mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-20 00:11:22 +00:00
5166ccd220
As regulatory_request gets bigger there will be more questions of what things means, so clarify documenation for it and keep track of the special alpha2 codes we use internally and on the userspace regulatory agents. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
943 lines
25 KiB
C
943 lines
25 KiB
C
/*
|
|
* Copyright 2002-2005, Instant802 Networks, Inc.
|
|
* Copyright 2005-2006, Devicescape Software, Inc.
|
|
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
|
|
* Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Wireless regulatory infrastructure
|
|
*
|
|
* The usual implementation is for a driver to read a device EEPROM to
|
|
* determine which regulatory domain it should be operating under, then
|
|
* looking up the allowable channels in a driver-local table and finally
|
|
* registering those channels in the wiphy structure.
|
|
*
|
|
* Another set of compliance enforcement is for drivers to use their
|
|
* own compliance limits which can be stored on the EEPROM. The host
|
|
* driver or firmware may ensure these are used.
|
|
*
|
|
* In addition to all this we provide an extra layer of regulatory
|
|
* conformance. For drivers which do not have any regulatory
|
|
* information CRDA provides the complete regulatory solution.
|
|
* For others it provides a community effort on further restrictions
|
|
* to enhance compliance.
|
|
*
|
|
* Note: When number of rules --> infinity we will not be able to
|
|
* index on alpha2 any more, instead we'll probably have to
|
|
* rely on some SHA1 checksum of the regdomain for example.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/random.h>
|
|
#include <linux/nl80211.h>
|
|
#include <linux/platform_device.h>
|
|
#include <net/wireless.h>
|
|
#include <net/cfg80211.h>
|
|
#include "core.h"
|
|
#include "reg.h"
|
|
|
|
/**
|
|
* struct regulatory_request - receipt of last regulatory request
|
|
*
|
|
* @wiphy: this is set if this request's initiator is
|
|
* %REGDOM_SET_BY_COUNTRY_IE or %REGDOM_SET_BY_DRIVER. This
|
|
* can be used by the wireless core to deal with conflicts
|
|
* and potentially inform users of which devices specifically
|
|
* cased the conflicts.
|
|
* @initiator: indicates who sent this request, could be any of
|
|
* of those set in reg_set_by, %REGDOM_SET_BY_*
|
|
* @alpha2: the ISO / IEC 3166 alpha2 country code of the requested
|
|
* regulatory domain. We have a few special codes:
|
|
* 00 - World regulatory domain
|
|
* 99 - built by driver but a specific alpha2 cannot be determined
|
|
* 98 - result of an intersection between two regulatory domains
|
|
* @intersect: indicates whether the wireless core should intersect
|
|
* the requested regulatory domain with the presently set regulatory
|
|
* domain.
|
|
*/
|
|
struct regulatory_request {
|
|
struct wiphy *wiphy;
|
|
enum reg_set_by initiator;
|
|
char alpha2[2];
|
|
bool intersect;
|
|
};
|
|
|
|
/* Receipt of information from last regulatory request */
|
|
static struct regulatory_request *last_request;
|
|
|
|
/* To trigger userspace events */
|
|
static struct platform_device *reg_pdev;
|
|
|
|
/* Keep the ordering from large to small */
|
|
static u32 supported_bandwidths[] = {
|
|
MHZ_TO_KHZ(40),
|
|
MHZ_TO_KHZ(20),
|
|
};
|
|
|
|
/* Central wireless core regulatory domains, we only need two,
|
|
* the current one and a world regulatory domain in case we have no
|
|
* information to give us an alpha2 */
|
|
static const struct ieee80211_regdomain *cfg80211_regdomain;
|
|
|
|
/* We keep a static world regulatory domain in case of the absence of CRDA */
|
|
static const struct ieee80211_regdomain world_regdom = {
|
|
.n_reg_rules = 1,
|
|
.alpha2 = "00",
|
|
.reg_rules = {
|
|
REG_RULE(2412-10, 2462+10, 40, 6, 20,
|
|
NL80211_RRF_PASSIVE_SCAN |
|
|
NL80211_RRF_NO_IBSS),
|
|
}
|
|
};
|
|
|
|
static const struct ieee80211_regdomain *cfg80211_world_regdom =
|
|
&world_regdom;
|
|
|
|
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
|
|
static char *ieee80211_regdom = "US";
|
|
module_param(ieee80211_regdom, charp, 0444);
|
|
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
|
|
|
|
/* We assume 40 MHz bandwidth for the old regulatory work.
|
|
* We make emphasis we are using the exact same frequencies
|
|
* as before */
|
|
|
|
static const struct ieee80211_regdomain us_regdom = {
|
|
.n_reg_rules = 6,
|
|
.alpha2 = "US",
|
|
.reg_rules = {
|
|
/* IEEE 802.11b/g, channels 1..11 */
|
|
REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
|
|
/* IEEE 802.11a, channel 36 */
|
|
REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
|
|
/* IEEE 802.11a, channel 40 */
|
|
REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
|
|
/* IEEE 802.11a, channel 44 */
|
|
REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
|
|
/* IEEE 802.11a, channels 48..64 */
|
|
REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
|
|
/* IEEE 802.11a, channels 149..165, outdoor */
|
|
REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
|
|
}
|
|
};
|
|
|
|
static const struct ieee80211_regdomain jp_regdom = {
|
|
.n_reg_rules = 3,
|
|
.alpha2 = "JP",
|
|
.reg_rules = {
|
|
/* IEEE 802.11b/g, channels 1..14 */
|
|
REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
|
|
/* IEEE 802.11a, channels 34..48 */
|
|
REG_RULE(5170-10, 5240+10, 40, 6, 20,
|
|
NL80211_RRF_PASSIVE_SCAN),
|
|
/* IEEE 802.11a, channels 52..64 */
|
|
REG_RULE(5260-10, 5320+10, 40, 6, 20,
|
|
NL80211_RRF_NO_IBSS |
|
|
NL80211_RRF_DFS),
|
|
}
|
|
};
|
|
|
|
static const struct ieee80211_regdomain eu_regdom = {
|
|
.n_reg_rules = 6,
|
|
/* This alpha2 is bogus, we leave it here just for stupid
|
|
* backward compatibility */
|
|
.alpha2 = "EU",
|
|
.reg_rules = {
|
|
/* IEEE 802.11b/g, channels 1..13 */
|
|
REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
|
|
/* IEEE 802.11a, channel 36 */
|
|
REG_RULE(5180-10, 5180+10, 40, 6, 23,
|
|
NL80211_RRF_PASSIVE_SCAN),
|
|
/* IEEE 802.11a, channel 40 */
|
|
REG_RULE(5200-10, 5200+10, 40, 6, 23,
|
|
NL80211_RRF_PASSIVE_SCAN),
|
|
/* IEEE 802.11a, channel 44 */
|
|
REG_RULE(5220-10, 5220+10, 40, 6, 23,
|
|
NL80211_RRF_PASSIVE_SCAN),
|
|
/* IEEE 802.11a, channels 48..64 */
|
|
REG_RULE(5240-10, 5320+10, 40, 6, 20,
|
|
NL80211_RRF_NO_IBSS |
|
|
NL80211_RRF_DFS),
|
|
/* IEEE 802.11a, channels 100..140 */
|
|
REG_RULE(5500-10, 5700+10, 40, 6, 30,
|
|
NL80211_RRF_NO_IBSS |
|
|
NL80211_RRF_DFS),
|
|
}
|
|
};
|
|
|
|
static const struct ieee80211_regdomain *static_regdom(char *alpha2)
|
|
{
|
|
if (alpha2[0] == 'U' && alpha2[1] == 'S')
|
|
return &us_regdom;
|
|
if (alpha2[0] == 'J' && alpha2[1] == 'P')
|
|
return &jp_regdom;
|
|
if (alpha2[0] == 'E' && alpha2[1] == 'U')
|
|
return &eu_regdom;
|
|
/* Default, as per the old rules */
|
|
return &us_regdom;
|
|
}
|
|
|
|
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
|
|
{
|
|
if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
|
|
return true;
|
|
return false;
|
|
}
|
|
#else
|
|
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
static void reset_regdomains(void)
|
|
{
|
|
/* avoid freeing static information or freeing something twice */
|
|
if (cfg80211_regdomain == cfg80211_world_regdom)
|
|
cfg80211_regdomain = NULL;
|
|
if (cfg80211_world_regdom == &world_regdom)
|
|
cfg80211_world_regdom = NULL;
|
|
if (cfg80211_regdomain == &world_regdom)
|
|
cfg80211_regdomain = NULL;
|
|
if (is_old_static_regdom(cfg80211_regdomain))
|
|
cfg80211_regdomain = NULL;
|
|
|
|
kfree(cfg80211_regdomain);
|
|
kfree(cfg80211_world_regdom);
|
|
|
|
cfg80211_world_regdom = &world_regdom;
|
|
cfg80211_regdomain = NULL;
|
|
}
|
|
|
|
/* Dynamic world regulatory domain requested by the wireless
|
|
* core upon initialization */
|
|
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
|
|
{
|
|
BUG_ON(!last_request);
|
|
|
|
reset_regdomains();
|
|
|
|
cfg80211_world_regdom = rd;
|
|
cfg80211_regdomain = rd;
|
|
}
|
|
|
|
bool is_world_regdom(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
if (alpha2[0] == '0' && alpha2[1] == '0')
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_alpha2_set(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
if (alpha2[0] != 0 && alpha2[1] != 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_alpha_upper(char letter)
|
|
{
|
|
/* ASCII A - Z */
|
|
if (letter >= 65 && letter <= 90)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_unknown_alpha2(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
/* Special case where regulatory domain was built by driver
|
|
* but a specific alpha2 cannot be determined */
|
|
if (alpha2[0] == '9' && alpha2[1] == '9')
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_an_alpha2(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
|
|
{
|
|
if (!alpha2_x || !alpha2_y)
|
|
return false;
|
|
if (alpha2_x[0] == alpha2_y[0] &&
|
|
alpha2_x[1] == alpha2_y[1])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool regdom_changed(const char *alpha2)
|
|
{
|
|
if (!cfg80211_regdomain)
|
|
return true;
|
|
if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* This lets us keep regulatory code which is updated on a regulatory
|
|
* basis in userspace. */
|
|
static int call_crda(const char *alpha2)
|
|
{
|
|
char country_env[9 + 2] = "COUNTRY=";
|
|
char *envp[] = {
|
|
country_env,
|
|
NULL
|
|
};
|
|
|
|
if (!is_world_regdom((char *) alpha2))
|
|
printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
|
|
alpha2[0], alpha2[1]);
|
|
else
|
|
printk(KERN_INFO "cfg80211: Calling CRDA to update world "
|
|
"regulatory domain\n");
|
|
|
|
country_env[8] = alpha2[0];
|
|
country_env[9] = alpha2[1];
|
|
|
|
return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, envp);
|
|
}
|
|
|
|
/* Used by nl80211 before kmalloc'ing our regulatory domain */
|
|
bool reg_is_valid_request(const char *alpha2)
|
|
{
|
|
if (!last_request)
|
|
return false;
|
|
|
|
return alpha2_equal(last_request->alpha2, alpha2);
|
|
}
|
|
|
|
/* Sanity check on a regulatory rule */
|
|
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
|
|
{
|
|
const struct ieee80211_freq_range *freq_range = &rule->freq_range;
|
|
u32 freq_diff;
|
|
|
|
if (freq_range->start_freq_khz == 0 || freq_range->end_freq_khz == 0)
|
|
return false;
|
|
|
|
if (freq_range->start_freq_khz > freq_range->end_freq_khz)
|
|
return false;
|
|
|
|
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
|
|
|
|
if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
|
|
{
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
unsigned int i;
|
|
|
|
if (!rd->n_reg_rules)
|
|
return false;
|
|
|
|
for (i = 0; i < rd->n_reg_rules; i++) {
|
|
reg_rule = &rd->reg_rules[i];
|
|
if (!is_valid_reg_rule(reg_rule))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Returns value in KHz */
|
|
static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
|
|
u32 freq)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
|
|
u32 start_freq_khz = freq - supported_bandwidths[i]/2;
|
|
u32 end_freq_khz = freq + supported_bandwidths[i]/2;
|
|
if (start_freq_khz >= freq_range->start_freq_khz &&
|
|
end_freq_khz <= freq_range->end_freq_khz)
|
|
return supported_bandwidths[i];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Helper for regdom_intersect(), this does the real
|
|
* mathematical intersection fun */
|
|
static int reg_rules_intersect(
|
|
const struct ieee80211_reg_rule *rule1,
|
|
const struct ieee80211_reg_rule *rule2,
|
|
struct ieee80211_reg_rule *intersected_rule)
|
|
{
|
|
const struct ieee80211_freq_range *freq_range1, *freq_range2;
|
|
struct ieee80211_freq_range *freq_range;
|
|
const struct ieee80211_power_rule *power_rule1, *power_rule2;
|
|
struct ieee80211_power_rule *power_rule;
|
|
u32 freq_diff;
|
|
|
|
freq_range1 = &rule1->freq_range;
|
|
freq_range2 = &rule2->freq_range;
|
|
freq_range = &intersected_rule->freq_range;
|
|
|
|
power_rule1 = &rule1->power_rule;
|
|
power_rule2 = &rule2->power_rule;
|
|
power_rule = &intersected_rule->power_rule;
|
|
|
|
freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
|
|
freq_range2->start_freq_khz);
|
|
freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
|
|
freq_range2->end_freq_khz);
|
|
freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
|
|
freq_range2->max_bandwidth_khz);
|
|
|
|
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
|
|
if (freq_range->max_bandwidth_khz > freq_diff)
|
|
freq_range->max_bandwidth_khz = freq_diff;
|
|
|
|
power_rule->max_eirp = min(power_rule1->max_eirp,
|
|
power_rule2->max_eirp);
|
|
power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
|
|
power_rule2->max_antenna_gain);
|
|
|
|
intersected_rule->flags = (rule1->flags | rule2->flags);
|
|
|
|
if (!is_valid_reg_rule(intersected_rule))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* regdom_intersect - do the intersection between two regulatory domains
|
|
* @rd1: first regulatory domain
|
|
* @rd2: second regulatory domain
|
|
*
|
|
* Use this function to get the intersection between two regulatory domains.
|
|
* Once completed we will mark the alpha2 for the rd as intersected, "98",
|
|
* as no one single alpha2 can represent this regulatory domain.
|
|
*
|
|
* Returns a pointer to the regulatory domain structure which will hold the
|
|
* resulting intersection of rules between rd1 and rd2. We will
|
|
* kzalloc() this structure for you.
|
|
*/
|
|
static struct ieee80211_regdomain *regdom_intersect(
|
|
const struct ieee80211_regdomain *rd1,
|
|
const struct ieee80211_regdomain *rd2)
|
|
{
|
|
int r, size_of_regd;
|
|
unsigned int x, y;
|
|
unsigned int num_rules = 0, rule_idx = 0;
|
|
const struct ieee80211_reg_rule *rule1, *rule2;
|
|
struct ieee80211_reg_rule *intersected_rule;
|
|
struct ieee80211_regdomain *rd;
|
|
/* This is just a dummy holder to help us count */
|
|
struct ieee80211_reg_rule irule;
|
|
|
|
/* Uses the stack temporarily for counter arithmetic */
|
|
intersected_rule = &irule;
|
|
|
|
memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
|
|
|
|
if (!rd1 || !rd2)
|
|
return NULL;
|
|
|
|
/* First we get a count of the rules we'll need, then we actually
|
|
* build them. This is to so we can malloc() and free() a
|
|
* regdomain once. The reason we use reg_rules_intersect() here
|
|
* is it will return -EINVAL if the rule computed makes no sense.
|
|
* All rules that do check out OK are valid. */
|
|
|
|
for (x = 0; x < rd1->n_reg_rules; x++) {
|
|
rule1 = &rd1->reg_rules[x];
|
|
for (y = 0; y < rd2->n_reg_rules; y++) {
|
|
rule2 = &rd2->reg_rules[y];
|
|
if (!reg_rules_intersect(rule1, rule2,
|
|
intersected_rule))
|
|
num_rules++;
|
|
memset(intersected_rule, 0,
|
|
sizeof(struct ieee80211_reg_rule));
|
|
}
|
|
}
|
|
|
|
if (!num_rules)
|
|
return NULL;
|
|
|
|
size_of_regd = sizeof(struct ieee80211_regdomain) +
|
|
((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
|
|
|
|
rd = kzalloc(size_of_regd, GFP_KERNEL);
|
|
if (!rd)
|
|
return NULL;
|
|
|
|
for (x = 0; x < rd1->n_reg_rules; x++) {
|
|
rule1 = &rd1->reg_rules[x];
|
|
for (y = 0; y < rd2->n_reg_rules; y++) {
|
|
rule2 = &rd2->reg_rules[y];
|
|
/* This time around instead of using the stack lets
|
|
* write to the target rule directly saving ourselves
|
|
* a memcpy() */
|
|
intersected_rule = &rd->reg_rules[rule_idx];
|
|
r = reg_rules_intersect(rule1, rule2,
|
|
intersected_rule);
|
|
/* No need to memset here the intersected rule here as
|
|
* we're not using the stack anymore */
|
|
if (r)
|
|
continue;
|
|
rule_idx++;
|
|
}
|
|
}
|
|
|
|
if (rule_idx != num_rules) {
|
|
kfree(rd);
|
|
return NULL;
|
|
}
|
|
|
|
rd->n_reg_rules = num_rules;
|
|
rd->alpha2[0] = '9';
|
|
rd->alpha2[1] = '8';
|
|
|
|
return rd;
|
|
}
|
|
|
|
/* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
|
|
* want to just have the channel structure use these */
|
|
static u32 map_regdom_flags(u32 rd_flags)
|
|
{
|
|
u32 channel_flags = 0;
|
|
if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
|
|
channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
|
|
if (rd_flags & NL80211_RRF_NO_IBSS)
|
|
channel_flags |= IEEE80211_CHAN_NO_IBSS;
|
|
if (rd_flags & NL80211_RRF_DFS)
|
|
channel_flags |= IEEE80211_CHAN_RADAR;
|
|
return channel_flags;
|
|
}
|
|
|
|
/**
|
|
* freq_reg_info - get regulatory information for the given frequency
|
|
* @center_freq: Frequency in KHz for which we want regulatory information for
|
|
* @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
|
|
* you can set this to 0. If this frequency is allowed we then set
|
|
* this value to the maximum allowed bandwidth.
|
|
* @reg_rule: the regulatory rule which we have for this frequency
|
|
*
|
|
* Use this function to get the regulatory rule for a specific frequency.
|
|
*/
|
|
static int freq_reg_info(u32 center_freq, u32 *bandwidth,
|
|
const struct ieee80211_reg_rule **reg_rule)
|
|
{
|
|
int i;
|
|
u32 max_bandwidth = 0;
|
|
|
|
if (!cfg80211_regdomain)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < cfg80211_regdomain->n_reg_rules; i++) {
|
|
const struct ieee80211_reg_rule *rr;
|
|
const struct ieee80211_freq_range *fr = NULL;
|
|
const struct ieee80211_power_rule *pr = NULL;
|
|
|
|
rr = &cfg80211_regdomain->reg_rules[i];
|
|
fr = &rr->freq_range;
|
|
pr = &rr->power_rule;
|
|
max_bandwidth = freq_max_bandwidth(fr, center_freq);
|
|
if (max_bandwidth && *bandwidth <= max_bandwidth) {
|
|
*reg_rule = rr;
|
|
*bandwidth = max_bandwidth;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return !max_bandwidth;
|
|
}
|
|
|
|
static void handle_channel(struct ieee80211_channel *chan)
|
|
{
|
|
int r;
|
|
u32 flags = chan->orig_flags;
|
|
u32 max_bandwidth = 0;
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
const struct ieee80211_power_rule *power_rule = NULL;
|
|
|
|
r = freq_reg_info(MHZ_TO_KHZ(chan->center_freq),
|
|
&max_bandwidth, ®_rule);
|
|
|
|
if (r) {
|
|
flags |= IEEE80211_CHAN_DISABLED;
|
|
chan->flags = flags;
|
|
return;
|
|
}
|
|
|
|
power_rule = ®_rule->power_rule;
|
|
|
|
chan->flags = flags | map_regdom_flags(reg_rule->flags);
|
|
chan->max_antenna_gain = min(chan->orig_mag,
|
|
(int) MBI_TO_DBI(power_rule->max_antenna_gain));
|
|
chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
|
|
if (chan->orig_mpwr)
|
|
chan->max_power = min(chan->orig_mpwr,
|
|
(int) MBM_TO_DBM(power_rule->max_eirp));
|
|
else
|
|
chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
|
|
}
|
|
|
|
static void handle_band(struct ieee80211_supported_band *sband)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
handle_channel(&sband->channels[i]);
|
|
}
|
|
|
|
static void update_all_wiphy_regulatory(enum reg_set_by setby)
|
|
{
|
|
struct cfg80211_registered_device *drv;
|
|
|
|
list_for_each_entry(drv, &cfg80211_drv_list, list)
|
|
wiphy_update_regulatory(&drv->wiphy, setby);
|
|
}
|
|
|
|
void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
|
|
{
|
|
enum ieee80211_band band;
|
|
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
|
|
if (wiphy->bands[band])
|
|
handle_band(wiphy->bands[band]);
|
|
if (wiphy->reg_notifier)
|
|
wiphy->reg_notifier(wiphy, setby);
|
|
}
|
|
}
|
|
|
|
/* Return value which can be used by ignore_request() to indicate
|
|
* it has been determined we should intersect two regulatory domains */
|
|
#define REG_INTERSECT 1
|
|
|
|
/* This has the logic which determines when a new request
|
|
* should be ignored. */
|
|
static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
|
|
const char *alpha2)
|
|
{
|
|
/* All initial requests are respected */
|
|
if (!last_request)
|
|
return 0;
|
|
|
|
switch (set_by) {
|
|
case REGDOM_SET_BY_INIT:
|
|
return -EINVAL;
|
|
case REGDOM_SET_BY_CORE:
|
|
/*
|
|
* Always respect new wireless core hints, should only happen
|
|
* when updating the world regulatory domain at init.
|
|
*/
|
|
return 0;
|
|
case REGDOM_SET_BY_COUNTRY_IE:
|
|
if (unlikely(!is_an_alpha2(alpha2)))
|
|
return -EINVAL;
|
|
if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
|
|
if (last_request->wiphy != wiphy) {
|
|
/*
|
|
* Two cards with two APs claiming different
|
|
* different Country IE alpha2s. We could
|
|
* intersect them, but that seems unlikely
|
|
* to be correct. Reject second one for now.
|
|
*/
|
|
if (!alpha2_equal(alpha2,
|
|
cfg80211_regdomain->alpha2))
|
|
return -EOPNOTSUPP;
|
|
return -EALREADY;
|
|
}
|
|
/* Two consecutive Country IE hints on the same wiphy */
|
|
if (!alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
|
|
return 0;
|
|
return -EALREADY;
|
|
}
|
|
/*
|
|
* Ignore Country IE hints for now, need to think about
|
|
* what we need to do to support multi-domain operation.
|
|
*/
|
|
return -EOPNOTSUPP;
|
|
case REGDOM_SET_BY_DRIVER:
|
|
if (last_request->initiator == REGDOM_SET_BY_DRIVER)
|
|
return -EALREADY;
|
|
return 0;
|
|
case REGDOM_SET_BY_USER:
|
|
if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
|
|
return REG_INTERSECT;
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Caller must hold &cfg80211_drv_mutex */
|
|
int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
|
|
const char *alpha2)
|
|
{
|
|
struct regulatory_request *request;
|
|
bool intersect = false;
|
|
int r = 0;
|
|
|
|
r = ignore_request(wiphy, set_by, alpha2);
|
|
|
|
if (r == REG_INTERSECT)
|
|
intersect = true;
|
|
else if (r)
|
|
return r;
|
|
|
|
switch (set_by) {
|
|
case REGDOM_SET_BY_CORE:
|
|
case REGDOM_SET_BY_COUNTRY_IE:
|
|
case REGDOM_SET_BY_DRIVER:
|
|
case REGDOM_SET_BY_USER:
|
|
request = kzalloc(sizeof(struct regulatory_request),
|
|
GFP_KERNEL);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
request->alpha2[0] = alpha2[0];
|
|
request->alpha2[1] = alpha2[1];
|
|
request->initiator = set_by;
|
|
request->wiphy = wiphy;
|
|
request->intersect = intersect;
|
|
|
|
kfree(last_request);
|
|
last_request = request;
|
|
r = call_crda(alpha2);
|
|
#ifndef CONFIG_WIRELESS_OLD_REGULATORY
|
|
if (r)
|
|
printk(KERN_ERR "cfg80211: Failed calling CRDA\n");
|
|
#endif
|
|
break;
|
|
default:
|
|
r = -ENOTSUPP;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
void regulatory_hint(struct wiphy *wiphy, const char *alpha2)
|
|
{
|
|
BUG_ON(!alpha2);
|
|
|
|
mutex_lock(&cfg80211_drv_mutex);
|
|
__regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER, alpha2);
|
|
mutex_unlock(&cfg80211_drv_mutex);
|
|
}
|
|
EXPORT_SYMBOL(regulatory_hint);
|
|
|
|
|
|
static void print_rd_rules(const struct ieee80211_regdomain *rd)
|
|
{
|
|
unsigned int i;
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
const struct ieee80211_freq_range *freq_range = NULL;
|
|
const struct ieee80211_power_rule *power_rule = NULL;
|
|
|
|
printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
|
|
"(max_antenna_gain, max_eirp)\n");
|
|
|
|
for (i = 0; i < rd->n_reg_rules; i++) {
|
|
reg_rule = &rd->reg_rules[i];
|
|
freq_range = ®_rule->freq_range;
|
|
power_rule = ®_rule->power_rule;
|
|
|
|
/* There may not be documentation for max antenna gain
|
|
* in certain regions */
|
|
if (power_rule->max_antenna_gain)
|
|
printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
|
|
"(%d mBi, %d mBm)\n",
|
|
freq_range->start_freq_khz,
|
|
freq_range->end_freq_khz,
|
|
freq_range->max_bandwidth_khz,
|
|
power_rule->max_antenna_gain,
|
|
power_rule->max_eirp);
|
|
else
|
|
printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
|
|
"(N/A, %d mBm)\n",
|
|
freq_range->start_freq_khz,
|
|
freq_range->end_freq_khz,
|
|
freq_range->max_bandwidth_khz,
|
|
power_rule->max_eirp);
|
|
}
|
|
}
|
|
|
|
static void print_regdomain(const struct ieee80211_regdomain *rd)
|
|
{
|
|
|
|
if (is_world_regdom(rd->alpha2))
|
|
printk(KERN_INFO "cfg80211: World regulatory "
|
|
"domain updated:\n");
|
|
else {
|
|
if (is_unknown_alpha2(rd->alpha2))
|
|
printk(KERN_INFO "cfg80211: Regulatory domain "
|
|
"changed to driver built-in settings "
|
|
"(unknown country)\n");
|
|
else
|
|
printk(KERN_INFO "cfg80211: Regulatory domain "
|
|
"changed to country: %c%c\n",
|
|
rd->alpha2[0], rd->alpha2[1]);
|
|
}
|
|
print_rd_rules(rd);
|
|
}
|
|
|
|
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
|
|
{
|
|
printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
|
|
rd->alpha2[0], rd->alpha2[1]);
|
|
print_rd_rules(rd);
|
|
}
|
|
|
|
/* Takes ownership of rd only if it doesn't fail */
|
|
static int __set_regdom(const struct ieee80211_regdomain *rd)
|
|
{
|
|
const struct ieee80211_regdomain *intersected_rd = NULL;
|
|
/* Some basic sanity checks first */
|
|
|
|
if (is_world_regdom(rd->alpha2)) {
|
|
if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
|
|
return -EINVAL;
|
|
update_world_regdomain(rd);
|
|
return 0;
|
|
}
|
|
|
|
if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
|
|
!is_unknown_alpha2(rd->alpha2))
|
|
return -EINVAL;
|
|
|
|
if (!last_request)
|
|
return -EINVAL;
|
|
|
|
/* allow overriding the static definitions if CRDA is present */
|
|
if (!is_old_static_regdom(cfg80211_regdomain) &&
|
|
!regdom_changed(rd->alpha2))
|
|
return -EINVAL;
|
|
|
|
/* Now lets set the regulatory domain, update all driver channels
|
|
* and finally inform them of what we have done, in case they want
|
|
* to review or adjust their own settings based on their own
|
|
* internal EEPROM data */
|
|
|
|
if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
|
|
return -EINVAL;
|
|
|
|
reset_regdomains();
|
|
|
|
/* Country IE parsing coming soon */
|
|
switch (last_request->initiator) {
|
|
case REGDOM_SET_BY_CORE:
|
|
case REGDOM_SET_BY_DRIVER:
|
|
case REGDOM_SET_BY_USER:
|
|
if (!is_valid_rd(rd)) {
|
|
printk(KERN_ERR "cfg80211: Invalid "
|
|
"regulatory domain detected:\n");
|
|
print_regdomain_info(rd);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case REGDOM_SET_BY_COUNTRY_IE: /* Not yet */
|
|
WARN_ON(1);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (unlikely(last_request->intersect)) {
|
|
intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
|
|
if (!intersected_rd)
|
|
return -EINVAL;
|
|
kfree(rd);
|
|
rd = intersected_rd;
|
|
}
|
|
|
|
/* Tada! */
|
|
cfg80211_regdomain = rd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Use this call to set the current regulatory domain. Conflicts with
|
|
* multiple drivers can be ironed out later. Caller must've already
|
|
* kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */
|
|
int set_regdom(const struct ieee80211_regdomain *rd)
|
|
{
|
|
int r;
|
|
|
|
/* Note that this doesn't update the wiphys, this is done below */
|
|
r = __set_regdom(rd);
|
|
if (r) {
|
|
kfree(rd);
|
|
return r;
|
|
}
|
|
|
|
/* This would make this whole thing pointless */
|
|
BUG_ON(rd != cfg80211_regdomain);
|
|
|
|
/* update all wiphys now with the new established regulatory domain */
|
|
update_all_wiphy_regulatory(last_request->initiator);
|
|
|
|
print_regdomain(rd);
|
|
|
|
return r;
|
|
}
|
|
|
|
int regulatory_init(void)
|
|
{
|
|
int err;
|
|
|
|
reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
|
|
if (IS_ERR(reg_pdev))
|
|
return PTR_ERR(reg_pdev);
|
|
|
|
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
|
|
cfg80211_regdomain = static_regdom(ieee80211_regdom);
|
|
|
|
printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
|
|
print_regdomain_info(cfg80211_regdomain);
|
|
/* The old code still requests for a new regdomain and if
|
|
* you have CRDA you get it updated, otherwise you get
|
|
* stuck with the static values. We ignore "EU" code as
|
|
* that is not a valid ISO / IEC 3166 alpha2 */
|
|
if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
|
|
err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE,
|
|
ieee80211_regdom);
|
|
#else
|
|
cfg80211_regdomain = cfg80211_world_regdom;
|
|
|
|
err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, "00");
|
|
if (err)
|
|
printk(KERN_ERR "cfg80211: calling CRDA failed - "
|
|
"unable to update world regulatory domain, "
|
|
"using static definition\n");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
void regulatory_exit(void)
|
|
{
|
|
mutex_lock(&cfg80211_drv_mutex);
|
|
|
|
reset_regdomains();
|
|
|
|
kfree(last_request);
|
|
|
|
platform_device_unregister(reg_pdev);
|
|
|
|
mutex_unlock(&cfg80211_drv_mutex);
|
|
}
|