mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-13 12:53:27 +00:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
270 lines
7.6 KiB
ArmAsm
270 lines
7.6 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Hardware-accelerated CRC-32 variants for Linux on z Systems
|
|
*
|
|
* Use the z/Architecture Vector Extension Facility to accelerate the
|
|
* computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
|
|
* and Castagnoli.
|
|
*
|
|
* This CRC-32 implementation algorithm is bitreflected and processes
|
|
* the least-significant bit first (Little-Endian).
|
|
*
|
|
* Copyright IBM Corp. 2015
|
|
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#include <linux/linkage.h>
|
|
#include <asm/vx-insn.h>
|
|
|
|
/* Vector register range containing CRC-32 constants */
|
|
#define CONST_PERM_LE2BE %v9
|
|
#define CONST_R2R1 %v10
|
|
#define CONST_R4R3 %v11
|
|
#define CONST_R5 %v12
|
|
#define CONST_RU_POLY %v13
|
|
#define CONST_CRC_POLY %v14
|
|
|
|
.data
|
|
.align 8
|
|
|
|
/*
|
|
* The CRC-32 constant block contains reduction constants to fold and
|
|
* process particular chunks of the input data stream in parallel.
|
|
*
|
|
* For the CRC-32 variants, the constants are precomputed according to
|
|
* these definitions:
|
|
*
|
|
* R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
|
|
* R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
|
|
* R3 = [(x128+32 mod P'(x) << 32)]' << 1
|
|
* R4 = [(x128-32 mod P'(x) << 32)]' << 1
|
|
* R5 = [(x64 mod P'(x) << 32)]' << 1
|
|
* R6 = [(x32 mod P'(x) << 32)]' << 1
|
|
*
|
|
* The bitreflected Barret reduction constant, u', is defined as
|
|
* the bit reversal of floor(x**64 / P(x)).
|
|
*
|
|
* where P(x) is the polynomial in the normal domain and the P'(x) is the
|
|
* polynomial in the reversed (bitreflected) domain.
|
|
*
|
|
* CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
|
|
*
|
|
* P(x) = 0x04C11DB7
|
|
* P'(x) = 0xEDB88320
|
|
*
|
|
* CRC-32C (Castagnoli) polynomials:
|
|
*
|
|
* P(x) = 0x1EDC6F41
|
|
* P'(x) = 0x82F63B78
|
|
*/
|
|
|
|
.Lconstants_CRC_32_LE:
|
|
.octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
|
|
.quad 0x1c6e41596, 0x154442bd4 # R2, R1
|
|
.quad 0x0ccaa009e, 0x1751997d0 # R4, R3
|
|
.octa 0x163cd6124 # R5
|
|
.octa 0x1F7011641 # u'
|
|
.octa 0x1DB710641 # P'(x) << 1
|
|
|
|
.Lconstants_CRC_32C_LE:
|
|
.octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
|
|
.quad 0x09e4addf8, 0x740eef02 # R2, R1
|
|
.quad 0x14cd00bd6, 0xf20c0dfe # R4, R3
|
|
.octa 0x0dd45aab8 # R5
|
|
.octa 0x0dea713f1 # u'
|
|
.octa 0x105ec76f0 # P'(x) << 1
|
|
|
|
.previous
|
|
|
|
|
|
.text
|
|
|
|
/*
|
|
* The CRC-32 functions use these calling conventions:
|
|
*
|
|
* Parameters:
|
|
*
|
|
* %r2: Initial CRC value, typically ~0; and final CRC (return) value.
|
|
* %r3: Input buffer pointer, performance might be improved if the
|
|
* buffer is on a doubleword boundary.
|
|
* %r4: Length of the buffer, must be 64 bytes or greater.
|
|
*
|
|
* Register usage:
|
|
*
|
|
* %r5: CRC-32 constant pool base pointer.
|
|
* V0: Initial CRC value and intermediate constants and results.
|
|
* V1..V4: Data for CRC computation.
|
|
* V5..V8: Next data chunks that are fetched from the input buffer.
|
|
* V9: Constant for BE->LE conversion and shift operations
|
|
*
|
|
* V10..V14: CRC-32 constants.
|
|
*/
|
|
|
|
ENTRY(crc32_le_vgfm_16)
|
|
larl %r5,.Lconstants_CRC_32_LE
|
|
j crc32_le_vgfm_generic
|
|
|
|
ENTRY(crc32c_le_vgfm_16)
|
|
larl %r5,.Lconstants_CRC_32C_LE
|
|
j crc32_le_vgfm_generic
|
|
|
|
|
|
crc32_le_vgfm_generic:
|
|
/* Load CRC-32 constants */
|
|
VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
|
|
|
|
/*
|
|
* Load the initial CRC value.
|
|
*
|
|
* The CRC value is loaded into the rightmost word of the
|
|
* vector register and is later XORed with the LSB portion
|
|
* of the loaded input data.
|
|
*/
|
|
VZERO %v0 /* Clear V0 */
|
|
VLVGF %v0,%r2,3 /* Load CRC into rightmost word */
|
|
|
|
/* Load a 64-byte data chunk and XOR with CRC */
|
|
VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
|
|
VPERM %v1,%v1,%v1,CONST_PERM_LE2BE
|
|
VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
|
|
VPERM %v3,%v3,%v3,CONST_PERM_LE2BE
|
|
VPERM %v4,%v4,%v4,CONST_PERM_LE2BE
|
|
|
|
VX %v1,%v0,%v1 /* V1 ^= CRC */
|
|
aghi %r3,64 /* BUF = BUF + 64 */
|
|
aghi %r4,-64 /* LEN = LEN - 64 */
|
|
|
|
cghi %r4,64
|
|
jl .Lless_than_64bytes
|
|
|
|
.Lfold_64bytes_loop:
|
|
/* Load the next 64-byte data chunk into V5 to V8 */
|
|
VLM %v5,%v8,0,%r3
|
|
VPERM %v5,%v5,%v5,CONST_PERM_LE2BE
|
|
VPERM %v6,%v6,%v6,CONST_PERM_LE2BE
|
|
VPERM %v7,%v7,%v7,CONST_PERM_LE2BE
|
|
VPERM %v8,%v8,%v8,CONST_PERM_LE2BE
|
|
|
|
/*
|
|
* Perform a GF(2) multiplication of the doublewords in V1 with
|
|
* the R1 and R2 reduction constants in V0. The intermediate result
|
|
* is then folded (accumulated) with the next data chunk in V5 and
|
|
* stored in V1. Repeat this step for the register contents
|
|
* in V2, V3, and V4 respectively.
|
|
*/
|
|
VGFMAG %v1,CONST_R2R1,%v1,%v5
|
|
VGFMAG %v2,CONST_R2R1,%v2,%v6
|
|
VGFMAG %v3,CONST_R2R1,%v3,%v7
|
|
VGFMAG %v4,CONST_R2R1,%v4,%v8
|
|
|
|
aghi %r3,64 /* BUF = BUF + 64 */
|
|
aghi %r4,-64 /* LEN = LEN - 64 */
|
|
|
|
cghi %r4,64
|
|
jnl .Lfold_64bytes_loop
|
|
|
|
.Lless_than_64bytes:
|
|
/*
|
|
* Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
|
|
* and R4 and accumulating the next 128-bit chunk until a single 128-bit
|
|
* value remains.
|
|
*/
|
|
VGFMAG %v1,CONST_R4R3,%v1,%v2
|
|
VGFMAG %v1,CONST_R4R3,%v1,%v3
|
|
VGFMAG %v1,CONST_R4R3,%v1,%v4
|
|
|
|
cghi %r4,16
|
|
jl .Lfinal_fold
|
|
|
|
.Lfold_16bytes_loop:
|
|
|
|
VL %v2,0,,%r3 /* Load next data chunk */
|
|
VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
|
|
VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */
|
|
|
|
aghi %r3,16
|
|
aghi %r4,-16
|
|
|
|
cghi %r4,16
|
|
jnl .Lfold_16bytes_loop
|
|
|
|
.Lfinal_fold:
|
|
/*
|
|
* Set up a vector register for byte shifts. The shift value must
|
|
* be loaded in bits 1-4 in byte element 7 of a vector register.
|
|
* Shift by 8 bytes: 0x40
|
|
* Shift by 4 bytes: 0x20
|
|
*/
|
|
VLEIB %v9,0x40,7
|
|
|
|
/*
|
|
* Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
|
|
* to move R4 into the rightmost doubleword and set the leftmost
|
|
* doubleword to 0x1.
|
|
*/
|
|
VSRLB %v0,CONST_R4R3,%v9
|
|
VLEIG %v0,1,0
|
|
|
|
/*
|
|
* Compute GF(2) product of V1 and V0. The rightmost doubleword
|
|
* of V1 is multiplied with R4. The leftmost doubleword of V1 is
|
|
* multiplied by 0x1 and is then XORed with rightmost product.
|
|
* Implicitly, the intermediate leftmost product becomes padded
|
|
*/
|
|
VGFMG %v1,%v0,%v1
|
|
|
|
/*
|
|
* Now do the final 32-bit fold by multiplying the rightmost word
|
|
* in V1 with R5 and XOR the result with the remaining bits in V1.
|
|
*
|
|
* To achieve this by a single VGFMAG, right shift V1 by a word
|
|
* and store the result in V2 which is then accumulated. Use the
|
|
* vector unpack instruction to load the rightmost half of the
|
|
* doubleword into the rightmost doubleword element of V1; the other
|
|
* half is loaded in the leftmost doubleword.
|
|
* The vector register with CONST_R5 contains the R5 constant in the
|
|
* rightmost doubleword and the leftmost doubleword is zero to ignore
|
|
* the leftmost product of V1.
|
|
*/
|
|
VLEIB %v9,0x20,7 /* Shift by words */
|
|
VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */
|
|
VUPLLF %v1,%v1 /* Split rightmost doubleword */
|
|
VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */
|
|
|
|
/*
|
|
* Apply a Barret reduction to compute the final 32-bit CRC value.
|
|
*
|
|
* The input values to the Barret reduction are the degree-63 polynomial
|
|
* in V1 (R(x)), degree-32 generator polynomial, and the reduction
|
|
* constant u. The Barret reduction result is the CRC value of R(x) mod
|
|
* P(x).
|
|
*
|
|
* The Barret reduction algorithm is defined as:
|
|
*
|
|
* 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
|
|
* 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
|
|
* 3. C(x) = R(x) XOR T2(x) mod x^32
|
|
*
|
|
* Note: The leftmost doubleword of vector register containing
|
|
* CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
|
|
* is zero and does not contribute to the final result.
|
|
*/
|
|
|
|
/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
|
|
VUPLLF %v2,%v1
|
|
VGFMG %v2,CONST_RU_POLY,%v2
|
|
|
|
/*
|
|
* Compute the GF(2) product of the CRC polynomial with T1(x) in
|
|
* V2 and XOR the intermediate result, T2(x), with the value in V1.
|
|
* The final result is stored in word element 2 of V2.
|
|
*/
|
|
VUPLLF %v2,%v2
|
|
VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
|
|
|
|
.Ldone:
|
|
VLGVF %r2,%v2,2
|
|
br %r14
|
|
|
|
.previous
|