mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-26 12:47:53 +00:00
a606488513
Serge Hallyn <serge.hallyn@ubuntu.com> writes: > Since commit af4b8a83add95ef40716401395b44a1b579965f4 it's been > possible to get into a situation where a pidns reaper is > <defunct>, reparented to host pid 1, but never reaped. How to > reproduce this is documented at > > https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1168526 > (and see > https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1168526/comments/13) > In short, run repeated starts of a container whose init is > > Process.exit(0); > > sysrq-t when such a task is playing zombie shows: > > [ 131.132978] init x ffff88011fc14580 0 2084 2039 0x00000000 > [ 131.132978] ffff880116e89ea8 0000000000000002 ffff880116e89fd8 0000000000014580 > [ 131.132978] ffff880116e89fd8 0000000000014580 ffff8801172a0000 ffff8801172a0000 > [ 131.132978] ffff8801172a0630 ffff88011729fff0 ffff880116e14650 ffff88011729fff0 > [ 131.132978] Call Trace: > [ 131.132978] [<ffffffff816f6159>] schedule+0x29/0x70 > [ 131.132978] [<ffffffff81064591>] do_exit+0x6e1/0xa40 > [ 131.132978] [<ffffffff81071eae>] ? signal_wake_up_state+0x1e/0x30 > [ 131.132978] [<ffffffff8106496f>] do_group_exit+0x3f/0xa0 > [ 131.132978] [<ffffffff810649e4>] SyS_exit_group+0x14/0x20 > [ 131.132978] [<ffffffff8170102f>] tracesys+0xe1/0xe6 > > Further debugging showed that every time this happened, zap_pid_ns_processes() > started with nr_hashed being 3, while we were expecting it to drop to 2. > Any time it didn't happen, nr_hashed was 1 or 2. So the reaper was > waiting for nr_hashed to become 2, but free_pid() only wakes the reaper > if nr_hashed hits 1. The issue is that when the task group leader of an init process exits before other tasks of the init process when the init process finally exits it will be a secondary task sleeping in zap_pid_ns_processes and waiting to wake up when the number of hashed pids drops to two. This case waits forever as free_pid only sends a wake up when the number of hashed pids drops to 1. To correct this the simple strategy of sending a possibly unncessary wake up when the number of hashed pids drops to 2 is adopted. Sending one extraneous wake up is relatively harmless, at worst we waste a little cpu time in the rare case when a pid namespace appropaches exiting. We can detect the case when the pid namespace drops to just two pids hashed race free in free_pid. Dereferencing pid_ns->child_reaper with the pidmap_lock held is safe without out the tasklist_lock because it is guaranteed that the detach_pid will be called on the child_reaper before it is freed and detach_pid calls __change_pid which calls free_pid which takes the pidmap_lock. __change_pid only calls free_pid if this is the last use of the pid. For a thread that is not the thread group leader the threads pid will only ever have one user because a threads pid is not allowed to be the pid of a process, of a process group or a session. For a thread that is a thread group leader all of the other threads of that process will be reaped before it is allowed for the thread group leader to be reaped ensuring there will only be one user of the threads pid as a process pid. Furthermore because the thread is the init process of a pid namespace all of the other processes in the pid namespace will have also been already freed leading to the fact that the pid will not be used as a session pid or a process group pid for any other running process. CC: stable@vger.kernel.org Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Tested-by: Serge Hallyn <serge.hallyn@canonical.com> Reported-by: Serge Hallyn <serge.hallyn@ubuntu.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
599 lines
15 KiB
C
599 lines
15 KiB
C
/*
|
|
* Generic pidhash and scalable, time-bounded PID allocator
|
|
*
|
|
* (C) 2002-2003 Nadia Yvette Chambers, IBM
|
|
* (C) 2004 Nadia Yvette Chambers, Oracle
|
|
* (C) 2002-2004 Ingo Molnar, Red Hat
|
|
*
|
|
* pid-structures are backing objects for tasks sharing a given ID to chain
|
|
* against. There is very little to them aside from hashing them and
|
|
* parking tasks using given ID's on a list.
|
|
*
|
|
* The hash is always changed with the tasklist_lock write-acquired,
|
|
* and the hash is only accessed with the tasklist_lock at least
|
|
* read-acquired, so there's no additional SMP locking needed here.
|
|
*
|
|
* We have a list of bitmap pages, which bitmaps represent the PID space.
|
|
* Allocating and freeing PIDs is completely lockless. The worst-case
|
|
* allocation scenario when all but one out of 1 million PIDs possible are
|
|
* allocated already: the scanning of 32 list entries and at most PAGE_SIZE
|
|
* bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
|
|
*
|
|
* Pid namespaces:
|
|
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
|
|
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
|
|
* Many thanks to Oleg Nesterov for comments and help
|
|
*
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/proc_ns.h>
|
|
#include <linux/proc_fs.h>
|
|
|
|
#define pid_hashfn(nr, ns) \
|
|
hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
|
|
static struct hlist_head *pid_hash;
|
|
static unsigned int pidhash_shift = 4;
|
|
struct pid init_struct_pid = INIT_STRUCT_PID;
|
|
|
|
int pid_max = PID_MAX_DEFAULT;
|
|
|
|
#define RESERVED_PIDS 300
|
|
|
|
int pid_max_min = RESERVED_PIDS + 1;
|
|
int pid_max_max = PID_MAX_LIMIT;
|
|
|
|
static inline int mk_pid(struct pid_namespace *pid_ns,
|
|
struct pidmap *map, int off)
|
|
{
|
|
return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
|
|
}
|
|
|
|
#define find_next_offset(map, off) \
|
|
find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
|
|
|
|
/*
|
|
* PID-map pages start out as NULL, they get allocated upon
|
|
* first use and are never deallocated. This way a low pid_max
|
|
* value does not cause lots of bitmaps to be allocated, but
|
|
* the scheme scales to up to 4 million PIDs, runtime.
|
|
*/
|
|
struct pid_namespace init_pid_ns = {
|
|
.kref = {
|
|
.refcount = ATOMIC_INIT(2),
|
|
},
|
|
.pidmap = {
|
|
[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
|
|
},
|
|
.last_pid = 0,
|
|
.nr_hashed = PIDNS_HASH_ADDING,
|
|
.level = 0,
|
|
.child_reaper = &init_task,
|
|
.user_ns = &init_user_ns,
|
|
.proc_inum = PROC_PID_INIT_INO,
|
|
};
|
|
EXPORT_SYMBOL_GPL(init_pid_ns);
|
|
|
|
/*
|
|
* Note: disable interrupts while the pidmap_lock is held as an
|
|
* interrupt might come in and do read_lock(&tasklist_lock).
|
|
*
|
|
* If we don't disable interrupts there is a nasty deadlock between
|
|
* detach_pid()->free_pid() and another cpu that does
|
|
* spin_lock(&pidmap_lock) followed by an interrupt routine that does
|
|
* read_lock(&tasklist_lock);
|
|
*
|
|
* After we clean up the tasklist_lock and know there are no
|
|
* irq handlers that take it we can leave the interrupts enabled.
|
|
* For now it is easier to be safe than to prove it can't happen.
|
|
*/
|
|
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
|
|
|
|
static void free_pidmap(struct upid *upid)
|
|
{
|
|
int nr = upid->nr;
|
|
struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
|
|
int offset = nr & BITS_PER_PAGE_MASK;
|
|
|
|
clear_bit(offset, map->page);
|
|
atomic_inc(&map->nr_free);
|
|
}
|
|
|
|
/*
|
|
* If we started walking pids at 'base', is 'a' seen before 'b'?
|
|
*/
|
|
static int pid_before(int base, int a, int b)
|
|
{
|
|
/*
|
|
* This is the same as saying
|
|
*
|
|
* (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
|
|
* and that mapping orders 'a' and 'b' with respect to 'base'.
|
|
*/
|
|
return (unsigned)(a - base) < (unsigned)(b - base);
|
|
}
|
|
|
|
/*
|
|
* We might be racing with someone else trying to set pid_ns->last_pid
|
|
* at the pid allocation time (there's also a sysctl for this, but racing
|
|
* with this one is OK, see comment in kernel/pid_namespace.c about it).
|
|
* We want the winner to have the "later" value, because if the
|
|
* "earlier" value prevails, then a pid may get reused immediately.
|
|
*
|
|
* Since pids rollover, it is not sufficient to just pick the bigger
|
|
* value. We have to consider where we started counting from.
|
|
*
|
|
* 'base' is the value of pid_ns->last_pid that we observed when
|
|
* we started looking for a pid.
|
|
*
|
|
* 'pid' is the pid that we eventually found.
|
|
*/
|
|
static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
|
|
{
|
|
int prev;
|
|
int last_write = base;
|
|
do {
|
|
prev = last_write;
|
|
last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
|
|
} while ((prev != last_write) && (pid_before(base, last_write, pid)));
|
|
}
|
|
|
|
static int alloc_pidmap(struct pid_namespace *pid_ns)
|
|
{
|
|
int i, offset, max_scan, pid, last = pid_ns->last_pid;
|
|
struct pidmap *map;
|
|
|
|
pid = last + 1;
|
|
if (pid >= pid_max)
|
|
pid = RESERVED_PIDS;
|
|
offset = pid & BITS_PER_PAGE_MASK;
|
|
map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
|
|
/*
|
|
* If last_pid points into the middle of the map->page we
|
|
* want to scan this bitmap block twice, the second time
|
|
* we start with offset == 0 (or RESERVED_PIDS).
|
|
*/
|
|
max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
|
|
for (i = 0; i <= max_scan; ++i) {
|
|
if (unlikely(!map->page)) {
|
|
void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
/*
|
|
* Free the page if someone raced with us
|
|
* installing it:
|
|
*/
|
|
spin_lock_irq(&pidmap_lock);
|
|
if (!map->page) {
|
|
map->page = page;
|
|
page = NULL;
|
|
}
|
|
spin_unlock_irq(&pidmap_lock);
|
|
kfree(page);
|
|
if (unlikely(!map->page))
|
|
break;
|
|
}
|
|
if (likely(atomic_read(&map->nr_free))) {
|
|
for ( ; ; ) {
|
|
if (!test_and_set_bit(offset, map->page)) {
|
|
atomic_dec(&map->nr_free);
|
|
set_last_pid(pid_ns, last, pid);
|
|
return pid;
|
|
}
|
|
offset = find_next_offset(map, offset);
|
|
if (offset >= BITS_PER_PAGE)
|
|
break;
|
|
pid = mk_pid(pid_ns, map, offset);
|
|
if (pid >= pid_max)
|
|
break;
|
|
}
|
|
}
|
|
if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
|
|
++map;
|
|
offset = 0;
|
|
} else {
|
|
map = &pid_ns->pidmap[0];
|
|
offset = RESERVED_PIDS;
|
|
if (unlikely(last == offset))
|
|
break;
|
|
}
|
|
pid = mk_pid(pid_ns, map, offset);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
|
|
{
|
|
int offset;
|
|
struct pidmap *map, *end;
|
|
|
|
if (last >= PID_MAX_LIMIT)
|
|
return -1;
|
|
|
|
offset = (last + 1) & BITS_PER_PAGE_MASK;
|
|
map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
|
|
end = &pid_ns->pidmap[PIDMAP_ENTRIES];
|
|
for (; map < end; map++, offset = 0) {
|
|
if (unlikely(!map->page))
|
|
continue;
|
|
offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
|
|
if (offset < BITS_PER_PAGE)
|
|
return mk_pid(pid_ns, map, offset);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
void put_pid(struct pid *pid)
|
|
{
|
|
struct pid_namespace *ns;
|
|
|
|
if (!pid)
|
|
return;
|
|
|
|
ns = pid->numbers[pid->level].ns;
|
|
if ((atomic_read(&pid->count) == 1) ||
|
|
atomic_dec_and_test(&pid->count)) {
|
|
kmem_cache_free(ns->pid_cachep, pid);
|
|
put_pid_ns(ns);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_pid);
|
|
|
|
static void delayed_put_pid(struct rcu_head *rhp)
|
|
{
|
|
struct pid *pid = container_of(rhp, struct pid, rcu);
|
|
put_pid(pid);
|
|
}
|
|
|
|
void free_pid(struct pid *pid)
|
|
{
|
|
/* We can be called with write_lock_irq(&tasklist_lock) held */
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pidmap_lock, flags);
|
|
for (i = 0; i <= pid->level; i++) {
|
|
struct upid *upid = pid->numbers + i;
|
|
struct pid_namespace *ns = upid->ns;
|
|
hlist_del_rcu(&upid->pid_chain);
|
|
switch(--ns->nr_hashed) {
|
|
case 2:
|
|
case 1:
|
|
/* When all that is left in the pid namespace
|
|
* is the reaper wake up the reaper. The reaper
|
|
* may be sleeping in zap_pid_ns_processes().
|
|
*/
|
|
wake_up_process(ns->child_reaper);
|
|
break;
|
|
case 0:
|
|
schedule_work(&ns->proc_work);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&pidmap_lock, flags);
|
|
|
|
for (i = 0; i <= pid->level; i++)
|
|
free_pidmap(pid->numbers + i);
|
|
|
|
call_rcu(&pid->rcu, delayed_put_pid);
|
|
}
|
|
|
|
struct pid *alloc_pid(struct pid_namespace *ns)
|
|
{
|
|
struct pid *pid;
|
|
enum pid_type type;
|
|
int i, nr;
|
|
struct pid_namespace *tmp;
|
|
struct upid *upid;
|
|
|
|
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
|
|
if (!pid)
|
|
goto out;
|
|
|
|
tmp = ns;
|
|
pid->level = ns->level;
|
|
for (i = ns->level; i >= 0; i--) {
|
|
nr = alloc_pidmap(tmp);
|
|
if (nr < 0)
|
|
goto out_free;
|
|
|
|
pid->numbers[i].nr = nr;
|
|
pid->numbers[i].ns = tmp;
|
|
tmp = tmp->parent;
|
|
}
|
|
|
|
if (unlikely(is_child_reaper(pid))) {
|
|
if (pid_ns_prepare_proc(ns))
|
|
goto out_free;
|
|
}
|
|
|
|
get_pid_ns(ns);
|
|
atomic_set(&pid->count, 1);
|
|
for (type = 0; type < PIDTYPE_MAX; ++type)
|
|
INIT_HLIST_HEAD(&pid->tasks[type]);
|
|
|
|
upid = pid->numbers + ns->level;
|
|
spin_lock_irq(&pidmap_lock);
|
|
if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
|
|
goto out_unlock;
|
|
for ( ; upid >= pid->numbers; --upid) {
|
|
hlist_add_head_rcu(&upid->pid_chain,
|
|
&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
|
|
upid->ns->nr_hashed++;
|
|
}
|
|
spin_unlock_irq(&pidmap_lock);
|
|
|
|
out:
|
|
return pid;
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(&pidmap_lock);
|
|
out_free:
|
|
while (++i <= ns->level)
|
|
free_pidmap(pid->numbers + i);
|
|
|
|
kmem_cache_free(ns->pid_cachep, pid);
|
|
pid = NULL;
|
|
goto out;
|
|
}
|
|
|
|
void disable_pid_allocation(struct pid_namespace *ns)
|
|
{
|
|
spin_lock_irq(&pidmap_lock);
|
|
ns->nr_hashed &= ~PIDNS_HASH_ADDING;
|
|
spin_unlock_irq(&pidmap_lock);
|
|
}
|
|
|
|
struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
|
|
{
|
|
struct upid *pnr;
|
|
|
|
hlist_for_each_entry_rcu(pnr,
|
|
&pid_hash[pid_hashfn(nr, ns)], pid_chain)
|
|
if (pnr->nr == nr && pnr->ns == ns)
|
|
return container_of(pnr, struct pid,
|
|
numbers[ns->level]);
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_pid_ns);
|
|
|
|
struct pid *find_vpid(int nr)
|
|
{
|
|
return find_pid_ns(nr, task_active_pid_ns(current));
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_vpid);
|
|
|
|
/*
|
|
* attach_pid() must be called with the tasklist_lock write-held.
|
|
*/
|
|
void attach_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
struct pid_link *link = &task->pids[type];
|
|
hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
|
|
}
|
|
|
|
static void __change_pid(struct task_struct *task, enum pid_type type,
|
|
struct pid *new)
|
|
{
|
|
struct pid_link *link;
|
|
struct pid *pid;
|
|
int tmp;
|
|
|
|
link = &task->pids[type];
|
|
pid = link->pid;
|
|
|
|
hlist_del_rcu(&link->node);
|
|
link->pid = new;
|
|
|
|
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
|
|
if (!hlist_empty(&pid->tasks[tmp]))
|
|
return;
|
|
|
|
free_pid(pid);
|
|
}
|
|
|
|
void detach_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
__change_pid(task, type, NULL);
|
|
}
|
|
|
|
void change_pid(struct task_struct *task, enum pid_type type,
|
|
struct pid *pid)
|
|
{
|
|
__change_pid(task, type, pid);
|
|
attach_pid(task, type);
|
|
}
|
|
|
|
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
|
|
void transfer_pid(struct task_struct *old, struct task_struct *new,
|
|
enum pid_type type)
|
|
{
|
|
new->pids[type].pid = old->pids[type].pid;
|
|
hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
|
|
}
|
|
|
|
struct task_struct *pid_task(struct pid *pid, enum pid_type type)
|
|
{
|
|
struct task_struct *result = NULL;
|
|
if (pid) {
|
|
struct hlist_node *first;
|
|
first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
|
|
lockdep_tasklist_lock_is_held());
|
|
if (first)
|
|
result = hlist_entry(first, struct task_struct, pids[(type)].node);
|
|
}
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL(pid_task);
|
|
|
|
/*
|
|
* Must be called under rcu_read_lock().
|
|
*/
|
|
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
|
|
{
|
|
rcu_lockdep_assert(rcu_read_lock_held(),
|
|
"find_task_by_pid_ns() needs rcu_read_lock()"
|
|
" protection");
|
|
return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
|
|
}
|
|
|
|
struct task_struct *find_task_by_vpid(pid_t vnr)
|
|
{
|
|
return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
|
|
}
|
|
|
|
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
struct pid *pid;
|
|
rcu_read_lock();
|
|
if (type != PIDTYPE_PID)
|
|
task = task->group_leader;
|
|
pid = get_pid(task->pids[type].pid);
|
|
rcu_read_unlock();
|
|
return pid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_task_pid);
|
|
|
|
struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
|
|
{
|
|
struct task_struct *result;
|
|
rcu_read_lock();
|
|
result = pid_task(pid, type);
|
|
if (result)
|
|
get_task_struct(result);
|
|
rcu_read_unlock();
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_pid_task);
|
|
|
|
struct pid *find_get_pid(pid_t nr)
|
|
{
|
|
struct pid *pid;
|
|
|
|
rcu_read_lock();
|
|
pid = get_pid(find_vpid(nr));
|
|
rcu_read_unlock();
|
|
|
|
return pid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_get_pid);
|
|
|
|
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
|
|
{
|
|
struct upid *upid;
|
|
pid_t nr = 0;
|
|
|
|
if (pid && ns->level <= pid->level) {
|
|
upid = &pid->numbers[ns->level];
|
|
if (upid->ns == ns)
|
|
nr = upid->nr;
|
|
}
|
|
return nr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pid_nr_ns);
|
|
|
|
pid_t pid_vnr(struct pid *pid)
|
|
{
|
|
return pid_nr_ns(pid, task_active_pid_ns(current));
|
|
}
|
|
EXPORT_SYMBOL_GPL(pid_vnr);
|
|
|
|
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
|
|
struct pid_namespace *ns)
|
|
{
|
|
pid_t nr = 0;
|
|
|
|
rcu_read_lock();
|
|
if (!ns)
|
|
ns = task_active_pid_ns(current);
|
|
if (likely(pid_alive(task))) {
|
|
if (type != PIDTYPE_PID)
|
|
task = task->group_leader;
|
|
nr = pid_nr_ns(task->pids[type].pid, ns);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return nr;
|
|
}
|
|
EXPORT_SYMBOL(__task_pid_nr_ns);
|
|
|
|
pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
|
{
|
|
return pid_nr_ns(task_tgid(tsk), ns);
|
|
}
|
|
EXPORT_SYMBOL(task_tgid_nr_ns);
|
|
|
|
struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
|
|
{
|
|
return ns_of_pid(task_pid(tsk));
|
|
}
|
|
EXPORT_SYMBOL_GPL(task_active_pid_ns);
|
|
|
|
/*
|
|
* Used by proc to find the first pid that is greater than or equal to nr.
|
|
*
|
|
* If there is a pid at nr this function is exactly the same as find_pid_ns.
|
|
*/
|
|
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
|
|
{
|
|
struct pid *pid;
|
|
|
|
do {
|
|
pid = find_pid_ns(nr, ns);
|
|
if (pid)
|
|
break;
|
|
nr = next_pidmap(ns, nr);
|
|
} while (nr > 0);
|
|
|
|
return pid;
|
|
}
|
|
|
|
/*
|
|
* The pid hash table is scaled according to the amount of memory in the
|
|
* machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
|
|
* more.
|
|
*/
|
|
void __init pidhash_init(void)
|
|
{
|
|
unsigned int i, pidhash_size;
|
|
|
|
pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
|
|
HASH_EARLY | HASH_SMALL,
|
|
&pidhash_shift, NULL,
|
|
0, 4096);
|
|
pidhash_size = 1U << pidhash_shift;
|
|
|
|
for (i = 0; i < pidhash_size; i++)
|
|
INIT_HLIST_HEAD(&pid_hash[i]);
|
|
}
|
|
|
|
void __init pidmap_init(void)
|
|
{
|
|
/* Veryify no one has done anything silly */
|
|
BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
|
|
|
|
/* bump default and minimum pid_max based on number of cpus */
|
|
pid_max = min(pid_max_max, max_t(int, pid_max,
|
|
PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
|
|
pid_max_min = max_t(int, pid_max_min,
|
|
PIDS_PER_CPU_MIN * num_possible_cpus());
|
|
pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
|
|
|
|
init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
/* Reserve PID 0. We never call free_pidmap(0) */
|
|
set_bit(0, init_pid_ns.pidmap[0].page);
|
|
atomic_dec(&init_pid_ns.pidmap[0].nr_free);
|
|
|
|
init_pid_ns.pid_cachep = KMEM_CACHE(pid,
|
|
SLAB_HWCACHE_ALIGN | SLAB_PANIC);
|
|
}
|