linux/arch/sparc64/kernel/mdesc.c
David S. Miller 5cbc307373 [SPARC64]: Use machine description and OBP properly for cpu probing.
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-05-29 02:49:41 -07:00

620 lines
13 KiB
C

/* mdesc.c: Sun4V machine description handling.
*
* Copyright (C) 2007 David S. Miller <davem@davemloft.net>
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bootmem.h>
#include <linux/log2.h>
#include <asm/hypervisor.h>
#include <asm/mdesc.h>
#include <asm/prom.h>
#include <asm/oplib.h>
#include <asm/smp.h>
/* Unlike the OBP device tree, the machine description is a full-on
* DAG. An arbitrary number of ARCs are possible from one
* node to other nodes and thus we can't use the OBP device_node
* data structure to represent these nodes inside of the kernel.
*
* Actually, it isn't even a DAG, because there are back pointers
* which create cycles in the graph.
*
* mdesc_hdr and mdesc_elem describe the layout of the data structure
* we get from the Hypervisor.
*/
struct mdesc_hdr {
u32 version; /* Transport version */
u32 node_sz; /* node block size */
u32 name_sz; /* name block size */
u32 data_sz; /* data block size */
};
struct mdesc_elem {
u8 tag;
#define MD_LIST_END 0x00
#define MD_NODE 0x4e
#define MD_NODE_END 0x45
#define MD_NOOP 0x20
#define MD_PROP_ARC 0x61
#define MD_PROP_VAL 0x76
#define MD_PROP_STR 0x73
#define MD_PROP_DATA 0x64
u8 name_len;
u16 resv;
u32 name_offset;
union {
struct {
u32 data_len;
u32 data_offset;
} data;
u64 val;
} d;
};
static struct mdesc_hdr *main_mdesc;
static struct mdesc_node *allnodes;
static struct mdesc_node *allnodes_tail;
static unsigned int unique_id;
static struct mdesc_node **mdesc_hash;
static unsigned int mdesc_hash_size;
static inline unsigned int node_hashfn(u64 node)
{
return ((unsigned int) (node ^ (node >> 8) ^ (node >> 16)))
& (mdesc_hash_size - 1);
}
static inline void hash_node(struct mdesc_node *mp)
{
struct mdesc_node **head = &mdesc_hash[node_hashfn(mp->node)];
mp->hash_next = *head;
*head = mp;
if (allnodes_tail) {
allnodes_tail->allnodes_next = mp;
allnodes_tail = mp;
} else {
allnodes = allnodes_tail = mp;
}
}
static struct mdesc_node *find_node(u64 node)
{
struct mdesc_node *mp = mdesc_hash[node_hashfn(node)];
while (mp) {
if (mp->node == node)
return mp;
mp = mp->hash_next;
}
return NULL;
}
struct property *md_find_property(const struct mdesc_node *mp,
const char *name,
int *lenp)
{
struct property *pp;
for (pp = mp->properties; pp != 0; pp = pp->next) {
if (strcasecmp(pp->name, name) == 0) {
if (lenp)
*lenp = pp->length;
break;
}
}
return pp;
}
EXPORT_SYMBOL(md_find_property);
/*
* Find a property with a given name for a given node
* and return the value.
*/
const void *md_get_property(const struct mdesc_node *mp, const char *name,
int *lenp)
{
struct property *pp = md_find_property(mp, name, lenp);
return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(md_get_property);
struct mdesc_node *md_find_node_by_name(struct mdesc_node *from,
const char *name)
{
struct mdesc_node *mp;
mp = from ? from->allnodes_next : allnodes;
for (; mp != NULL; mp = mp->allnodes_next) {
if (strcmp(mp->name, name) == 0)
break;
}
return mp;
}
EXPORT_SYMBOL(md_find_node_by_name);
static unsigned int mdesc_early_allocated;
static void * __init mdesc_early_alloc(unsigned long size)
{
void *ret;
ret = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
if (ret == NULL) {
prom_printf("MDESC: alloc of %lu bytes failed.\n", size);
prom_halt();
}
memset(ret, 0, size);
mdesc_early_allocated += size;
return ret;
}
static unsigned int __init count_arcs(struct mdesc_elem *ep)
{
unsigned int ret = 0;
ep++;
while (ep->tag != MD_NODE_END) {
if (ep->tag == MD_PROP_ARC)
ret++;
ep++;
}
return ret;
}
static void __init mdesc_node_alloc(u64 node, struct mdesc_elem *ep, const char *names)
{
unsigned int num_arcs = count_arcs(ep);
struct mdesc_node *mp;
mp = mdesc_early_alloc(sizeof(*mp) +
(num_arcs * sizeof(struct mdesc_arc)));
mp->name = names + ep->name_offset;
mp->node = node;
mp->unique_id = unique_id++;
mp->num_arcs = num_arcs;
hash_node(mp);
}
static inline struct mdesc_elem *node_block(struct mdesc_hdr *mdesc)
{
return (struct mdesc_elem *) (mdesc + 1);
}
static inline void *name_block(struct mdesc_hdr *mdesc)
{
return ((void *) node_block(mdesc)) + mdesc->node_sz;
}
static inline void *data_block(struct mdesc_hdr *mdesc)
{
return ((void *) name_block(mdesc)) + mdesc->name_sz;
}
/* In order to avoid recursion (the graph can be very deep) we use a
* two pass algorithm. First we allocate all the nodes and hash them.
* Then we iterate over each node, filling in the arcs and properties.
*/
static void __init build_all_nodes(struct mdesc_hdr *mdesc)
{
struct mdesc_elem *start, *ep;
struct mdesc_node *mp;
const char *names;
void *data;
u64 last_node;
start = ep = node_block(mdesc);
last_node = mdesc->node_sz / 16;
names = name_block(mdesc);
while (1) {
u64 node = ep - start;
if (ep->tag == MD_LIST_END)
break;
if (ep->tag != MD_NODE) {
prom_printf("MDESC: Inconsistent element list.\n");
prom_halt();
}
mdesc_node_alloc(node, ep, names);
if (ep->d.val >= last_node) {
printk("MDESC: Warning, early break out of node scan.\n");
printk("MDESC: Next node [%lu] last_node [%lu].\n",
node, last_node);
break;
}
ep = start + ep->d.val;
}
data = data_block(mdesc);
for (mp = allnodes; mp; mp = mp->allnodes_next) {
struct mdesc_elem *ep = start + mp->node;
struct property **link = &mp->properties;
unsigned int this_arc = 0;
ep++;
while (ep->tag != MD_NODE_END) {
switch (ep->tag) {
case MD_PROP_ARC: {
struct mdesc_node *target;
if (this_arc >= mp->num_arcs) {
prom_printf("MDESC: ARC overrun [%u:%u]\n",
this_arc, mp->num_arcs);
prom_halt();
}
target = find_node(ep->d.val);
if (!target) {
printk("MDESC: Warning, arc points to "
"missing node, ignoring.\n");
break;
}
mp->arcs[this_arc].name =
(names + ep->name_offset);
mp->arcs[this_arc].arc = target;
this_arc++;
break;
}
case MD_PROP_VAL:
case MD_PROP_STR:
case MD_PROP_DATA: {
struct property *p = mdesc_early_alloc(sizeof(*p));
p->unique_id = unique_id++;
p->name = (char *) names + ep->name_offset;
if (ep->tag == MD_PROP_VAL) {
p->value = &ep->d.val;
p->length = 8;
} else {
p->value = data + ep->d.data.data_offset;
p->length = ep->d.data.data_len;
}
*link = p;
link = &p->next;
break;
}
case MD_NOOP:
break;
default:
printk("MDESC: Warning, ignoring unknown tag type %02x\n",
ep->tag);
}
ep++;
}
}
}
static unsigned int __init count_nodes(struct mdesc_hdr *mdesc)
{
struct mdesc_elem *ep = node_block(mdesc);
struct mdesc_elem *end;
unsigned int cnt = 0;
end = ((void *)ep) + mdesc->node_sz;
while (ep < end) {
if (ep->tag == MD_NODE)
cnt++;
ep++;
}
return cnt;
}
static void __init report_platform_properties(void)
{
struct mdesc_node *pn = md_find_node_by_name(NULL, "platform");
const char *s;
const u64 *v;
if (!pn) {
prom_printf("No platform node in machine-description.\n");
prom_halt();
}
s = md_get_property(pn, "banner-name", NULL);
printk("PLATFORM: banner-name [%s]\n", s);
s = md_get_property(pn, "name", NULL);
printk("PLATFORM: name [%s]\n", s);
v = md_get_property(pn, "hostid", NULL);
if (v)
printk("PLATFORM: hostid [%08lx]\n", *v);
v = md_get_property(pn, "serial#", NULL);
if (v)
printk("PLATFORM: serial# [%08lx]\n", *v);
v = md_get_property(pn, "stick-frequency", NULL);
printk("PLATFORM: stick-frequency [%08lx]\n", *v);
v = md_get_property(pn, "mac-address", NULL);
if (v)
printk("PLATFORM: mac-address [%lx]\n", *v);
v = md_get_property(pn, "watchdog-resolution", NULL);
if (v)
printk("PLATFORM: watchdog-resolution [%lu ms]\n", *v);
v = md_get_property(pn, "watchdog-max-timeout", NULL);
if (v)
printk("PLATFORM: watchdog-max-timeout [%lu ms]\n", *v);
v = md_get_property(pn, "max-cpus", NULL);
if (v)
printk("PLATFORM: max-cpus [%lu]\n", *v);
}
static int inline find_in_proplist(const char *list, const char *match, int len)
{
while (len > 0) {
int l;
if (!strcmp(list, match))
return 1;
l = strlen(list) + 1;
list += l;
len -= l;
}
return 0;
}
static void __init fill_in_one_cache(cpuinfo_sparc *c, struct mdesc_node *mp)
{
const u64 *level = md_get_property(mp, "level", NULL);
const u64 *size = md_get_property(mp, "size", NULL);
const u64 *line_size = md_get_property(mp, "line-size", NULL);
const char *type;
int type_len;
type = md_get_property(mp, "type", &type_len);
switch (*level) {
case 1:
if (find_in_proplist(type, "instn", type_len)) {
c->icache_size = *size;
c->icache_line_size = *line_size;
} else if (find_in_proplist(type, "data", type_len)) {
c->dcache_size = *size;
c->dcache_line_size = *line_size;
}
break;
case 2:
c->ecache_size = *size;
c->ecache_line_size = *line_size;
break;
default:
break;
}
if (*level == 1) {
unsigned int i;
for (i = 0; i < mp->num_arcs; i++) {
struct mdesc_node *t = mp->arcs[i].arc;
if (strcmp(mp->arcs[i].name, "fwd"))
continue;
if (!strcmp(t->name, "cache"))
fill_in_one_cache(c, t);
}
}
}
static void __init mark_core_ids(struct mdesc_node *mp, int core_id)
{
unsigned int i;
for (i = 0; i < mp->num_arcs; i++) {
struct mdesc_node *t = mp->arcs[i].arc;
const u64 *id;
if (strcmp(mp->arcs[i].name, "back"))
continue;
if (!strcmp(t->name, "cpu")) {
id = md_get_property(t, "id", NULL);
if (*id < NR_CPUS)
cpu_data(*id).core_id = core_id;
} else {
unsigned int j;
for (j = 0; j < t->num_arcs; j++) {
struct mdesc_node *n = t->arcs[j].arc;
if (strcmp(t->arcs[j].name, "back"))
continue;
if (strcmp(n->name, "cpu"))
continue;
id = md_get_property(n, "id", NULL);
if (*id < NR_CPUS)
cpu_data(*id).core_id = core_id;
}
}
}
}
static void __init set_core_ids(void)
{
struct mdesc_node *mp;
int idx;
idx = 1;
md_for_each_node_by_name(mp, "cache") {
const u64 *level = md_get_property(mp, "level", NULL);
const char *type;
int len;
if (*level != 1)
continue;
type = md_get_property(mp, "type", &len);
if (!find_in_proplist(type, "instn", len))
continue;
mark_core_ids(mp, idx);
idx++;
}
}
static void __init get_one_mondo_bits(const u64 *p, unsigned int *mask, unsigned char def)
{
u64 val;
if (!p)
goto use_default;
val = *p;
if (!val || val >= 64)
goto use_default;
*mask = ((1U << val) * 64U) - 1U;
return;
use_default:
*mask = ((1U << def) * 64U) - 1U;
}
static void __init get_mondo_data(struct mdesc_node *mp, struct trap_per_cpu *tb)
{
const u64 *val;
val = md_get_property(mp, "q-cpu-mondo-#bits", NULL);
get_one_mondo_bits(val, &tb->cpu_mondo_qmask, 7);
val = md_get_property(mp, "q-dev-mondo-#bits", NULL);
get_one_mondo_bits(val, &tb->dev_mondo_qmask, 7);
val = md_get_property(mp, "q-resumable-#bits", NULL);
get_one_mondo_bits(val, &tb->resum_qmask, 6);
val = md_get_property(mp, "q-nonresumable-#bits", NULL);
get_one_mondo_bits(val, &tb->nonresum_qmask, 2);
}
static void __init mdesc_fill_in_cpu_data(void)
{
struct mdesc_node *mp;
ncpus_probed = 0;
md_for_each_node_by_name(mp, "cpu") {
const u64 *id = md_get_property(mp, "id", NULL);
const u64 *cfreq = md_get_property(mp, "clock-frequency", NULL);
struct trap_per_cpu *tb;
cpuinfo_sparc *c;
unsigned int i;
int cpuid;
ncpus_probed++;
cpuid = *id;
#ifdef CONFIG_SMP
if (cpuid >= NR_CPUS)
continue;
#else
/* On uniprocessor we only want the values for the
* real physical cpu the kernel booted onto, however
* cpu_data() only has one entry at index 0.
*/
if (cpuid != real_hard_smp_processor_id())
continue;
cpuid = 0;
#endif
c = &cpu_data(cpuid);
c->clock_tick = *cfreq;
tb = &trap_block[cpuid];
get_mondo_data(mp, tb);
for (i = 0; i < mp->num_arcs; i++) {
struct mdesc_node *t = mp->arcs[i].arc;
unsigned int j;
if (strcmp(mp->arcs[i].name, "fwd"))
continue;
if (!strcmp(t->name, "cache")) {
fill_in_one_cache(c, t);
continue;
}
for (j = 0; j < t->num_arcs; j++) {
struct mdesc_node *n;
n = t->arcs[j].arc;
if (strcmp(t->arcs[j].name, "fwd"))
continue;
if (!strcmp(n->name, "cache"))
fill_in_one_cache(c, n);
}
}
#ifdef CONFIG_SMP
cpu_set(cpuid, cpu_present_map);
cpu_set(cpuid, phys_cpu_present_map);
#endif
c->core_id = 0;
}
set_core_ids();
smp_fill_in_sib_core_maps();
}
void __init sun4v_mdesc_init(void)
{
unsigned long len, real_len, status;
(void) sun4v_mach_desc(0UL, 0UL, &len);
printk("MDESC: Size is %lu bytes.\n", len);
main_mdesc = mdesc_early_alloc(len);
status = sun4v_mach_desc(__pa(main_mdesc), len, &real_len);
if (status != HV_EOK || real_len > len) {
prom_printf("sun4v_mach_desc fails, err(%lu), "
"len(%lu), real_len(%lu)\n",
status, len, real_len);
prom_halt();
}
len = count_nodes(main_mdesc);
printk("MDESC: %lu nodes.\n", len);
len = roundup_pow_of_two(len);
mdesc_hash = mdesc_early_alloc(len * sizeof(struct mdesc_node *));
mdesc_hash_size = len;
printk("MDESC: Hash size %lu entries.\n", len);
build_all_nodes(main_mdesc);
printk("MDESC: Built graph with %u bytes of memory.\n",
mdesc_early_allocated);
report_platform_properties();
mdesc_fill_in_cpu_data();
}