mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-14 21:48:49 +00:00
2848594a20
Signed-off-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Richard Weinberger <richard@nod.at>
868 lines
24 KiB
C
868 lines
24 KiB
C
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
* Copyright (c) Nokia Corporation, 2006, 2007
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
* the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* This file includes volume table manipulation code. The volume table is an
|
|
* on-flash table containing volume meta-data like name, number of reserved
|
|
* physical eraseblocks, type, etc. The volume table is stored in the so-called
|
|
* "layout volume".
|
|
*
|
|
* The layout volume is an internal volume which is organized as follows. It
|
|
* consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
|
|
* eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
|
|
* other. This redundancy guarantees robustness to unclean reboots. The volume
|
|
* table is basically an array of volume table records. Each record contains
|
|
* full information about the volume and protected by a CRC checksum. Note,
|
|
* nowadays we use the atomic LEB change operation when updating the volume
|
|
* table, so we do not really need 2 LEBs anymore, but we preserve the older
|
|
* design for the backward compatibility reasons.
|
|
*
|
|
* When the volume table is changed, it is first changed in RAM. Then LEB 0 is
|
|
* erased, and the updated volume table is written back to LEB 0. Then same for
|
|
* LEB 1. This scheme guarantees recoverability from unclean reboots.
|
|
*
|
|
* In this UBI implementation the on-flash volume table does not contain any
|
|
* information about how much data static volumes contain.
|
|
*
|
|
* But it would still be beneficial to store this information in the volume
|
|
* table. For example, suppose we have a static volume X, and all its physical
|
|
* eraseblocks became bad for some reasons. Suppose we are attaching the
|
|
* corresponding MTD device, for some reason we find no logical eraseblocks
|
|
* corresponding to the volume X. According to the volume table volume X does
|
|
* exist. So we don't know whether it is just empty or all its physical
|
|
* eraseblocks went bad. So we cannot alarm the user properly.
|
|
*
|
|
* The volume table also stores so-called "update marker", which is used for
|
|
* volume updates. Before updating the volume, the update marker is set, and
|
|
* after the update operation is finished, the update marker is cleared. So if
|
|
* the update operation was interrupted (e.g. by an unclean reboot) - the
|
|
* update marker is still there and we know that the volume's contents is
|
|
* damaged.
|
|
*/
|
|
|
|
#include <linux/crc32.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/div64.h>
|
|
#include "ubi.h"
|
|
|
|
static void self_vtbl_check(const struct ubi_device *ubi);
|
|
|
|
/* Empty volume table record */
|
|
static struct ubi_vtbl_record empty_vtbl_record;
|
|
|
|
/**
|
|
* ubi_update_layout_vol - helper for updatting layout volumes on flash
|
|
* @ubi: UBI device description object
|
|
*/
|
|
static int ubi_update_layout_vol(struct ubi_device *ubi)
|
|
{
|
|
struct ubi_volume *layout_vol;
|
|
int i, err;
|
|
|
|
layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
|
|
for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
|
|
err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
|
|
ubi->vtbl_size);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_change_vtbl_record - change volume table record.
|
|
* @ubi: UBI device description object
|
|
* @idx: table index to change
|
|
* @vtbl_rec: new volume table record
|
|
*
|
|
* This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
|
|
* volume table record is written. The caller does not have to calculate CRC of
|
|
* the record as it is done by this function. Returns zero in case of success
|
|
* and a negative error code in case of failure.
|
|
*/
|
|
int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
|
|
struct ubi_vtbl_record *vtbl_rec)
|
|
{
|
|
int err;
|
|
uint32_t crc;
|
|
|
|
ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
|
|
|
|
if (!vtbl_rec)
|
|
vtbl_rec = &empty_vtbl_record;
|
|
else {
|
|
crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
|
|
vtbl_rec->crc = cpu_to_be32(crc);
|
|
}
|
|
|
|
memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
|
|
err = ubi_update_layout_vol(ubi);
|
|
|
|
self_vtbl_check(ubi);
|
|
return err ? err : 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
|
|
* @ubi: UBI device description object
|
|
* @rename_list: list of &struct ubi_rename_entry objects
|
|
*
|
|
* This function re-names multiple volumes specified in @req in the volume
|
|
* table. Returns zero in case of success and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
|
|
struct list_head *rename_list)
|
|
{
|
|
struct ubi_rename_entry *re;
|
|
|
|
list_for_each_entry(re, rename_list, list) {
|
|
uint32_t crc;
|
|
struct ubi_volume *vol = re->desc->vol;
|
|
struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
|
|
|
|
if (re->remove) {
|
|
memcpy(vtbl_rec, &empty_vtbl_record,
|
|
sizeof(struct ubi_vtbl_record));
|
|
continue;
|
|
}
|
|
|
|
vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
|
|
memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
|
|
memset(vtbl_rec->name + re->new_name_len, 0,
|
|
UBI_VOL_NAME_MAX + 1 - re->new_name_len);
|
|
crc = crc32(UBI_CRC32_INIT, vtbl_rec,
|
|
UBI_VTBL_RECORD_SIZE_CRC);
|
|
vtbl_rec->crc = cpu_to_be32(crc);
|
|
}
|
|
|
|
return ubi_update_layout_vol(ubi);
|
|
}
|
|
|
|
/**
|
|
* vtbl_check - check if volume table is not corrupted and sensible.
|
|
* @ubi: UBI device description object
|
|
* @vtbl: volume table
|
|
*
|
|
* This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
|
|
* and %-EINVAL if it contains inconsistent data.
|
|
*/
|
|
static int vtbl_check(const struct ubi_device *ubi,
|
|
const struct ubi_vtbl_record *vtbl)
|
|
{
|
|
int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
|
|
int upd_marker, err;
|
|
uint32_t crc;
|
|
const char *name;
|
|
|
|
for (i = 0; i < ubi->vtbl_slots; i++) {
|
|
cond_resched();
|
|
|
|
reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
|
|
alignment = be32_to_cpu(vtbl[i].alignment);
|
|
data_pad = be32_to_cpu(vtbl[i].data_pad);
|
|
upd_marker = vtbl[i].upd_marker;
|
|
vol_type = vtbl[i].vol_type;
|
|
name_len = be16_to_cpu(vtbl[i].name_len);
|
|
name = &vtbl[i].name[0];
|
|
|
|
crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
|
|
if (be32_to_cpu(vtbl[i].crc) != crc) {
|
|
ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
|
|
i, crc, be32_to_cpu(vtbl[i].crc));
|
|
ubi_dump_vtbl_record(&vtbl[i], i);
|
|
return 1;
|
|
}
|
|
|
|
if (reserved_pebs == 0) {
|
|
if (memcmp(&vtbl[i], &empty_vtbl_record,
|
|
UBI_VTBL_RECORD_SIZE)) {
|
|
err = 2;
|
|
goto bad;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
|
|
name_len < 0) {
|
|
err = 3;
|
|
goto bad;
|
|
}
|
|
|
|
if (alignment > ubi->leb_size || alignment == 0) {
|
|
err = 4;
|
|
goto bad;
|
|
}
|
|
|
|
n = alignment & (ubi->min_io_size - 1);
|
|
if (alignment != 1 && n) {
|
|
err = 5;
|
|
goto bad;
|
|
}
|
|
|
|
n = ubi->leb_size % alignment;
|
|
if (data_pad != n) {
|
|
ubi_err(ubi, "bad data_pad, has to be %d", n);
|
|
err = 6;
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
|
|
err = 7;
|
|
goto bad;
|
|
}
|
|
|
|
if (upd_marker != 0 && upd_marker != 1) {
|
|
err = 8;
|
|
goto bad;
|
|
}
|
|
|
|
if (reserved_pebs > ubi->good_peb_count) {
|
|
ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
|
|
reserved_pebs, ubi->good_peb_count);
|
|
err = 9;
|
|
goto bad;
|
|
}
|
|
|
|
if (name_len > UBI_VOL_NAME_MAX) {
|
|
err = 10;
|
|
goto bad;
|
|
}
|
|
|
|
if (name[0] == '\0') {
|
|
err = 11;
|
|
goto bad;
|
|
}
|
|
|
|
if (name_len != strnlen(name, name_len + 1)) {
|
|
err = 12;
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
/* Checks that all names are unique */
|
|
for (i = 0; i < ubi->vtbl_slots - 1; i++) {
|
|
for (n = i + 1; n < ubi->vtbl_slots; n++) {
|
|
int len1 = be16_to_cpu(vtbl[i].name_len);
|
|
int len2 = be16_to_cpu(vtbl[n].name_len);
|
|
|
|
if (len1 > 0 && len1 == len2 &&
|
|
!strncmp(vtbl[i].name, vtbl[n].name, len1)) {
|
|
ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
|
|
i, n, vtbl[i].name);
|
|
ubi_dump_vtbl_record(&vtbl[i], i);
|
|
ubi_dump_vtbl_record(&vtbl[n], n);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
|
|
ubi_dump_vtbl_record(&vtbl[i], i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* create_vtbl - create a copy of volume table.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
* @copy: number of the volume table copy
|
|
* @vtbl: contents of the volume table
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
|
|
int copy, void *vtbl)
|
|
{
|
|
int err, tries = 0;
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
struct ubi_ainf_peb *new_aeb;
|
|
|
|
dbg_gen("create volume table (copy #%d)", copy + 1);
|
|
|
|
vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
|
|
if (!vid_hdr)
|
|
return -ENOMEM;
|
|
|
|
retry:
|
|
new_aeb = ubi_early_get_peb(ubi, ai);
|
|
if (IS_ERR(new_aeb)) {
|
|
err = PTR_ERR(new_aeb);
|
|
goto out_free;
|
|
}
|
|
|
|
vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
|
|
vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
|
|
vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
|
|
vid_hdr->data_size = vid_hdr->used_ebs =
|
|
vid_hdr->data_pad = cpu_to_be32(0);
|
|
vid_hdr->lnum = cpu_to_be32(copy);
|
|
vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
|
|
|
|
/* The EC header is already there, write the VID header */
|
|
err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
|
|
if (err)
|
|
goto write_error;
|
|
|
|
/* Write the layout volume contents */
|
|
err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
|
|
if (err)
|
|
goto write_error;
|
|
|
|
/*
|
|
* And add it to the attaching information. Don't delete the old version
|
|
* of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
|
|
*/
|
|
err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
|
|
kmem_cache_free(ai->aeb_slab_cache, new_aeb);
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
|
|
write_error:
|
|
if (err == -EIO && ++tries <= 5) {
|
|
/*
|
|
* Probably this physical eraseblock went bad, try to pick
|
|
* another one.
|
|
*/
|
|
list_add(&new_aeb->u.list, &ai->erase);
|
|
goto retry;
|
|
}
|
|
kmem_cache_free(ai->aeb_slab_cache, new_aeb);
|
|
out_free:
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
|
|
}
|
|
|
|
/**
|
|
* process_lvol - process the layout volume.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
* @av: layout volume attaching information
|
|
*
|
|
* This function is responsible for reading the layout volume, ensuring it is
|
|
* not corrupted, and recovering from corruptions if needed. Returns volume
|
|
* table in case of success and a negative error code in case of failure.
|
|
*/
|
|
static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
|
|
struct ubi_attach_info *ai,
|
|
struct ubi_ainf_volume *av)
|
|
{
|
|
int err;
|
|
struct rb_node *rb;
|
|
struct ubi_ainf_peb *aeb;
|
|
struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
|
|
int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
|
|
|
|
/*
|
|
* UBI goes through the following steps when it changes the layout
|
|
* volume:
|
|
* a. erase LEB 0;
|
|
* b. write new data to LEB 0;
|
|
* c. erase LEB 1;
|
|
* d. write new data to LEB 1.
|
|
*
|
|
* Before the change, both LEBs contain the same data.
|
|
*
|
|
* Due to unclean reboots, the contents of LEB 0 may be lost, but there
|
|
* should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
|
|
* Similarly, LEB 1 may be lost, but there should be LEB 0. And
|
|
* finally, unclean reboots may result in a situation when neither LEB
|
|
* 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
|
|
* 0 contains more recent information.
|
|
*
|
|
* So the plan is to first check LEB 0. Then
|
|
* a. if LEB 0 is OK, it must be containing the most recent data; then
|
|
* we compare it with LEB 1, and if they are different, we copy LEB
|
|
* 0 to LEB 1;
|
|
* b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
|
|
* to LEB 0.
|
|
*/
|
|
|
|
dbg_gen("check layout volume");
|
|
|
|
/* Read both LEB 0 and LEB 1 into memory */
|
|
ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
|
|
leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
|
|
if (!leb[aeb->lnum]) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
|
|
ubi->vtbl_size);
|
|
if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
|
|
/*
|
|
* Scrub the PEB later. Note, -EBADMSG indicates an
|
|
* uncorrectable ECC error, but we have our own CRC and
|
|
* the data will be checked later. If the data is OK,
|
|
* the PEB will be scrubbed (because we set
|
|
* aeb->scrub). If the data is not OK, the contents of
|
|
* the PEB will be recovered from the second copy, and
|
|
* aeb->scrub will be cleared in
|
|
* 'ubi_add_to_av()'.
|
|
*/
|
|
aeb->scrub = 1;
|
|
else if (err)
|
|
goto out_free;
|
|
}
|
|
|
|
err = -EINVAL;
|
|
if (leb[0]) {
|
|
leb_corrupted[0] = vtbl_check(ubi, leb[0]);
|
|
if (leb_corrupted[0] < 0)
|
|
goto out_free;
|
|
}
|
|
|
|
if (!leb_corrupted[0]) {
|
|
/* LEB 0 is OK */
|
|
if (leb[1])
|
|
leb_corrupted[1] = memcmp(leb[0], leb[1],
|
|
ubi->vtbl_size);
|
|
if (leb_corrupted[1]) {
|
|
ubi_warn(ubi, "volume table copy #2 is corrupted");
|
|
err = create_vtbl(ubi, ai, 1, leb[0]);
|
|
if (err)
|
|
goto out_free;
|
|
ubi_msg(ubi, "volume table was restored");
|
|
}
|
|
|
|
/* Both LEB 1 and LEB 2 are OK and consistent */
|
|
vfree(leb[1]);
|
|
return leb[0];
|
|
} else {
|
|
/* LEB 0 is corrupted or does not exist */
|
|
if (leb[1]) {
|
|
leb_corrupted[1] = vtbl_check(ubi, leb[1]);
|
|
if (leb_corrupted[1] < 0)
|
|
goto out_free;
|
|
}
|
|
if (leb_corrupted[1]) {
|
|
/* Both LEB 0 and LEB 1 are corrupted */
|
|
ubi_err(ubi, "both volume tables are corrupted");
|
|
goto out_free;
|
|
}
|
|
|
|
ubi_warn(ubi, "volume table copy #1 is corrupted");
|
|
err = create_vtbl(ubi, ai, 0, leb[1]);
|
|
if (err)
|
|
goto out_free;
|
|
ubi_msg(ubi, "volume table was restored");
|
|
|
|
vfree(leb[0]);
|
|
return leb[1];
|
|
}
|
|
|
|
out_free:
|
|
vfree(leb[0]);
|
|
vfree(leb[1]);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/**
|
|
* create_empty_lvol - create empty layout volume.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
*
|
|
* This function returns volume table contents in case of success and a
|
|
* negative error code in case of failure.
|
|
*/
|
|
static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
|
|
struct ubi_attach_info *ai)
|
|
{
|
|
int i;
|
|
struct ubi_vtbl_record *vtbl;
|
|
|
|
vtbl = vzalloc(ubi->vtbl_size);
|
|
if (!vtbl)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for (i = 0; i < ubi->vtbl_slots; i++)
|
|
memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
|
|
|
|
for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
|
|
int err;
|
|
|
|
err = create_vtbl(ubi, ai, i, vtbl);
|
|
if (err) {
|
|
vfree(vtbl);
|
|
return ERR_PTR(err);
|
|
}
|
|
}
|
|
|
|
return vtbl;
|
|
}
|
|
|
|
/**
|
|
* init_volumes - initialize volume information for existing volumes.
|
|
* @ubi: UBI device description object
|
|
* @ai: scanning information
|
|
* @vtbl: volume table
|
|
*
|
|
* This function allocates volume description objects for existing volumes.
|
|
* Returns zero in case of success and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
static int init_volumes(struct ubi_device *ubi,
|
|
const struct ubi_attach_info *ai,
|
|
const struct ubi_vtbl_record *vtbl)
|
|
{
|
|
int i, reserved_pebs = 0;
|
|
struct ubi_ainf_volume *av;
|
|
struct ubi_volume *vol;
|
|
|
|
for (i = 0; i < ubi->vtbl_slots; i++) {
|
|
cond_resched();
|
|
|
|
if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
|
|
continue; /* Empty record */
|
|
|
|
vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
|
|
if (!vol)
|
|
return -ENOMEM;
|
|
|
|
vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
|
|
vol->alignment = be32_to_cpu(vtbl[i].alignment);
|
|
vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
|
|
vol->upd_marker = vtbl[i].upd_marker;
|
|
vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
|
|
UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
|
|
vol->name_len = be16_to_cpu(vtbl[i].name_len);
|
|
vol->usable_leb_size = ubi->leb_size - vol->data_pad;
|
|
memcpy(vol->name, vtbl[i].name, vol->name_len);
|
|
vol->name[vol->name_len] = '\0';
|
|
vol->vol_id = i;
|
|
|
|
if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
|
|
/* Auto re-size flag may be set only for one volume */
|
|
if (ubi->autoresize_vol_id != -1) {
|
|
ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
|
|
ubi->autoresize_vol_id, i);
|
|
kfree(vol);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ubi->autoresize_vol_id = i;
|
|
}
|
|
|
|
ubi_assert(!ubi->volumes[i]);
|
|
ubi->volumes[i] = vol;
|
|
ubi->vol_count += 1;
|
|
vol->ubi = ubi;
|
|
reserved_pebs += vol->reserved_pebs;
|
|
|
|
/*
|
|
* In case of dynamic volume UBI knows nothing about how many
|
|
* data is stored there. So assume the whole volume is used.
|
|
*/
|
|
if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
|
|
vol->used_ebs = vol->reserved_pebs;
|
|
vol->last_eb_bytes = vol->usable_leb_size;
|
|
vol->used_bytes =
|
|
(long long)vol->used_ebs * vol->usable_leb_size;
|
|
continue;
|
|
}
|
|
|
|
/* Static volumes only */
|
|
av = ubi_find_av(ai, i);
|
|
if (!av || !av->leb_count) {
|
|
/*
|
|
* No eraseblocks belonging to this volume found. We
|
|
* don't actually know whether this static volume is
|
|
* completely corrupted or just contains no data. And
|
|
* we cannot know this as long as data size is not
|
|
* stored on flash. So we just assume the volume is
|
|
* empty. FIXME: this should be handled.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if (av->leb_count != av->used_ebs) {
|
|
/*
|
|
* We found a static volume which misses several
|
|
* eraseblocks. Treat it as corrupted.
|
|
*/
|
|
ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
|
|
av->vol_id, av->used_ebs - av->leb_count);
|
|
vol->corrupted = 1;
|
|
continue;
|
|
}
|
|
|
|
vol->used_ebs = av->used_ebs;
|
|
vol->used_bytes =
|
|
(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
|
|
vol->used_bytes += av->last_data_size;
|
|
vol->last_eb_bytes = av->last_data_size;
|
|
}
|
|
|
|
/* And add the layout volume */
|
|
vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
|
|
if (!vol)
|
|
return -ENOMEM;
|
|
|
|
vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
|
|
vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
|
|
vol->vol_type = UBI_DYNAMIC_VOLUME;
|
|
vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
|
|
memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
|
|
vol->usable_leb_size = ubi->leb_size;
|
|
vol->used_ebs = vol->reserved_pebs;
|
|
vol->last_eb_bytes = vol->reserved_pebs;
|
|
vol->used_bytes =
|
|
(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
|
|
vol->vol_id = UBI_LAYOUT_VOLUME_ID;
|
|
vol->ref_count = 1;
|
|
|
|
ubi_assert(!ubi->volumes[i]);
|
|
ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
|
|
reserved_pebs += vol->reserved_pebs;
|
|
ubi->vol_count += 1;
|
|
vol->ubi = ubi;
|
|
|
|
if (reserved_pebs > ubi->avail_pebs) {
|
|
ubi_err(ubi, "not enough PEBs, required %d, available %d",
|
|
reserved_pebs, ubi->avail_pebs);
|
|
if (ubi->corr_peb_count)
|
|
ubi_err(ubi, "%d PEBs are corrupted and not used",
|
|
ubi->corr_peb_count);
|
|
}
|
|
ubi->rsvd_pebs += reserved_pebs;
|
|
ubi->avail_pebs -= reserved_pebs;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* check_av - check volume attaching information.
|
|
* @vol: UBI volume description object
|
|
* @av: volume attaching information
|
|
*
|
|
* This function returns zero if the volume attaching information is consistent
|
|
* to the data read from the volume tabla, and %-EINVAL if not.
|
|
*/
|
|
static int check_av(const struct ubi_volume *vol,
|
|
const struct ubi_ainf_volume *av)
|
|
{
|
|
int err;
|
|
|
|
if (av->highest_lnum >= vol->reserved_pebs) {
|
|
err = 1;
|
|
goto bad;
|
|
}
|
|
if (av->leb_count > vol->reserved_pebs) {
|
|
err = 2;
|
|
goto bad;
|
|
}
|
|
if (av->vol_type != vol->vol_type) {
|
|
err = 3;
|
|
goto bad;
|
|
}
|
|
if (av->used_ebs > vol->reserved_pebs) {
|
|
err = 4;
|
|
goto bad;
|
|
}
|
|
if (av->data_pad != vol->data_pad) {
|
|
err = 5;
|
|
goto bad;
|
|
}
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err(vol->ubi, "bad attaching information, error %d", err);
|
|
ubi_dump_av(av);
|
|
ubi_dump_vol_info(vol);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* check_attaching_info - check that attaching information.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
*
|
|
* Even though we protect on-flash data by CRC checksums, we still don't trust
|
|
* the media. This function ensures that attaching information is consistent to
|
|
* the information read from the volume table. Returns zero if the attaching
|
|
* information is OK and %-EINVAL if it is not.
|
|
*/
|
|
static int check_attaching_info(const struct ubi_device *ubi,
|
|
struct ubi_attach_info *ai)
|
|
{
|
|
int err, i;
|
|
struct ubi_ainf_volume *av;
|
|
struct ubi_volume *vol;
|
|
|
|
if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
|
|
ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
|
|
ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
|
|
ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
|
|
ubi_err(ubi, "too large volume ID %d found",
|
|
ai->highest_vol_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
|
|
cond_resched();
|
|
|
|
av = ubi_find_av(ai, i);
|
|
vol = ubi->volumes[i];
|
|
if (!vol) {
|
|
if (av)
|
|
ubi_remove_av(ai, av);
|
|
continue;
|
|
}
|
|
|
|
if (vol->reserved_pebs == 0) {
|
|
ubi_assert(i < ubi->vtbl_slots);
|
|
|
|
if (!av)
|
|
continue;
|
|
|
|
/*
|
|
* During attaching we found a volume which does not
|
|
* exist according to the information in the volume
|
|
* table. This must have happened due to an unclean
|
|
* reboot while the volume was being removed. Discard
|
|
* these eraseblocks.
|
|
*/
|
|
ubi_msg(ubi, "finish volume %d removal", av->vol_id);
|
|
ubi_remove_av(ai, av);
|
|
} else if (av) {
|
|
err = check_av(vol, av);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_read_volume_table - read the volume table.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
*
|
|
* This function reads volume table, checks it, recover from errors if needed,
|
|
* or creates it if needed. Returns zero in case of success and a negative
|
|
* error code in case of failure.
|
|
*/
|
|
int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
|
|
{
|
|
int i, err;
|
|
struct ubi_ainf_volume *av;
|
|
|
|
empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
|
|
|
|
/*
|
|
* The number of supported volumes is limited by the eraseblock size
|
|
* and by the UBI_MAX_VOLUMES constant.
|
|
*/
|
|
ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
|
|
if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
|
|
ubi->vtbl_slots = UBI_MAX_VOLUMES;
|
|
|
|
ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
|
|
ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
|
|
|
|
av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
|
|
if (!av) {
|
|
/*
|
|
* No logical eraseblocks belonging to the layout volume were
|
|
* found. This could mean that the flash is just empty. In
|
|
* this case we create empty layout volume.
|
|
*
|
|
* But if flash is not empty this must be a corruption or the
|
|
* MTD device just contains garbage.
|
|
*/
|
|
if (ai->is_empty) {
|
|
ubi->vtbl = create_empty_lvol(ubi, ai);
|
|
if (IS_ERR(ubi->vtbl))
|
|
return PTR_ERR(ubi->vtbl);
|
|
} else {
|
|
ubi_err(ubi, "the layout volume was not found");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
|
|
/* This must not happen with proper UBI images */
|
|
ubi_err(ubi, "too many LEBs (%d) in layout volume",
|
|
av->leb_count);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ubi->vtbl = process_lvol(ubi, ai, av);
|
|
if (IS_ERR(ubi->vtbl))
|
|
return PTR_ERR(ubi->vtbl);
|
|
}
|
|
|
|
ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
|
|
|
|
/*
|
|
* The layout volume is OK, initialize the corresponding in-RAM data
|
|
* structures.
|
|
*/
|
|
err = init_volumes(ubi, ai, ubi->vtbl);
|
|
if (err)
|
|
goto out_free;
|
|
|
|
/*
|
|
* Make sure that the attaching information is consistent to the
|
|
* information stored in the volume table.
|
|
*/
|
|
err = check_attaching_info(ubi, ai);
|
|
if (err)
|
|
goto out_free;
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
vfree(ubi->vtbl);
|
|
for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
|
|
kfree(ubi->volumes[i]);
|
|
ubi->volumes[i] = NULL;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* self_vtbl_check - check volume table.
|
|
* @ubi: UBI device description object
|
|
*/
|
|
static void self_vtbl_check(const struct ubi_device *ubi)
|
|
{
|
|
if (!ubi_dbg_chk_gen(ubi))
|
|
return;
|
|
|
|
if (vtbl_check(ubi, ubi->vtbl)) {
|
|
ubi_err(ubi, "self-check failed");
|
|
BUG();
|
|
}
|
|
}
|