mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-08 02:21:18 +00:00
d05fdf3160
Xen requires that all mappings of pagetable pages are read-only, so that they can't be updated illegally. As a result, if a page is being turned into a pagetable page, we need to make sure all its mappings are RO. If the page had been used for ioremap or vmalloc, it may still have left over mappings as a result of not having been lazily unmapped. This change makes sure we explicitly mop them all up before pinning the page. Unlike aliases created by kmap, the there can be vmalloc aliases even for non-high pages, so we must do the flush unconditionally. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Linux Memory Management List <linux-mm@kvack.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Ingo Molnar <mingo@elte.hu>
1715 lines
40 KiB
C
1715 lines
40 KiB
C
/*
|
|
* Core of Xen paravirt_ops implementation.
|
|
*
|
|
* This file contains the xen_paravirt_ops structure itself, and the
|
|
* implementations for:
|
|
* - privileged instructions
|
|
* - interrupt flags
|
|
* - segment operations
|
|
* - booting and setup
|
|
*
|
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/start_kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/console.h>
|
|
|
|
#include <xen/interface/xen.h>
|
|
#include <xen/interface/physdev.h>
|
|
#include <xen/interface/vcpu.h>
|
|
#include <xen/features.h>
|
|
#include <xen/page.h>
|
|
#include <xen/hvc-console.h>
|
|
|
|
#include <asm/paravirt.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/page.h>
|
|
#include <asm/xen/hypercall.h>
|
|
#include <asm/xen/hypervisor.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/msr-index.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/reboot.h>
|
|
|
|
#include "xen-ops.h"
|
|
#include "mmu.h"
|
|
#include "multicalls.h"
|
|
|
|
EXPORT_SYMBOL_GPL(hypercall_page);
|
|
|
|
DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
|
|
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
|
|
|
|
enum xen_domain_type xen_domain_type = XEN_NATIVE;
|
|
EXPORT_SYMBOL_GPL(xen_domain_type);
|
|
|
|
/*
|
|
* Identity map, in addition to plain kernel map. This needs to be
|
|
* large enough to allocate page table pages to allocate the rest.
|
|
* Each page can map 2MB.
|
|
*/
|
|
static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* l3 pud for userspace vsyscall mapping */
|
|
static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Note about cr3 (pagetable base) values:
|
|
*
|
|
* xen_cr3 contains the current logical cr3 value; it contains the
|
|
* last set cr3. This may not be the current effective cr3, because
|
|
* its update may be being lazily deferred. However, a vcpu looking
|
|
* at its own cr3 can use this value knowing that it everything will
|
|
* be self-consistent.
|
|
*
|
|
* xen_current_cr3 contains the actual vcpu cr3; it is set once the
|
|
* hypercall to set the vcpu cr3 is complete (so it may be a little
|
|
* out of date, but it will never be set early). If one vcpu is
|
|
* looking at another vcpu's cr3 value, it should use this variable.
|
|
*/
|
|
DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
|
|
DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
|
|
|
|
struct start_info *xen_start_info;
|
|
EXPORT_SYMBOL_GPL(xen_start_info);
|
|
|
|
struct shared_info xen_dummy_shared_info;
|
|
|
|
/*
|
|
* Point at some empty memory to start with. We map the real shared_info
|
|
* page as soon as fixmap is up and running.
|
|
*/
|
|
struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
|
|
|
|
/*
|
|
* Flag to determine whether vcpu info placement is available on all
|
|
* VCPUs. We assume it is to start with, and then set it to zero on
|
|
* the first failure. This is because it can succeed on some VCPUs
|
|
* and not others, since it can involve hypervisor memory allocation,
|
|
* or because the guest failed to guarantee all the appropriate
|
|
* constraints on all VCPUs (ie buffer can't cross a page boundary).
|
|
*
|
|
* Note that any particular CPU may be using a placed vcpu structure,
|
|
* but we can only optimise if the all are.
|
|
*
|
|
* 0: not available, 1: available
|
|
*/
|
|
static int have_vcpu_info_placement =
|
|
#ifdef CONFIG_X86_32
|
|
1
|
|
#else
|
|
0
|
|
#endif
|
|
;
|
|
|
|
|
|
static void xen_vcpu_setup(int cpu)
|
|
{
|
|
struct vcpu_register_vcpu_info info;
|
|
int err;
|
|
struct vcpu_info *vcpup;
|
|
|
|
BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
|
|
per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
|
|
|
|
if (!have_vcpu_info_placement)
|
|
return; /* already tested, not available */
|
|
|
|
vcpup = &per_cpu(xen_vcpu_info, cpu);
|
|
|
|
info.mfn = virt_to_mfn(vcpup);
|
|
info.offset = offset_in_page(vcpup);
|
|
|
|
printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
|
|
cpu, vcpup, info.mfn, info.offset);
|
|
|
|
/* Check to see if the hypervisor will put the vcpu_info
|
|
structure where we want it, which allows direct access via
|
|
a percpu-variable. */
|
|
err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
|
|
|
|
if (err) {
|
|
printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
|
|
have_vcpu_info_placement = 0;
|
|
} else {
|
|
/* This cpu is using the registered vcpu info, even if
|
|
later ones fail to. */
|
|
per_cpu(xen_vcpu, cpu) = vcpup;
|
|
|
|
printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
|
|
cpu, vcpup);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On restore, set the vcpu placement up again.
|
|
* If it fails, then we're in a bad state, since
|
|
* we can't back out from using it...
|
|
*/
|
|
void xen_vcpu_restore(void)
|
|
{
|
|
if (have_vcpu_info_placement) {
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
bool other_cpu = (cpu != smp_processor_id());
|
|
|
|
if (other_cpu &&
|
|
HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
|
|
BUG();
|
|
|
|
xen_vcpu_setup(cpu);
|
|
|
|
if (other_cpu &&
|
|
HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
|
|
BUG();
|
|
}
|
|
|
|
BUG_ON(!have_vcpu_info_placement);
|
|
}
|
|
}
|
|
|
|
static void __init xen_banner(void)
|
|
{
|
|
unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
|
|
struct xen_extraversion extra;
|
|
HYPERVISOR_xen_version(XENVER_extraversion, &extra);
|
|
|
|
printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
|
|
pv_info.name);
|
|
printk(KERN_INFO "Xen version: %d.%d%s%s\n",
|
|
version >> 16, version & 0xffff, extra.extraversion,
|
|
xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
|
|
}
|
|
|
|
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
|
|
unsigned int *cx, unsigned int *dx)
|
|
{
|
|
unsigned maskedx = ~0;
|
|
|
|
/*
|
|
* Mask out inconvenient features, to try and disable as many
|
|
* unsupported kernel subsystems as possible.
|
|
*/
|
|
if (*ax == 1)
|
|
maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
|
|
(1 << X86_FEATURE_ACPI) | /* disable ACPI */
|
|
(1 << X86_FEATURE_MCE) | /* disable MCE */
|
|
(1 << X86_FEATURE_MCA) | /* disable MCA */
|
|
(1 << X86_FEATURE_ACC)); /* thermal monitoring */
|
|
|
|
asm(XEN_EMULATE_PREFIX "cpuid"
|
|
: "=a" (*ax),
|
|
"=b" (*bx),
|
|
"=c" (*cx),
|
|
"=d" (*dx)
|
|
: "0" (*ax), "2" (*cx));
|
|
*dx &= maskedx;
|
|
}
|
|
|
|
static void xen_set_debugreg(int reg, unsigned long val)
|
|
{
|
|
HYPERVISOR_set_debugreg(reg, val);
|
|
}
|
|
|
|
static unsigned long xen_get_debugreg(int reg)
|
|
{
|
|
return HYPERVISOR_get_debugreg(reg);
|
|
}
|
|
|
|
static void xen_leave_lazy(void)
|
|
{
|
|
paravirt_leave_lazy(paravirt_get_lazy_mode());
|
|
xen_mc_flush();
|
|
}
|
|
|
|
static unsigned long xen_store_tr(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the page permissions for a particular virtual address. If the
|
|
* address is a vmalloc mapping (or other non-linear mapping), then
|
|
* find the linear mapping of the page and also set its protections to
|
|
* match.
|
|
*/
|
|
static void set_aliased_prot(void *v, pgprot_t prot)
|
|
{
|
|
int level;
|
|
pte_t *ptep;
|
|
pte_t pte;
|
|
unsigned long pfn;
|
|
struct page *page;
|
|
|
|
ptep = lookup_address((unsigned long)v, &level);
|
|
BUG_ON(ptep == NULL);
|
|
|
|
pfn = pte_pfn(*ptep);
|
|
page = pfn_to_page(pfn);
|
|
|
|
pte = pfn_pte(pfn, prot);
|
|
|
|
if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
|
|
BUG();
|
|
|
|
if (!PageHighMem(page)) {
|
|
void *av = __va(PFN_PHYS(pfn));
|
|
|
|
if (av != v)
|
|
if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
|
|
BUG();
|
|
} else
|
|
kmap_flush_unused();
|
|
}
|
|
|
|
static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
|
|
{
|
|
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
|
|
int i;
|
|
|
|
for(i = 0; i < entries; i += entries_per_page)
|
|
set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
|
|
}
|
|
|
|
static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
|
|
{
|
|
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
|
|
int i;
|
|
|
|
for(i = 0; i < entries; i += entries_per_page)
|
|
set_aliased_prot(ldt + i, PAGE_KERNEL);
|
|
}
|
|
|
|
static void xen_set_ldt(const void *addr, unsigned entries)
|
|
{
|
|
struct mmuext_op *op;
|
|
struct multicall_space mcs = xen_mc_entry(sizeof(*op));
|
|
|
|
op = mcs.args;
|
|
op->cmd = MMUEXT_SET_LDT;
|
|
op->arg1.linear_addr = (unsigned long)addr;
|
|
op->arg2.nr_ents = entries;
|
|
|
|
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_load_gdt(const struct desc_ptr *dtr)
|
|
{
|
|
unsigned long *frames;
|
|
unsigned long va = dtr->address;
|
|
unsigned int size = dtr->size + 1;
|
|
unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
int f;
|
|
struct multicall_space mcs;
|
|
|
|
/* A GDT can be up to 64k in size, which corresponds to 8192
|
|
8-byte entries, or 16 4k pages.. */
|
|
|
|
BUG_ON(size > 65536);
|
|
BUG_ON(va & ~PAGE_MASK);
|
|
|
|
mcs = xen_mc_entry(sizeof(*frames) * pages);
|
|
frames = mcs.args;
|
|
|
|
for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
|
|
frames[f] = virt_to_mfn(va);
|
|
make_lowmem_page_readonly((void *)va);
|
|
}
|
|
|
|
MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void load_TLS_descriptor(struct thread_struct *t,
|
|
unsigned int cpu, unsigned int i)
|
|
{
|
|
struct desc_struct *gdt = get_cpu_gdt_table(cpu);
|
|
xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
|
|
struct multicall_space mc = __xen_mc_entry(0);
|
|
|
|
MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
|
|
}
|
|
|
|
static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
|
|
{
|
|
/*
|
|
* XXX sleazy hack: If we're being called in a lazy-cpu zone,
|
|
* it means we're in a context switch, and %gs has just been
|
|
* saved. This means we can zero it out to prevent faults on
|
|
* exit from the hypervisor if the next process has no %gs.
|
|
* Either way, it has been saved, and the new value will get
|
|
* loaded properly. This will go away as soon as Xen has been
|
|
* modified to not save/restore %gs for normal hypercalls.
|
|
*
|
|
* On x86_64, this hack is not used for %gs, because gs points
|
|
* to KERNEL_GS_BASE (and uses it for PDA references), so we
|
|
* must not zero %gs on x86_64
|
|
*
|
|
* For x86_64, we need to zero %fs, otherwise we may get an
|
|
* exception between the new %fs descriptor being loaded and
|
|
* %fs being effectively cleared at __switch_to().
|
|
*/
|
|
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
|
|
#ifdef CONFIG_X86_32
|
|
loadsegment(gs, 0);
|
|
#else
|
|
loadsegment(fs, 0);
|
|
#endif
|
|
}
|
|
|
|
xen_mc_batch();
|
|
|
|
load_TLS_descriptor(t, cpu, 0);
|
|
load_TLS_descriptor(t, cpu, 1);
|
|
load_TLS_descriptor(t, cpu, 2);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void xen_load_gs_index(unsigned int idx)
|
|
{
|
|
if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
|
|
BUG();
|
|
}
|
|
#endif
|
|
|
|
static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
|
|
const void *ptr)
|
|
{
|
|
xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
|
|
u64 entry = *(u64 *)ptr;
|
|
|
|
preempt_disable();
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
|
|
BUG();
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static int cvt_gate_to_trap(int vector, const gate_desc *val,
|
|
struct trap_info *info)
|
|
{
|
|
if (val->type != 0xf && val->type != 0xe)
|
|
return 0;
|
|
|
|
info->vector = vector;
|
|
info->address = gate_offset(*val);
|
|
info->cs = gate_segment(*val);
|
|
info->flags = val->dpl;
|
|
/* interrupt gates clear IF */
|
|
if (val->type == 0xe)
|
|
info->flags |= 4;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Locations of each CPU's IDT */
|
|
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
|
|
|
|
/* Set an IDT entry. If the entry is part of the current IDT, then
|
|
also update Xen. */
|
|
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
|
|
{
|
|
unsigned long p = (unsigned long)&dt[entrynum];
|
|
unsigned long start, end;
|
|
|
|
preempt_disable();
|
|
|
|
start = __get_cpu_var(idt_desc).address;
|
|
end = start + __get_cpu_var(idt_desc).size + 1;
|
|
|
|
xen_mc_flush();
|
|
|
|
native_write_idt_entry(dt, entrynum, g);
|
|
|
|
if (p >= start && (p + 8) <= end) {
|
|
struct trap_info info[2];
|
|
|
|
info[1].address = 0;
|
|
|
|
if (cvt_gate_to_trap(entrynum, g, &info[0]))
|
|
if (HYPERVISOR_set_trap_table(info))
|
|
BUG();
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void xen_convert_trap_info(const struct desc_ptr *desc,
|
|
struct trap_info *traps)
|
|
{
|
|
unsigned in, out, count;
|
|
|
|
count = (desc->size+1) / sizeof(gate_desc);
|
|
BUG_ON(count > 256);
|
|
|
|
for (in = out = 0; in < count; in++) {
|
|
gate_desc *entry = (gate_desc*)(desc->address) + in;
|
|
|
|
if (cvt_gate_to_trap(in, entry, &traps[out]))
|
|
out++;
|
|
}
|
|
traps[out].address = 0;
|
|
}
|
|
|
|
void xen_copy_trap_info(struct trap_info *traps)
|
|
{
|
|
const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
|
|
|
|
xen_convert_trap_info(desc, traps);
|
|
}
|
|
|
|
/* Load a new IDT into Xen. In principle this can be per-CPU, so we
|
|
hold a spinlock to protect the static traps[] array (static because
|
|
it avoids allocation, and saves stack space). */
|
|
static void xen_load_idt(const struct desc_ptr *desc)
|
|
{
|
|
static DEFINE_SPINLOCK(lock);
|
|
static struct trap_info traps[257];
|
|
|
|
spin_lock(&lock);
|
|
|
|
__get_cpu_var(idt_desc) = *desc;
|
|
|
|
xen_convert_trap_info(desc, traps);
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_set_trap_table(traps))
|
|
BUG();
|
|
|
|
spin_unlock(&lock);
|
|
}
|
|
|
|
/* Write a GDT descriptor entry. Ignore LDT descriptors, since
|
|
they're handled differently. */
|
|
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
|
|
const void *desc, int type)
|
|
{
|
|
preempt_disable();
|
|
|
|
switch (type) {
|
|
case DESC_LDT:
|
|
case DESC_TSS:
|
|
/* ignore */
|
|
break;
|
|
|
|
default: {
|
|
xmaddr_t maddr = virt_to_machine(&dt[entry]);
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
|
|
BUG();
|
|
}
|
|
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void xen_load_sp0(struct tss_struct *tss,
|
|
struct thread_struct *thread)
|
|
{
|
|
struct multicall_space mcs = xen_mc_entry(0);
|
|
MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_set_iopl_mask(unsigned mask)
|
|
{
|
|
struct physdev_set_iopl set_iopl;
|
|
|
|
/* Force the change at ring 0. */
|
|
set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
|
|
HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
|
|
}
|
|
|
|
static void xen_io_delay(void)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
static u32 xen_apic_read(u32 reg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void xen_apic_write(u32 reg, u32 val)
|
|
{
|
|
/* Warn to see if there's any stray references */
|
|
WARN_ON(1);
|
|
}
|
|
|
|
static u64 xen_apic_icr_read(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void xen_apic_icr_write(u32 low, u32 id)
|
|
{
|
|
/* Warn to see if there's any stray references */
|
|
WARN_ON(1);
|
|
}
|
|
|
|
static void xen_apic_wait_icr_idle(void)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static u32 xen_safe_apic_wait_icr_idle(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct apic_ops xen_basic_apic_ops = {
|
|
.read = xen_apic_read,
|
|
.write = xen_apic_write,
|
|
.icr_read = xen_apic_icr_read,
|
|
.icr_write = xen_apic_icr_write,
|
|
.wait_icr_idle = xen_apic_wait_icr_idle,
|
|
.safe_wait_icr_idle = xen_safe_apic_wait_icr_idle,
|
|
};
|
|
|
|
#endif
|
|
|
|
static void xen_flush_tlb(void)
|
|
{
|
|
struct mmuext_op *op;
|
|
struct multicall_space mcs;
|
|
|
|
preempt_disable();
|
|
|
|
mcs = xen_mc_entry(sizeof(*op));
|
|
|
|
op = mcs.args;
|
|
op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
|
|
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_MMU);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void xen_flush_tlb_single(unsigned long addr)
|
|
{
|
|
struct mmuext_op *op;
|
|
struct multicall_space mcs;
|
|
|
|
preempt_disable();
|
|
|
|
mcs = xen_mc_entry(sizeof(*op));
|
|
op = mcs.args;
|
|
op->cmd = MMUEXT_INVLPG_LOCAL;
|
|
op->arg1.linear_addr = addr & PAGE_MASK;
|
|
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_MMU);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
|
|
unsigned long va)
|
|
{
|
|
struct {
|
|
struct mmuext_op op;
|
|
cpumask_t mask;
|
|
} *args;
|
|
cpumask_t cpumask = *cpus;
|
|
struct multicall_space mcs;
|
|
|
|
/*
|
|
* A couple of (to be removed) sanity checks:
|
|
*
|
|
* - current CPU must not be in mask
|
|
* - mask must exist :)
|
|
*/
|
|
BUG_ON(cpus_empty(cpumask));
|
|
BUG_ON(cpu_isset(smp_processor_id(), cpumask));
|
|
BUG_ON(!mm);
|
|
|
|
/* If a CPU which we ran on has gone down, OK. */
|
|
cpus_and(cpumask, cpumask, cpu_online_map);
|
|
if (cpus_empty(cpumask))
|
|
return;
|
|
|
|
mcs = xen_mc_entry(sizeof(*args));
|
|
args = mcs.args;
|
|
args->mask = cpumask;
|
|
args->op.arg2.vcpumask = &args->mask;
|
|
|
|
if (va == TLB_FLUSH_ALL) {
|
|
args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
|
|
} else {
|
|
args->op.cmd = MMUEXT_INVLPG_MULTI;
|
|
args->op.arg1.linear_addr = va;
|
|
}
|
|
|
|
MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_MMU);
|
|
}
|
|
|
|
static void xen_clts(void)
|
|
{
|
|
struct multicall_space mcs;
|
|
|
|
mcs = xen_mc_entry(0);
|
|
|
|
MULTI_fpu_taskswitch(mcs.mc, 0);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_write_cr0(unsigned long cr0)
|
|
{
|
|
struct multicall_space mcs;
|
|
|
|
/* Only pay attention to cr0.TS; everything else is
|
|
ignored. */
|
|
mcs = xen_mc_entry(0);
|
|
|
|
MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_write_cr2(unsigned long cr2)
|
|
{
|
|
x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
|
|
}
|
|
|
|
static unsigned long xen_read_cr2(void)
|
|
{
|
|
return x86_read_percpu(xen_vcpu)->arch.cr2;
|
|
}
|
|
|
|
static unsigned long xen_read_cr2_direct(void)
|
|
{
|
|
return x86_read_percpu(xen_vcpu_info.arch.cr2);
|
|
}
|
|
|
|
static void xen_write_cr4(unsigned long cr4)
|
|
{
|
|
cr4 &= ~X86_CR4_PGE;
|
|
cr4 &= ~X86_CR4_PSE;
|
|
|
|
native_write_cr4(cr4);
|
|
}
|
|
|
|
static unsigned long xen_read_cr3(void)
|
|
{
|
|
return x86_read_percpu(xen_cr3);
|
|
}
|
|
|
|
static void set_current_cr3(void *v)
|
|
{
|
|
x86_write_percpu(xen_current_cr3, (unsigned long)v);
|
|
}
|
|
|
|
static void __xen_write_cr3(bool kernel, unsigned long cr3)
|
|
{
|
|
struct mmuext_op *op;
|
|
struct multicall_space mcs;
|
|
unsigned long mfn;
|
|
|
|
if (cr3)
|
|
mfn = pfn_to_mfn(PFN_DOWN(cr3));
|
|
else
|
|
mfn = 0;
|
|
|
|
WARN_ON(mfn == 0 && kernel);
|
|
|
|
mcs = __xen_mc_entry(sizeof(*op));
|
|
|
|
op = mcs.args;
|
|
op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
|
|
op->arg1.mfn = mfn;
|
|
|
|
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
|
|
|
|
if (kernel) {
|
|
x86_write_percpu(xen_cr3, cr3);
|
|
|
|
/* Update xen_current_cr3 once the batch has actually
|
|
been submitted. */
|
|
xen_mc_callback(set_current_cr3, (void *)cr3);
|
|
}
|
|
}
|
|
|
|
static void xen_write_cr3(unsigned long cr3)
|
|
{
|
|
BUG_ON(preemptible());
|
|
|
|
xen_mc_batch(); /* disables interrupts */
|
|
|
|
/* Update while interrupts are disabled, so its atomic with
|
|
respect to ipis */
|
|
x86_write_percpu(xen_cr3, cr3);
|
|
|
|
__xen_write_cr3(true, cr3);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
{
|
|
pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
|
|
if (user_pgd)
|
|
__xen_write_cr3(false, __pa(user_pgd));
|
|
else
|
|
__xen_write_cr3(false, 0);
|
|
}
|
|
#endif
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
|
|
}
|
|
|
|
static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
|
|
{
|
|
int ret;
|
|
|
|
ret = 0;
|
|
|
|
switch(msr) {
|
|
#ifdef CONFIG_X86_64
|
|
unsigned which;
|
|
u64 base;
|
|
|
|
case MSR_FS_BASE: which = SEGBASE_FS; goto set;
|
|
case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
|
|
case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
|
|
|
|
set:
|
|
base = ((u64)high << 32) | low;
|
|
if (HYPERVISOR_set_segment_base(which, base) != 0)
|
|
ret = -EFAULT;
|
|
break;
|
|
#endif
|
|
|
|
case MSR_STAR:
|
|
case MSR_CSTAR:
|
|
case MSR_LSTAR:
|
|
case MSR_SYSCALL_MASK:
|
|
case MSR_IA32_SYSENTER_CS:
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
/* Fast syscall setup is all done in hypercalls, so
|
|
these are all ignored. Stub them out here to stop
|
|
Xen console noise. */
|
|
break;
|
|
|
|
default:
|
|
ret = native_write_msr_safe(msr, low, high);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Early in boot, while setting up the initial pagetable, assume
|
|
everything is pinned. */
|
|
static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
|
|
{
|
|
#ifdef CONFIG_FLATMEM
|
|
BUG_ON(mem_map); /* should only be used early */
|
|
#endif
|
|
make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
|
|
}
|
|
|
|
/* Early release_pte assumes that all pts are pinned, since there's
|
|
only init_mm and anything attached to that is pinned. */
|
|
static void xen_release_pte_init(unsigned long pfn)
|
|
{
|
|
make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
|
|
}
|
|
|
|
static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
|
|
{
|
|
struct mmuext_op op;
|
|
op.cmd = cmd;
|
|
op.arg1.mfn = pfn_to_mfn(pfn);
|
|
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
|
|
BUG();
|
|
}
|
|
|
|
/* This needs to make sure the new pte page is pinned iff its being
|
|
attached to a pinned pagetable. */
|
|
static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
|
|
{
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
if (PagePinned(virt_to_page(mm->pgd))) {
|
|
SetPagePinned(page);
|
|
|
|
vm_unmap_aliases();
|
|
if (!PageHighMem(page)) {
|
|
make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
|
|
if (level == PT_PTE && USE_SPLIT_PTLOCKS)
|
|
pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
|
|
} else {
|
|
/* make sure there are no stray mappings of
|
|
this page */
|
|
kmap_flush_unused();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
|
|
{
|
|
xen_alloc_ptpage(mm, pfn, PT_PTE);
|
|
}
|
|
|
|
static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
|
|
{
|
|
xen_alloc_ptpage(mm, pfn, PT_PMD);
|
|
}
|
|
|
|
static int xen_pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
pgd_t *pgd = mm->pgd;
|
|
int ret = 0;
|
|
|
|
BUG_ON(PagePinned(virt_to_page(pgd)));
|
|
|
|
#ifdef CONFIG_X86_64
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
pgd_t *user_pgd;
|
|
|
|
BUG_ON(page->private != 0);
|
|
|
|
ret = -ENOMEM;
|
|
|
|
user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
|
|
page->private = (unsigned long)user_pgd;
|
|
|
|
if (user_pgd != NULL) {
|
|
user_pgd[pgd_index(VSYSCALL_START)] =
|
|
__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
|
|
ret = 0;
|
|
}
|
|
|
|
BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
pgd_t *user_pgd = xen_get_user_pgd(pgd);
|
|
|
|
if (user_pgd)
|
|
free_page((unsigned long)user_pgd);
|
|
#endif
|
|
}
|
|
|
|
/* This should never happen until we're OK to use struct page */
|
|
static void xen_release_ptpage(unsigned long pfn, unsigned level)
|
|
{
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
if (PagePinned(page)) {
|
|
if (!PageHighMem(page)) {
|
|
if (level == PT_PTE && USE_SPLIT_PTLOCKS)
|
|
pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
|
|
make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
|
|
}
|
|
ClearPagePinned(page);
|
|
}
|
|
}
|
|
|
|
static void xen_release_pte(unsigned long pfn)
|
|
{
|
|
xen_release_ptpage(pfn, PT_PTE);
|
|
}
|
|
|
|
static void xen_release_pmd(unsigned long pfn)
|
|
{
|
|
xen_release_ptpage(pfn, PT_PMD);
|
|
}
|
|
|
|
#if PAGETABLE_LEVELS == 4
|
|
static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
|
|
{
|
|
xen_alloc_ptpage(mm, pfn, PT_PUD);
|
|
}
|
|
|
|
static void xen_release_pud(unsigned long pfn)
|
|
{
|
|
xen_release_ptpage(pfn, PT_PUD);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
|
|
{
|
|
pgprot_t prot = PAGE_KERNEL;
|
|
|
|
if (PagePinned(page))
|
|
prot = PAGE_KERNEL_RO;
|
|
|
|
if (0 && PageHighMem(page))
|
|
printk("mapping highpte %lx type %d prot %s\n",
|
|
page_to_pfn(page), type,
|
|
(unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
|
|
|
|
return kmap_atomic_prot(page, type, prot);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
|
|
{
|
|
/* If there's an existing pte, then don't allow _PAGE_RW to be set */
|
|
if (pte_val_ma(*ptep) & _PAGE_PRESENT)
|
|
pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
|
|
pte_val_ma(pte));
|
|
|
|
return pte;
|
|
}
|
|
|
|
/* Init-time set_pte while constructing initial pagetables, which
|
|
doesn't allow RO pagetable pages to be remapped RW */
|
|
static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
|
|
{
|
|
pte = mask_rw_pte(ptep, pte);
|
|
|
|
xen_set_pte(ptep, pte);
|
|
}
|
|
#endif
|
|
|
|
static __init void xen_pagetable_setup_start(pgd_t *base)
|
|
{
|
|
}
|
|
|
|
void xen_setup_shared_info(void)
|
|
{
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
|
|
set_fixmap(FIX_PARAVIRT_BOOTMAP,
|
|
xen_start_info->shared_info);
|
|
|
|
HYPERVISOR_shared_info =
|
|
(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
|
|
} else
|
|
HYPERVISOR_shared_info =
|
|
(struct shared_info *)__va(xen_start_info->shared_info);
|
|
|
|
#ifndef CONFIG_SMP
|
|
/* In UP this is as good a place as any to set up shared info */
|
|
xen_setup_vcpu_info_placement();
|
|
#endif
|
|
|
|
xen_setup_mfn_list_list();
|
|
}
|
|
|
|
static __init void xen_pagetable_setup_done(pgd_t *base)
|
|
{
|
|
xen_setup_shared_info();
|
|
}
|
|
|
|
static __init void xen_post_allocator_init(void)
|
|
{
|
|
pv_mmu_ops.set_pte = xen_set_pte;
|
|
pv_mmu_ops.set_pmd = xen_set_pmd;
|
|
pv_mmu_ops.set_pud = xen_set_pud;
|
|
#if PAGETABLE_LEVELS == 4
|
|
pv_mmu_ops.set_pgd = xen_set_pgd;
|
|
#endif
|
|
|
|
/* This will work as long as patching hasn't happened yet
|
|
(which it hasn't) */
|
|
pv_mmu_ops.alloc_pte = xen_alloc_pte;
|
|
pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
|
|
pv_mmu_ops.release_pte = xen_release_pte;
|
|
pv_mmu_ops.release_pmd = xen_release_pmd;
|
|
#if PAGETABLE_LEVELS == 4
|
|
pv_mmu_ops.alloc_pud = xen_alloc_pud;
|
|
pv_mmu_ops.release_pud = xen_release_pud;
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_64
|
|
SetPagePinned(virt_to_page(level3_user_vsyscall));
|
|
#endif
|
|
xen_mark_init_mm_pinned();
|
|
}
|
|
|
|
/* This is called once we have the cpu_possible_map */
|
|
void xen_setup_vcpu_info_placement(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
xen_vcpu_setup(cpu);
|
|
|
|
/* xen_vcpu_setup managed to place the vcpu_info within the
|
|
percpu area for all cpus, so make use of it */
|
|
if (have_vcpu_info_placement) {
|
|
printk(KERN_INFO "Xen: using vcpu_info placement\n");
|
|
|
|
pv_irq_ops.save_fl = xen_save_fl_direct;
|
|
pv_irq_ops.restore_fl = xen_restore_fl_direct;
|
|
pv_irq_ops.irq_disable = xen_irq_disable_direct;
|
|
pv_irq_ops.irq_enable = xen_irq_enable_direct;
|
|
pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
|
|
}
|
|
}
|
|
|
|
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
|
|
unsigned long addr, unsigned len)
|
|
{
|
|
char *start, *end, *reloc;
|
|
unsigned ret;
|
|
|
|
start = end = reloc = NULL;
|
|
|
|
#define SITE(op, x) \
|
|
case PARAVIRT_PATCH(op.x): \
|
|
if (have_vcpu_info_placement) { \
|
|
start = (char *)xen_##x##_direct; \
|
|
end = xen_##x##_direct_end; \
|
|
reloc = xen_##x##_direct_reloc; \
|
|
} \
|
|
goto patch_site
|
|
|
|
switch (type) {
|
|
SITE(pv_irq_ops, irq_enable);
|
|
SITE(pv_irq_ops, irq_disable);
|
|
SITE(pv_irq_ops, save_fl);
|
|
SITE(pv_irq_ops, restore_fl);
|
|
#undef SITE
|
|
|
|
patch_site:
|
|
if (start == NULL || (end-start) > len)
|
|
goto default_patch;
|
|
|
|
ret = paravirt_patch_insns(insnbuf, len, start, end);
|
|
|
|
/* Note: because reloc is assigned from something that
|
|
appears to be an array, gcc assumes it's non-null,
|
|
but doesn't know its relationship with start and
|
|
end. */
|
|
if (reloc > start && reloc < end) {
|
|
int reloc_off = reloc - start;
|
|
long *relocp = (long *)(insnbuf + reloc_off);
|
|
long delta = start - (char *)addr;
|
|
|
|
*relocp += delta;
|
|
}
|
|
break;
|
|
|
|
default_patch:
|
|
default:
|
|
ret = paravirt_patch_default(type, clobbers, insnbuf,
|
|
addr, len);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
|
|
{
|
|
pte_t pte;
|
|
|
|
phys >>= PAGE_SHIFT;
|
|
|
|
switch (idx) {
|
|
case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
|
|
#ifdef CONFIG_X86_F00F_BUG
|
|
case FIX_F00F_IDT:
|
|
#endif
|
|
#ifdef CONFIG_X86_32
|
|
case FIX_WP_TEST:
|
|
case FIX_VDSO:
|
|
# ifdef CONFIG_HIGHMEM
|
|
case FIX_KMAP_BEGIN ... FIX_KMAP_END:
|
|
# endif
|
|
#else
|
|
case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
|
|
#endif
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
case FIX_APIC_BASE: /* maps dummy local APIC */
|
|
#endif
|
|
pte = pfn_pte(phys, prot);
|
|
break;
|
|
|
|
default:
|
|
pte = mfn_pte(phys, prot);
|
|
break;
|
|
}
|
|
|
|
__native_set_fixmap(idx, pte);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* Replicate changes to map the vsyscall page into the user
|
|
pagetable vsyscall mapping. */
|
|
if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
|
|
unsigned long vaddr = __fix_to_virt(idx);
|
|
set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static const struct pv_info xen_info __initdata = {
|
|
.paravirt_enabled = 1,
|
|
.shared_kernel_pmd = 0,
|
|
|
|
.name = "Xen",
|
|
};
|
|
|
|
static const struct pv_init_ops xen_init_ops __initdata = {
|
|
.patch = xen_patch,
|
|
|
|
.banner = xen_banner,
|
|
.memory_setup = xen_memory_setup,
|
|
.arch_setup = xen_arch_setup,
|
|
.post_allocator_init = xen_post_allocator_init,
|
|
};
|
|
|
|
static const struct pv_time_ops xen_time_ops __initdata = {
|
|
.time_init = xen_time_init,
|
|
|
|
.set_wallclock = xen_set_wallclock,
|
|
.get_wallclock = xen_get_wallclock,
|
|
.get_tsc_khz = xen_tsc_khz,
|
|
.sched_clock = xen_sched_clock,
|
|
};
|
|
|
|
static const struct pv_cpu_ops xen_cpu_ops __initdata = {
|
|
.cpuid = xen_cpuid,
|
|
|
|
.set_debugreg = xen_set_debugreg,
|
|
.get_debugreg = xen_get_debugreg,
|
|
|
|
.clts = xen_clts,
|
|
|
|
.read_cr0 = native_read_cr0,
|
|
.write_cr0 = xen_write_cr0,
|
|
|
|
.read_cr4 = native_read_cr4,
|
|
.read_cr4_safe = native_read_cr4_safe,
|
|
.write_cr4 = xen_write_cr4,
|
|
|
|
.wbinvd = native_wbinvd,
|
|
|
|
.read_msr = native_read_msr_safe,
|
|
.write_msr = xen_write_msr_safe,
|
|
.read_tsc = native_read_tsc,
|
|
.read_pmc = native_read_pmc,
|
|
|
|
.iret = xen_iret,
|
|
.irq_enable_sysexit = xen_sysexit,
|
|
#ifdef CONFIG_X86_64
|
|
.usergs_sysret32 = xen_sysret32,
|
|
.usergs_sysret64 = xen_sysret64,
|
|
#endif
|
|
|
|
.load_tr_desc = paravirt_nop,
|
|
.set_ldt = xen_set_ldt,
|
|
.load_gdt = xen_load_gdt,
|
|
.load_idt = xen_load_idt,
|
|
.load_tls = xen_load_tls,
|
|
#ifdef CONFIG_X86_64
|
|
.load_gs_index = xen_load_gs_index,
|
|
#endif
|
|
|
|
.alloc_ldt = xen_alloc_ldt,
|
|
.free_ldt = xen_free_ldt,
|
|
|
|
.store_gdt = native_store_gdt,
|
|
.store_idt = native_store_idt,
|
|
.store_tr = xen_store_tr,
|
|
|
|
.write_ldt_entry = xen_write_ldt_entry,
|
|
.write_gdt_entry = xen_write_gdt_entry,
|
|
.write_idt_entry = xen_write_idt_entry,
|
|
.load_sp0 = xen_load_sp0,
|
|
|
|
.set_iopl_mask = xen_set_iopl_mask,
|
|
.io_delay = xen_io_delay,
|
|
|
|
/* Xen takes care of %gs when switching to usermode for us */
|
|
.swapgs = paravirt_nop,
|
|
|
|
.lazy_mode = {
|
|
.enter = paravirt_enter_lazy_cpu,
|
|
.leave = xen_leave_lazy,
|
|
},
|
|
};
|
|
|
|
static const struct pv_apic_ops xen_apic_ops __initdata = {
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
.setup_boot_clock = paravirt_nop,
|
|
.setup_secondary_clock = paravirt_nop,
|
|
.startup_ipi_hook = paravirt_nop,
|
|
#endif
|
|
};
|
|
|
|
static const struct pv_mmu_ops xen_mmu_ops __initdata = {
|
|
.pagetable_setup_start = xen_pagetable_setup_start,
|
|
.pagetable_setup_done = xen_pagetable_setup_done,
|
|
|
|
.read_cr2 = xen_read_cr2,
|
|
.write_cr2 = xen_write_cr2,
|
|
|
|
.read_cr3 = xen_read_cr3,
|
|
.write_cr3 = xen_write_cr3,
|
|
|
|
.flush_tlb_user = xen_flush_tlb,
|
|
.flush_tlb_kernel = xen_flush_tlb,
|
|
.flush_tlb_single = xen_flush_tlb_single,
|
|
.flush_tlb_others = xen_flush_tlb_others,
|
|
|
|
.pte_update = paravirt_nop,
|
|
.pte_update_defer = paravirt_nop,
|
|
|
|
.pgd_alloc = xen_pgd_alloc,
|
|
.pgd_free = xen_pgd_free,
|
|
|
|
.alloc_pte = xen_alloc_pte_init,
|
|
.release_pte = xen_release_pte_init,
|
|
.alloc_pmd = xen_alloc_pte_init,
|
|
.alloc_pmd_clone = paravirt_nop,
|
|
.release_pmd = xen_release_pte_init,
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
.kmap_atomic_pte = xen_kmap_atomic_pte,
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_64
|
|
.set_pte = xen_set_pte,
|
|
#else
|
|
.set_pte = xen_set_pte_init,
|
|
#endif
|
|
.set_pte_at = xen_set_pte_at,
|
|
.set_pmd = xen_set_pmd_hyper,
|
|
|
|
.ptep_modify_prot_start = __ptep_modify_prot_start,
|
|
.ptep_modify_prot_commit = __ptep_modify_prot_commit,
|
|
|
|
.pte_val = xen_pte_val,
|
|
.pte_flags = native_pte_flags,
|
|
.pgd_val = xen_pgd_val,
|
|
|
|
.make_pte = xen_make_pte,
|
|
.make_pgd = xen_make_pgd,
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
.set_pte_atomic = xen_set_pte_atomic,
|
|
.set_pte_present = xen_set_pte_at,
|
|
.pte_clear = xen_pte_clear,
|
|
.pmd_clear = xen_pmd_clear,
|
|
#endif /* CONFIG_X86_PAE */
|
|
.set_pud = xen_set_pud_hyper,
|
|
|
|
.make_pmd = xen_make_pmd,
|
|
.pmd_val = xen_pmd_val,
|
|
|
|
#if PAGETABLE_LEVELS == 4
|
|
.pud_val = xen_pud_val,
|
|
.make_pud = xen_make_pud,
|
|
.set_pgd = xen_set_pgd_hyper,
|
|
|
|
.alloc_pud = xen_alloc_pte_init,
|
|
.release_pud = xen_release_pte_init,
|
|
#endif /* PAGETABLE_LEVELS == 4 */
|
|
|
|
.activate_mm = xen_activate_mm,
|
|
.dup_mmap = xen_dup_mmap,
|
|
.exit_mmap = xen_exit_mmap,
|
|
|
|
.lazy_mode = {
|
|
.enter = paravirt_enter_lazy_mmu,
|
|
.leave = xen_leave_lazy,
|
|
},
|
|
|
|
.set_fixmap = xen_set_fixmap,
|
|
};
|
|
|
|
static void xen_reboot(int reason)
|
|
{
|
|
struct sched_shutdown r = { .reason = reason };
|
|
|
|
#ifdef CONFIG_SMP
|
|
smp_send_stop();
|
|
#endif
|
|
|
|
if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
|
|
BUG();
|
|
}
|
|
|
|
static void xen_restart(char *msg)
|
|
{
|
|
xen_reboot(SHUTDOWN_reboot);
|
|
}
|
|
|
|
static void xen_emergency_restart(void)
|
|
{
|
|
xen_reboot(SHUTDOWN_reboot);
|
|
}
|
|
|
|
static void xen_machine_halt(void)
|
|
{
|
|
xen_reboot(SHUTDOWN_poweroff);
|
|
}
|
|
|
|
static void xen_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
xen_reboot(SHUTDOWN_crash);
|
|
}
|
|
|
|
static const struct machine_ops __initdata xen_machine_ops = {
|
|
.restart = xen_restart,
|
|
.halt = xen_machine_halt,
|
|
.power_off = xen_machine_halt,
|
|
.shutdown = xen_machine_halt,
|
|
.crash_shutdown = xen_crash_shutdown,
|
|
.emergency_restart = xen_emergency_restart,
|
|
};
|
|
|
|
|
|
static void __init xen_reserve_top(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
unsigned long top = HYPERVISOR_VIRT_START;
|
|
struct xen_platform_parameters pp;
|
|
|
|
if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
|
|
top = pp.virt_start;
|
|
|
|
reserve_top_address(-top);
|
|
#endif /* CONFIG_X86_32 */
|
|
}
|
|
|
|
/*
|
|
* Like __va(), but returns address in the kernel mapping (which is
|
|
* all we have until the physical memory mapping has been set up.
|
|
*/
|
|
static void *__ka(phys_addr_t paddr)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return (void *)(paddr + __START_KERNEL_map);
|
|
#else
|
|
return __va(paddr);
|
|
#endif
|
|
}
|
|
|
|
/* Convert a machine address to physical address */
|
|
static unsigned long m2p(phys_addr_t maddr)
|
|
{
|
|
phys_addr_t paddr;
|
|
|
|
maddr &= PTE_PFN_MASK;
|
|
paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
|
|
|
|
return paddr;
|
|
}
|
|
|
|
/* Convert a machine address to kernel virtual */
|
|
static void *m2v(phys_addr_t maddr)
|
|
{
|
|
return __ka(m2p(maddr));
|
|
}
|
|
|
|
static void set_page_prot(void *addr, pgprot_t prot)
|
|
{
|
|
unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
|
|
pte_t pte = pfn_pte(pfn, prot);
|
|
|
|
if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
|
|
BUG();
|
|
}
|
|
|
|
static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
|
|
{
|
|
unsigned pmdidx, pteidx;
|
|
unsigned ident_pte;
|
|
unsigned long pfn;
|
|
|
|
ident_pte = 0;
|
|
pfn = 0;
|
|
for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
|
|
pte_t *pte_page;
|
|
|
|
/* Reuse or allocate a page of ptes */
|
|
if (pmd_present(pmd[pmdidx]))
|
|
pte_page = m2v(pmd[pmdidx].pmd);
|
|
else {
|
|
/* Check for free pte pages */
|
|
if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
|
|
break;
|
|
|
|
pte_page = &level1_ident_pgt[ident_pte];
|
|
ident_pte += PTRS_PER_PTE;
|
|
|
|
pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
|
|
}
|
|
|
|
/* Install mappings */
|
|
for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
|
|
pte_t pte;
|
|
|
|
if (pfn > max_pfn_mapped)
|
|
max_pfn_mapped = pfn;
|
|
|
|
if (!pte_none(pte_page[pteidx]))
|
|
continue;
|
|
|
|
pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
|
|
pte_page[pteidx] = pte;
|
|
}
|
|
}
|
|
|
|
for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
|
|
set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
|
|
|
|
set_page_prot(pmd, PAGE_KERNEL_RO);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void convert_pfn_mfn(void *v)
|
|
{
|
|
pte_t *pte = v;
|
|
int i;
|
|
|
|
/* All levels are converted the same way, so just treat them
|
|
as ptes. */
|
|
for(i = 0; i < PTRS_PER_PTE; i++)
|
|
pte[i] = xen_make_pte(pte[i].pte);
|
|
}
|
|
|
|
/*
|
|
* Set up the inital kernel pagetable.
|
|
*
|
|
* We can construct this by grafting the Xen provided pagetable into
|
|
* head_64.S's preconstructed pagetables. We copy the Xen L2's into
|
|
* level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
|
|
* means that only the kernel has a physical mapping to start with -
|
|
* but that's enough to get __va working. We need to fill in the rest
|
|
* of the physical mapping once some sort of allocator has been set
|
|
* up.
|
|
*/
|
|
static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
|
|
{
|
|
pud_t *l3;
|
|
pmd_t *l2;
|
|
|
|
/* Zap identity mapping */
|
|
init_level4_pgt[0] = __pgd(0);
|
|
|
|
/* Pre-constructed entries are in pfn, so convert to mfn */
|
|
convert_pfn_mfn(init_level4_pgt);
|
|
convert_pfn_mfn(level3_ident_pgt);
|
|
convert_pfn_mfn(level3_kernel_pgt);
|
|
|
|
l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
|
|
l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
|
|
|
|
memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
|
|
memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
|
|
|
|
l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
|
|
l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
|
|
memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
|
|
|
|
/* Set up identity map */
|
|
xen_map_identity_early(level2_ident_pgt, max_pfn);
|
|
|
|
/* Make pagetable pieces RO */
|
|
set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
|
|
set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
|
|
set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
|
|
set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
|
|
set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
|
|
set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
|
|
|
|
/* Pin down new L4 */
|
|
pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
|
|
PFN_DOWN(__pa_symbol(init_level4_pgt)));
|
|
|
|
/* Unpin Xen-provided one */
|
|
pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
|
|
|
|
/* Switch over */
|
|
pgd = init_level4_pgt;
|
|
|
|
/*
|
|
* At this stage there can be no user pgd, and no page
|
|
* structure to attach it to, so make sure we just set kernel
|
|
* pgd.
|
|
*/
|
|
xen_mc_batch();
|
|
__xen_write_cr3(true, __pa(pgd));
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
|
|
reserve_early(__pa(xen_start_info->pt_base),
|
|
__pa(xen_start_info->pt_base +
|
|
xen_start_info->nr_pt_frames * PAGE_SIZE),
|
|
"XEN PAGETABLES");
|
|
|
|
return pgd;
|
|
}
|
|
#else /* !CONFIG_X86_64 */
|
|
static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
|
|
|
|
static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
|
|
{
|
|
pmd_t *kernel_pmd;
|
|
|
|
init_pg_tables_start = __pa(pgd);
|
|
init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
|
|
max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
|
|
|
|
kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
|
|
memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
|
|
|
|
xen_map_identity_early(level2_kernel_pgt, max_pfn);
|
|
|
|
memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
|
|
set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
|
|
__pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
|
|
|
|
set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
|
|
set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
|
|
set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
|
|
|
|
pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
|
|
|
|
xen_write_cr3(__pa(swapper_pg_dir));
|
|
|
|
pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
|
|
|
|
return swapper_pg_dir;
|
|
}
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/* First C function to be called on Xen boot */
|
|
asmlinkage void __init xen_start_kernel(void)
|
|
{
|
|
pgd_t *pgd;
|
|
|
|
if (!xen_start_info)
|
|
return;
|
|
|
|
xen_domain_type = XEN_PV_DOMAIN;
|
|
|
|
BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
|
|
|
|
xen_setup_features();
|
|
|
|
/* Install Xen paravirt ops */
|
|
pv_info = xen_info;
|
|
pv_init_ops = xen_init_ops;
|
|
pv_time_ops = xen_time_ops;
|
|
pv_cpu_ops = xen_cpu_ops;
|
|
pv_apic_ops = xen_apic_ops;
|
|
pv_mmu_ops = xen_mmu_ops;
|
|
|
|
xen_init_irq_ops();
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
/*
|
|
* set up the basic apic ops.
|
|
*/
|
|
apic_ops = &xen_basic_apic_ops;
|
|
#endif
|
|
|
|
if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
|
|
pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
|
|
pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
|
|
}
|
|
|
|
machine_ops = xen_machine_ops;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* Disable until direct per-cpu data access. */
|
|
have_vcpu_info_placement = 0;
|
|
x86_64_init_pda();
|
|
#endif
|
|
|
|
xen_smp_init();
|
|
|
|
/* Get mfn list */
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap))
|
|
xen_build_dynamic_phys_to_machine();
|
|
|
|
pgd = (pgd_t *)xen_start_info->pt_base;
|
|
|
|
/* Prevent unwanted bits from being set in PTEs. */
|
|
__supported_pte_mask &= ~_PAGE_GLOBAL;
|
|
if (!xen_initial_domain())
|
|
__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
|
|
|
|
/* Don't do the full vcpu_info placement stuff until we have a
|
|
possible map and a non-dummy shared_info. */
|
|
per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
|
|
|
|
xen_raw_console_write("mapping kernel into physical memory\n");
|
|
pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
|
|
|
|
init_mm.pgd = pgd;
|
|
|
|
/* keep using Xen gdt for now; no urgent need to change it */
|
|
|
|
pv_info.kernel_rpl = 1;
|
|
if (xen_feature(XENFEAT_supervisor_mode_kernel))
|
|
pv_info.kernel_rpl = 0;
|
|
|
|
/* set the limit of our address space */
|
|
xen_reserve_top();
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* set up basic CPUID stuff */
|
|
cpu_detect(&new_cpu_data);
|
|
new_cpu_data.hard_math = 1;
|
|
new_cpu_data.x86_capability[0] = cpuid_edx(1);
|
|
#endif
|
|
|
|
/* Poke various useful things into boot_params */
|
|
boot_params.hdr.type_of_loader = (9 << 4) | 0;
|
|
boot_params.hdr.ramdisk_image = xen_start_info->mod_start
|
|
? __pa(xen_start_info->mod_start) : 0;
|
|
boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
|
|
boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
|
|
|
|
if (!xen_initial_domain()) {
|
|
add_preferred_console("xenboot", 0, NULL);
|
|
add_preferred_console("tty", 0, NULL);
|
|
add_preferred_console("hvc", 0, NULL);
|
|
}
|
|
|
|
xen_raw_console_write("about to get started...\n");
|
|
|
|
/* Start the world */
|
|
#ifdef CONFIG_X86_32
|
|
i386_start_kernel();
|
|
#else
|
|
x86_64_start_reservations((char *)__pa_symbol(&boot_params));
|
|
#endif
|
|
}
|