv);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to idle the blitter, unpin failed!");
|
|
goto out;
|
|
}
|
|
|
|
WARN_ON(!gt->in_gart);
|
|
|
|
gt->in_gart--;
|
|
if (gt->in_gart == 0 && gt->stolen == 0) {
|
|
psb_mmu_remove_pages(psb_mmu_get_default_pd(dev_priv->mmu),
|
|
(gpu_base + gt->offset), gt->npage, 0, 0);
|
|
psb_gtt_remove(dev, gt);
|
|
psb_gtt_detach_pages(gt);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&dev_priv->gtt_mutex);
|
|
}
|
|
|
|
/*
|
|
* GTT resource allocator - allocate and manage GTT address space
|
|
*/
|
|
|
|
/**
|
|
* psb_gtt_alloc_range - allocate GTT address space
|
|
* @dev: Our DRM device
|
|
* @len: length (bytes) of address space required
|
|
* @name: resource name
|
|
* @backed: resource should be backed by stolen pages
|
|
*
|
|
* Ask the kernel core to find us a suitable range of addresses
|
|
* to use for a GTT mapping.
|
|
*
|
|
* Returns a gtt_range structure describing the object, or NULL on
|
|
* error. On successful return the resource is both allocated and marked
|
|
* as in use.
|
|
*/
|
|
struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len,
|
|
const char *name, int backed, u32 align)
|
|
{
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
struct gtt_range *gt;
|
|
struct resource *r = dev_priv->gtt_mem;
|
|
int ret;
|
|
unsigned long start, end;
|
|
|
|
if (backed) {
|
|
/* The start of the GTT is the stolen pages */
|
|
start = r->start;
|
|
end = r->start + dev_priv->gtt.stolen_size - 1;
|
|
} else {
|
|
/* The rest we will use for GEM backed objects */
|
|
start = r->start + dev_priv->gtt.stolen_size;
|
|
end = r->end;
|
|
}
|
|
|
|
gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL);
|
|
if (gt == NULL)
|
|
return NULL;
|
|
gt->resource.name = name;
|
|
gt->stolen = backed;
|
|
gt->in_gart = backed;
|
|
gt->roll = 0;
|
|
/* Ensure this is set for non GEM objects */
|
|
gt->gem.dev = dev;
|
|
ret = allocate_resource(dev_priv->gtt_mem, >->resource,
|
|
len, start, end, align, NULL, NULL);
|
|
if (ret == 0) {
|
|
gt->offset = gt->resource.start - r->start;
|
|
return gt;
|
|
}
|
|
kfree(gt);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* psb_gtt_free_range - release GTT address space
|
|
* @dev: our DRM device
|
|
* @gt: a mapping created with psb_gtt_alloc_range
|
|
*
|
|
* Release a resource that was allocated with psb_gtt_alloc_range. If the
|
|
* object has been pinned by mmap users we clean this up here currently.
|
|
*/
|
|
void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt)
|
|
{
|
|
/* Undo the mmap pin if we are destroying the object */
|
|
if (gt->mmapping) {
|
|
psb_gtt_unpin(gt);
|
|
gt->mmapping = 0;
|
|
}
|
|
WARN_ON(gt->in_gart && !gt->stolen);
|
|
release_resource(>->resource);
|
|
kfree(gt);
|
|
}
|
|
|
|
static void psb_gtt_alloc(struct drm_device *dev)
|
|
{
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
init_rwsem(&dev_priv->gtt.sem);
|
|
}
|
|
|
|
void psb_gtt_takedown(struct drm_device *dev)
|
|
{
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
|
|
if (dev_priv->gtt_map) {
|
|
iounmap(dev_priv->gtt_map);
|
|
dev_priv->gtt_map = NULL;
|
|
}
|
|
if (dev_priv->gtt_initialized) {
|
|
pci_write_config_word(dev->pdev, PSB_GMCH_CTRL,
|
|
dev_priv->gmch_ctrl);
|
|
PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL);
|
|
(void) PSB_RVDC32(PSB_PGETBL_CTL);
|
|
}
|
|
if (dev_priv->vram_addr)
|
|
iounmap(dev_priv->gtt_map);
|
|
}
|
|
|
|
int psb_gtt_init(struct drm_device *dev, int resume)
|
|
{
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
unsigned gtt_pages;
|
|
unsigned long stolen_size, vram_stolen_size;
|
|
unsigned i, num_pages;
|
|
unsigned pfn_base;
|
|
struct psb_gtt *pg;
|
|
|
|
int ret = 0;
|
|
uint32_t pte;
|
|
|
|
if (!resume) {
|
|
mutex_init(&dev_priv->gtt_mutex);
|
|
mutex_init(&dev_priv->mmap_mutex);
|
|
psb_gtt_alloc(dev);
|
|
}
|
|
|
|
pg = &dev_priv->gtt;
|
|
|
|
/* Enable the GTT */
|
|
pci_read_config_word(dev->pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl);
|
|
pci_write_config_word(dev->pdev, PSB_GMCH_CTRL,
|
|
dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED);
|
|
|
|
dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL);
|
|
PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL);
|
|
(void) PSB_RVDC32(PSB_PGETBL_CTL);
|
|
|
|
/* The root resource we allocate address space from */
|
|
dev_priv->gtt_initialized = 1;
|
|
|
|
pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK;
|
|
|
|
/*
|
|
* The video mmu has a hw bug when accessing 0x0D0000000.
|
|
* Make gatt start at 0x0e000,0000. This doesn't actually
|
|
* matter for us but may do if the video acceleration ever
|
|
* gets opened up.
|
|
*/
|
|
pg->mmu_gatt_start = 0xE0000000;
|
|
|
|
pg->gtt_start = pci_resource_start(dev->pdev, PSB_GTT_RESOURCE);
|
|
gtt_pages = pci_resource_len(dev->pdev, PSB_GTT_RESOURCE)
|
|
>> PAGE_SHIFT;
|
|
/* CDV doesn't report this. In which case the system has 64 gtt pages */
|
|
if (pg->gtt_start == 0 || gtt_pages == 0) {
|
|
dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n");
|
|
gtt_pages = 64;
|
|
pg->gtt_start = dev_priv->pge_ctl;
|
|
}
|
|
|
|
pg->gatt_start = pci_resource_start(dev->pdev, PSB_GATT_RESOURCE);
|
|
pg->gatt_pages = pci_resource_len(dev->pdev, PSB_GATT_RESOURCE)
|
|
>> PAGE_SHIFT;
|
|
dev_priv->gtt_mem = &dev->pdev->resource[PSB_GATT_RESOURCE];
|
|
|
|
if (pg->gatt_pages == 0 || pg->gatt_start == 0) {
|
|
static struct resource fudge; /* Preferably peppermint */
|
|
/* This can occur on CDV systems. Fudge it in this case.
|
|
We really don't care what imaginary space is being allocated
|
|
at this point */
|
|
dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n");
|
|
pg->gatt_start = 0x40000000;
|
|
pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT;
|
|
/* This is a little confusing but in fact the GTT is providing
|
|
a view from the GPU into memory and not vice versa. As such
|
|
this is really allocating space that is not the same as the
|
|
CPU address space on CDV */
|
|
fudge.start = 0x40000000;
|
|
fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1;
|
|
fudge.name = "fudge";
|
|
fudge.flags = IORESOURCE_MEM;
|
|
dev_priv->gtt_mem = &fudge;
|
|
}
|
|
|
|
pci_read_config_dword(dev->pdev, PSB_BSM, &dev_priv->stolen_base);
|
|
vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base
|
|
- PAGE_SIZE;
|
|
|
|
stolen_size = vram_stolen_size;
|
|
|
|
dev_dbg(dev->dev, "Stolen memory base 0x%x, size %luK\n",
|
|
dev_priv->stolen_base, vram_stolen_size / 1024);
|
|
|
|
if (resume && (gtt_pages != pg->gtt_pages) &&
|
|
(stolen_size != pg->stolen_size)) {
|
|
dev_err(dev->dev, "GTT resume error.\n");
|
|
ret = -EINVAL;
|
|
goto out_err;
|
|
}
|
|
|
|
pg->gtt_pages = gtt_pages;
|
|
pg->stolen_size = stolen_size;
|
|
dev_priv->vram_stolen_size = vram_stolen_size;
|
|
|
|
/*
|
|
* Map the GTT and the stolen memory area
|
|
*/
|
|
if (!resume)
|
|
dev_priv->gtt_map = ioremap_nocache(pg->gtt_phys_start,
|
|
gtt_pages << PAGE_SHIFT);
|
|
if (!dev_priv->gtt_map) {
|
|
dev_err(dev->dev, "Failure to map gtt.\n");
|
|
ret = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
if (!resume)
|
|
dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base,
|
|
stolen_size);
|
|
|
|
if (!dev_priv->vram_addr) {
|
|
dev_err(dev->dev, "Failure to map stolen base.\n");
|
|
ret = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
/*
|
|
* Insert vram stolen pages into the GTT
|
|
*/
|
|
|
|
pfn_base = dev_priv->stolen_base >> PAGE_SHIFT;
|
|
num_pages = vram_stolen_size >> PAGE_SHIFT;
|
|
dev_dbg(dev->dev, "Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n",
|
|
num_pages, pfn_base << PAGE_SHIFT, 0);
|
|
for (i = 0; i < num_pages; ++i) {
|
|
pte = psb_gtt_mask_pte(pfn_base + i, PSB_MMU_CACHED_MEMORY);
|
|
iowrite32(pte, dev_priv->gtt_map + i);
|
|
}
|
|
|
|
/*
|
|
* Init rest of GTT to the scratch page to avoid accidents or scribbles
|
|
*/
|
|
|
|
pfn_base = page_to_pfn(dev_priv->scratch_page);
|
|
pte = psb_gtt_mask_pte(pfn_base, PSB_MMU_CACHED_MEMORY);
|
|
for (; i < gtt_pages; ++i)
|
|
iowrite32(pte, dev_priv->gtt_map + i);
|
|
|
|
(void) ioread32(dev_priv->gtt_map + i - 1);
|
|
return 0;
|
|
|
|
out_err:
|
|
psb_gtt_takedown(dev);
|
|
return ret;
|
|
}
|
|
|
|
int psb_gtt_restore(struct drm_device *dev)
|
|
{
|
|
struct drm_psb_private *dev_priv = dev->dev_private;
|
|
struct resource *r = dev_priv->gtt_mem->child;
|
|
struct gtt_range *range;
|
|
unsigned int restored = 0, total = 0, size = 0;
|
|
|
|
/* On resume, the gtt_mutex is already initialized */
|
|
mutex_lock(&dev_priv->gtt_mutex);
|
|
psb_gtt_init(dev, 1);
|
|
|
|
while (r != NULL) {
|
|
range = container_of(r, struct gtt_range, resource);
|
|
if (range->pages) {
|
|
psb_gtt_insert(dev, range, 1);
|
|
size += range->resource.end - range->resource.start;
|
|
restored++;
|
|
}
|
|
r = r->sibling;
|
|
total++;
|
|
}
|
|
mutex_unlock(&dev_priv->gtt_mutex);
|
|
DRM_DEBUG_DRIVER("Restored %u of %u gtt ranges (%u KB)", restored,
|
|
total, (size / 1024));
|
|
|
|
return 0;
|
|
}
|