linux/drivers/kvm/vmx.c
Avi Kivity bfdc0c280a [PATCH] KVM: Fix vmx hardware_enable() on macbooks
It seems macbooks set bit 2 but not bit 0, which is an "enabled but vmxon will
fault" setting.

Signed-off-by: Avi Kivity <avi@qumranet.com>
Tested-by: Alex Larsson (sometimes testing helps)
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-13 09:05:48 -08:00

2015 lines
50 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "kvm.h"
#include "vmx.h"
#include "kvm_vmx.h"
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <asm/io.h>
#include <asm/desc.h>
#include "segment_descriptor.h"
#define MSR_IA32_FEATURE_CONTROL 0x03a
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
#ifdef CONFIG_X86_64
#define HOST_IS_64 1
#else
#define HOST_IS_64 0
#endif
static struct vmcs_descriptor {
int size;
int order;
u32 revision_id;
} vmcs_descriptor;
#define VMX_SEGMENT_FIELD(seg) \
[VCPU_SREG_##seg] = { \
.selector = GUEST_##seg##_SELECTOR, \
.base = GUEST_##seg##_BASE, \
.limit = GUEST_##seg##_LIMIT, \
.ar_bytes = GUEST_##seg##_AR_BYTES, \
}
static struct kvm_vmx_segment_field {
unsigned selector;
unsigned base;
unsigned limit;
unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
VMX_SEGMENT_FIELD(CS),
VMX_SEGMENT_FIELD(DS),
VMX_SEGMENT_FIELD(ES),
VMX_SEGMENT_FIELD(FS),
VMX_SEGMENT_FIELD(GS),
VMX_SEGMENT_FIELD(SS),
VMX_SEGMENT_FIELD(TR),
VMX_SEGMENT_FIELD(LDTR),
};
static const u32 vmx_msr_index[] = {
#ifdef CONFIG_X86_64
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
#endif
MSR_EFER, MSR_K6_STAR,
};
#define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
static inline int is_page_fault(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
}
static inline int is_external_interrupt(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}
static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
{
int i;
for (i = 0; i < vcpu->nmsrs; ++i)
if (vcpu->guest_msrs[i].index == msr)
return &vcpu->guest_msrs[i];
return 0;
}
static void vmcs_clear(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
vmcs, phys_addr);
}
static void __vcpu_clear(void *arg)
{
struct kvm_vcpu *vcpu = arg;
int cpu = smp_processor_id();
if (vcpu->cpu == cpu)
vmcs_clear(vcpu->vmcs);
if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
per_cpu(current_vmcs, cpu) = NULL;
}
static unsigned long vmcs_readl(unsigned long field)
{
unsigned long value;
asm volatile (ASM_VMX_VMREAD_RDX_RAX
: "=a"(value) : "d"(field) : "cc");
return value;
}
static u16 vmcs_read16(unsigned long field)
{
return vmcs_readl(field);
}
static u32 vmcs_read32(unsigned long field)
{
return vmcs_readl(field);
}
static u64 vmcs_read64(unsigned long field)
{
#ifdef CONFIG_X86_64
return vmcs_readl(field);
#else
return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
#endif
}
static void vmcs_writel(unsigned long field, unsigned long value)
{
u8 error;
asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
: "=q"(error) : "a"(value), "d"(field) : "cc" );
if (error)
printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
}
static void vmcs_write16(unsigned long field, u16 value)
{
vmcs_writel(field, value);
}
static void vmcs_write32(unsigned long field, u32 value)
{
vmcs_writel(field, value);
}
static void vmcs_write64(unsigned long field, u64 value)
{
#ifdef CONFIG_X86_64
vmcs_writel(field, value);
#else
vmcs_writel(field, value);
asm volatile ("");
vmcs_writel(field+1, value >> 32);
#endif
}
/*
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
* vcpu mutex is already taken.
*/
static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
{
u64 phys_addr = __pa(vcpu->vmcs);
int cpu;
cpu = get_cpu();
if (vcpu->cpu != cpu) {
smp_call_function(__vcpu_clear, vcpu, 0, 1);
vcpu->launched = 0;
}
if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
u8 error;
per_cpu(current_vmcs, cpu) = vcpu->vmcs;
asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc");
if (error)
printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
vcpu->vmcs, phys_addr);
}
if (vcpu->cpu != cpu) {
struct descriptor_table dt;
unsigned long sysenter_esp;
vcpu->cpu = cpu;
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
* processors.
*/
vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
get_gdt(&dt);
vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
}
return vcpu;
}
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
put_cpu();
}
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
return vmcs_readl(GUEST_RFLAGS);
}
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
vmcs_writel(GUEST_RFLAGS, rflags);
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rip;
u32 interruptibility;
rip = vmcs_readl(GUEST_RIP);
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
vmcs_writel(GUEST_RIP, rip);
/*
* We emulated an instruction, so temporary interrupt blocking
* should be removed, if set.
*/
interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
if (interruptibility & 3)
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
interruptibility & ~3);
}
static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
{
printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
vmcs_readl(GUEST_RIP));
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
GP_VECTOR |
INTR_TYPE_EXCEPTION |
INTR_INFO_DELIEVER_CODE_MASK |
INTR_INFO_VALID_MASK);
}
/*
* reads and returns guest's timestamp counter "register"
* guest_tsc = host_tsc + tsc_offset -- 21.3
*/
static u64 guest_read_tsc(void)
{
u64 host_tsc, tsc_offset;
rdtscll(host_tsc);
tsc_offset = vmcs_read64(TSC_OFFSET);
return host_tsc + tsc_offset;
}
/*
* writes 'guest_tsc' into guest's timestamp counter "register"
* guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
*/
static void guest_write_tsc(u64 guest_tsc)
{
u64 host_tsc;
rdtscll(host_tsc);
vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
}
static void reload_tss(void)
{
#ifndef CONFIG_X86_64
/*
* VT restores TR but not its size. Useless.
*/
struct descriptor_table gdt;
struct segment_descriptor *descs;
get_gdt(&gdt);
descs = (void *)gdt.base;
descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
load_TR_desc();
#endif
}
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
u64 data;
struct vmx_msr_entry *msr;
if (!pdata) {
printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
return -EINVAL;
}
switch (msr_index) {
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
data = vmcs_readl(GUEST_FS_BASE);
break;
case MSR_GS_BASE:
data = vmcs_readl(GUEST_GS_BASE);
break;
case MSR_EFER:
data = vcpu->shadow_efer;
break;
#endif
case MSR_IA32_TIME_STAMP_COUNTER:
data = guest_read_tsc();
break;
case MSR_IA32_SYSENTER_CS:
data = vmcs_read32(GUEST_SYSENTER_CS);
break;
case MSR_IA32_SYSENTER_EIP:
data = vmcs_read32(GUEST_SYSENTER_EIP);
break;
case MSR_IA32_SYSENTER_ESP:
data = vmcs_read32(GUEST_SYSENTER_ESP);
break;
case MSR_IA32_MC0_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MCG_CAP:
case MSR_IA32_MC0_MISC:
case MSR_IA32_MC0_MISC+4:
case MSR_IA32_MC0_MISC+8:
case MSR_IA32_MC0_MISC+12:
case MSR_IA32_MC0_MISC+16:
case MSR_IA32_UCODE_REV:
/* MTRR registers */
case 0xfe:
case 0x200 ... 0x2ff:
data = 0;
break;
case MSR_IA32_APICBASE:
data = vcpu->apic_base;
break;
default:
msr = find_msr_entry(vcpu, msr_index);
if (!msr) {
printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index);
return 1;
}
data = msr->data;
break;
}
*pdata = data;
return 0;
}
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
struct vmx_msr_entry *msr;
switch (msr_index) {
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
vmcs_writel(GUEST_FS_BASE, data);
break;
case MSR_GS_BASE:
vmcs_writel(GUEST_GS_BASE, data);
break;
#endif
case MSR_IA32_SYSENTER_CS:
vmcs_write32(GUEST_SYSENTER_CS, data);
break;
case MSR_IA32_SYSENTER_EIP:
vmcs_write32(GUEST_SYSENTER_EIP, data);
break;
case MSR_IA32_SYSENTER_ESP:
vmcs_write32(GUEST_SYSENTER_ESP, data);
break;
#ifdef __x86_64
case MSR_EFER:
set_efer(vcpu, data);
break;
case MSR_IA32_MC0_STATUS:
printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
, __FUNCTION__, data);
break;
#endif
case MSR_IA32_TIME_STAMP_COUNTER: {
guest_write_tsc(data);
break;
}
case MSR_IA32_UCODE_REV:
case MSR_IA32_UCODE_WRITE:
case 0x200 ... 0x2ff: /* MTRRs */
break;
case MSR_IA32_APICBASE:
vcpu->apic_base = data;
break;
default:
msr = find_msr_entry(vcpu, msr_index);
if (!msr) {
printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index);
return 1;
}
msr->data = data;
break;
}
return 0;
}
/*
* Sync the rsp and rip registers into the vcpu structure. This allows
* registers to be accessed by indexing vcpu->regs.
*/
static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
{
vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
vcpu->rip = vmcs_readl(GUEST_RIP);
}
/*
* Syncs rsp and rip back into the vmcs. Should be called after possible
* modification.
*/
static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
{
vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
vmcs_writel(GUEST_RIP, vcpu->rip);
}
static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
{
unsigned long dr7 = 0x400;
u32 exception_bitmap;
int old_singlestep;
exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
old_singlestep = vcpu->guest_debug.singlestep;
vcpu->guest_debug.enabled = dbg->enabled;
if (vcpu->guest_debug.enabled) {
int i;
dr7 |= 0x200; /* exact */
for (i = 0; i < 4; ++i) {
if (!dbg->breakpoints[i].enabled)
continue;
vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
dr7 |= 2 << (i*2); /* global enable */
dr7 |= 0 << (i*4+16); /* execution breakpoint */
}
exception_bitmap |= (1u << 1); /* Trap debug exceptions */
vcpu->guest_debug.singlestep = dbg->singlestep;
} else {
exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
vcpu->guest_debug.singlestep = 0;
}
if (old_singlestep && !vcpu->guest_debug.singlestep) {
unsigned long flags;
flags = vmcs_readl(GUEST_RFLAGS);
flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
vmcs_writel(GUEST_RFLAGS, flags);
}
vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
vmcs_writel(GUEST_DR7, dr7);
return 0;
}
static __init int cpu_has_kvm_support(void)
{
unsigned long ecx = cpuid_ecx(1);
return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
}
static __init int vmx_disabled_by_bios(void)
{
u64 msr;
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
return (msr & 5) == 1; /* locked but not enabled */
}
static __init void hardware_enable(void *garbage)
{
int cpu = raw_smp_processor_id();
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
u64 old;
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
if ((old & 5) != 5)
/* enable and lock */
wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
: "memory", "cc");
}
static void hardware_disable(void *garbage)
{
asm volatile (ASM_VMX_VMXOFF : : : "cc");
}
static __init void setup_vmcs_descriptor(void)
{
u32 vmx_msr_low, vmx_msr_high;
rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
vmcs_descriptor.size = vmx_msr_high & 0x1fff;
vmcs_descriptor.order = get_order(vmcs_descriptor.size);
vmcs_descriptor.revision_id = vmx_msr_low;
};
static struct vmcs *alloc_vmcs_cpu(int cpu)
{
int node = cpu_to_node(cpu);
struct page *pages;
struct vmcs *vmcs;
pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
if (!pages)
return NULL;
vmcs = page_address(pages);
memset(vmcs, 0, vmcs_descriptor.size);
vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
return vmcs;
}
static struct vmcs *alloc_vmcs(void)
{
return alloc_vmcs_cpu(smp_processor_id());
}
static void free_vmcs(struct vmcs *vmcs)
{
free_pages((unsigned long)vmcs, vmcs_descriptor.order);
}
static __exit void free_kvm_area(void)
{
int cpu;
for_each_online_cpu(cpu)
free_vmcs(per_cpu(vmxarea, cpu));
}
extern struct vmcs *alloc_vmcs_cpu(int cpu);
static __init int alloc_kvm_area(void)
{
int cpu;
for_each_online_cpu(cpu) {
struct vmcs *vmcs;
vmcs = alloc_vmcs_cpu(cpu);
if (!vmcs) {
free_kvm_area();
return -ENOMEM;
}
per_cpu(vmxarea, cpu) = vmcs;
}
return 0;
}
static __init int hardware_setup(void)
{
setup_vmcs_descriptor();
return alloc_kvm_area();
}
static __exit void hardware_unsetup(void)
{
free_kvm_area();
}
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
{
if (vcpu->rmode.active)
vmcs_write32(EXCEPTION_BITMAP, ~0);
else
vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
}
static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
if (vmcs_readl(sf->base) == save->base) {
vmcs_write16(sf->selector, save->selector);
vmcs_writel(sf->base, save->base);
vmcs_write32(sf->limit, save->limit);
vmcs_write32(sf->ar_bytes, save->ar);
} else {
u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
<< AR_DPL_SHIFT;
vmcs_write32(sf->ar_bytes, 0x93 | dpl);
}
}
static void enter_pmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
vcpu->rmode.active = 0;
vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
flags = vmcs_readl(GUEST_RFLAGS);
flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
(vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
update_exception_bitmap(vcpu);
fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
vmcs_write16(GUEST_SS_SELECTOR, 0);
vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
vmcs_write16(GUEST_CS_SELECTOR,
vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
}
static int rmode_tss_base(struct kvm* kvm)
{
gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
return base_gfn << PAGE_SHIFT;
}
static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
save->selector = vmcs_read16(sf->selector);
save->base = vmcs_readl(sf->base);
save->limit = vmcs_read32(sf->limit);
save->ar = vmcs_read32(sf->ar_bytes);
vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
vmcs_write32(sf->limit, 0xffff);
vmcs_write32(sf->ar_bytes, 0xf3);
}
static void enter_rmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
vcpu->rmode.active = 1;
vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
flags = vmcs_readl(GUEST_RFLAGS);
vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
flags |= IOPL_MASK | X86_EFLAGS_VM;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
update_exception_bitmap(vcpu);
vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
vmcs_write32(GUEST_SS_LIMIT, 0xffff);
vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
}
#ifdef CONFIG_X86_64
static void enter_lmode(struct kvm_vcpu *vcpu)
{
u32 guest_tr_ar;
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
__FUNCTION__);
vmcs_write32(GUEST_TR_AR_BYTES,
(guest_tr_ar & ~AR_TYPE_MASK)
| AR_TYPE_BUSY_64_TSS);
}
vcpu->shadow_efer |= EFER_LMA;
find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS)
| VM_ENTRY_CONTROLS_IA32E_MASK);
}
static void exit_lmode(struct kvm_vcpu *vcpu)
{
vcpu->shadow_efer &= ~EFER_LMA;
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS)
& ~VM_ENTRY_CONTROLS_IA32E_MASK);
}
#endif
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
enter_pmode(vcpu);
if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
enter_rmode(vcpu);
#ifdef CONFIG_X86_64
if (vcpu->shadow_efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
enter_lmode(vcpu);
if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
exit_lmode(vcpu);
}
#endif
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0,
(cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
vcpu->cr0 = cr0;
}
/*
* Used when restoring the VM to avoid corrupting segment registers
*/
static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
{
vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
update_exception_bitmap(vcpu);
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0,
(cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
vcpu->cr0 = cr0;
}
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
vmcs_writel(GUEST_CR3, cr3);
}
static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
vmcs_writel(CR4_READ_SHADOW, cr4);
vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
vcpu->cr4 = cr4;
}
#ifdef CONFIG_X86_64
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
vcpu->shadow_efer = efer;
if (efer & EFER_LMA) {
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS) |
VM_ENTRY_CONTROLS_IA32E_MASK);
msr->data = efer;
} else {
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS) &
~VM_ENTRY_CONTROLS_IA32E_MASK);
msr->data = efer & ~EFER_LME;
}
}
#endif
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
return vmcs_readl(sf->base);
}
static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
u32 ar;
var->base = vmcs_readl(sf->base);
var->limit = vmcs_read32(sf->limit);
var->selector = vmcs_read16(sf->selector);
ar = vmcs_read32(sf->ar_bytes);
if (ar & AR_UNUSABLE_MASK)
ar = 0;
var->type = ar & 15;
var->s = (ar >> 4) & 1;
var->dpl = (ar >> 5) & 3;
var->present = (ar >> 7) & 1;
var->avl = (ar >> 12) & 1;
var->l = (ar >> 13) & 1;
var->db = (ar >> 14) & 1;
var->g = (ar >> 15) & 1;
var->unusable = (ar >> 16) & 1;
}
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
u32 ar;
vmcs_writel(sf->base, var->base);
vmcs_write32(sf->limit, var->limit);
vmcs_write16(sf->selector, var->selector);
if (var->unusable)
ar = 1 << 16;
else {
ar = var->type & 15;
ar |= (var->s & 1) << 4;
ar |= (var->dpl & 3) << 5;
ar |= (var->present & 1) << 7;
ar |= (var->avl & 1) << 12;
ar |= (var->l & 1) << 13;
ar |= (var->db & 1) << 14;
ar |= (var->g & 1) << 15;
}
if (ar == 0) /* a 0 value means unusable */
ar = AR_UNUSABLE_MASK;
vmcs_write32(sf->ar_bytes, ar);
}
static int vmx_is_long_mode(struct kvm_vcpu *vcpu)
{
return vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_CONTROLS_IA32E_MASK;
}
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
*db = (ar >> 14) & 1;
*l = (ar >> 13) & 1;
}
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
dt->base = vmcs_readl(GUEST_IDTR_BASE);
}
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
vmcs_writel(GUEST_IDTR_BASE, dt->base);
}
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
dt->base = vmcs_readl(GUEST_GDTR_BASE);
}
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
vmcs_writel(GUEST_GDTR_BASE, dt->base);
}
static int init_rmode_tss(struct kvm* kvm)
{
struct page *p1, *p2, *p3;
gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
char *page;
p1 = _gfn_to_page(kvm, fn++);
p2 = _gfn_to_page(kvm, fn++);
p3 = _gfn_to_page(kvm, fn);
if (!p1 || !p2 || !p3) {
kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
return 0;
}
page = kmap_atomic(p1, KM_USER0);
memset(page, 0, PAGE_SIZE);
*(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
kunmap_atomic(page, KM_USER0);
page = kmap_atomic(p2, KM_USER0);
memset(page, 0, PAGE_SIZE);
kunmap_atomic(page, KM_USER0);
page = kmap_atomic(p3, KM_USER0);
memset(page, 0, PAGE_SIZE);
*(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
kunmap_atomic(page, KM_USER0);
return 1;
}
static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
{
u32 msr_high, msr_low;
rdmsr(msr, msr_low, msr_high);
val &= msr_high;
val |= msr_low;
vmcs_write32(vmcs_field, val);
}
static void seg_setup(int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
vmcs_write16(sf->selector, 0);
vmcs_writel(sf->base, 0);
vmcs_write32(sf->limit, 0xffff);
vmcs_write32(sf->ar_bytes, 0x93);
}
/*
* Sets up the vmcs for emulated real mode.
*/
static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
{
u32 host_sysenter_cs;
u32 junk;
unsigned long a;
struct descriptor_table dt;
int i;
int ret = 0;
int nr_good_msrs;
extern asmlinkage void kvm_vmx_return(void);
if (!init_rmode_tss(vcpu->kvm)) {
ret = -ENOMEM;
goto out;
}
memset(vcpu->regs, 0, sizeof(vcpu->regs));
vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
vcpu->cr8 = 0;
vcpu->apic_base = 0xfee00000 |
/*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
MSR_IA32_APICBASE_ENABLE;
fx_init(vcpu);
/*
* GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
* insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
*/
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
vmcs_writel(GUEST_CS_BASE, 0x000f0000);
vmcs_write32(GUEST_CS_LIMIT, 0xffff);
vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
seg_setup(VCPU_SREG_DS);
seg_setup(VCPU_SREG_ES);
seg_setup(VCPU_SREG_FS);
seg_setup(VCPU_SREG_GS);
seg_setup(VCPU_SREG_SS);
vmcs_write16(GUEST_TR_SELECTOR, 0);
vmcs_writel(GUEST_TR_BASE, 0);
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
vmcs_writel(GUEST_LDTR_BASE, 0);
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
vmcs_write32(GUEST_SYSENTER_CS, 0);
vmcs_writel(GUEST_SYSENTER_ESP, 0);
vmcs_writel(GUEST_SYSENTER_EIP, 0);
vmcs_writel(GUEST_RFLAGS, 0x02);
vmcs_writel(GUEST_RIP, 0xfff0);
vmcs_writel(GUEST_RSP, 0);
vmcs_writel(GUEST_CR3, 0);
//todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
vmcs_writel(GUEST_DR7, 0x400);
vmcs_writel(GUEST_GDTR_BASE, 0);
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
vmcs_writel(GUEST_IDTR_BASE, 0);
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_ACTIVITY_STATE, 0);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
/* I/O */
vmcs_write64(IO_BITMAP_A, 0);
vmcs_write64(IO_BITMAP_B, 0);
guest_write_tsc(0);
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
/* Special registers */
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
/* Control */
vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
| PIN_BASED_NMI_EXITING /* 20.6.1 */
);
vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_HLT_EXITING /* 20.6.2 */
| CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
| CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
| CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
| CPU_BASED_INVDPG_EXITING
| CPU_BASED_MOV_DR_EXITING
| CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
);
vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
#ifdef CONFIG_X86_64
rdmsrl(MSR_FS_BASE, a);
vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
rdmsrl(MSR_GS_BASE, a);
vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
#else
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
#endif
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
get_idt(&dt);
vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
rdmsrl(MSR_IA32_SYSENTER_ESP, a);
vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
rdmsrl(MSR_IA32_SYSENTER_EIP, a);
vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
ret = -ENOMEM;
vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!vcpu->guest_msrs)
goto out;
vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!vcpu->host_msrs)
goto out_free_guest_msrs;
for (i = 0; i < NR_VMX_MSR; ++i) {
u32 index = vmx_msr_index[i];
u32 data_low, data_high;
u64 data;
int j = vcpu->nmsrs;
if (rdmsr_safe(index, &data_low, &data_high) < 0)
continue;
data = data_low | ((u64)data_high << 32);
vcpu->host_msrs[j].index = index;
vcpu->host_msrs[j].reserved = 0;
vcpu->host_msrs[j].data = data;
vcpu->guest_msrs[j] = vcpu->host_msrs[j];
++vcpu->nmsrs;
}
printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
(HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
/* 22.2.1, 20.8.1 */
vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
VM_ENTRY_CONTROLS, 0);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
#ifdef CONFIG_X86_64
vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
vmcs_writel(TPR_THRESHOLD, 0);
#endif
vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
vcpu->cr0 = 0x60000010;
vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
vmx_set_cr4(vcpu, 0);
#ifdef CONFIG_X86_64
vmx_set_efer(vcpu, 0);
#endif
return 0;
out_free_guest_msrs:
kfree(vcpu->guest_msrs);
out:
return ret;
}
static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
{
u16 ent[2];
u16 cs;
u16 ip;
unsigned long flags;
unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
u16 sp = vmcs_readl(GUEST_RSP);
u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
if (sp > ss_limit || sp - 6 > sp) {
vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
__FUNCTION__,
vmcs_readl(GUEST_RSP),
vmcs_readl(GUEST_SS_BASE),
vmcs_read32(GUEST_SS_LIMIT));
return;
}
if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
sizeof(ent)) {
vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
return;
}
flags = vmcs_readl(GUEST_RFLAGS);
cs = vmcs_readl(GUEST_CS_BASE) >> 4;
ip = vmcs_readl(GUEST_RIP);
if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
return;
}
vmcs_writel(GUEST_RFLAGS, flags &
~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
vmcs_writel(GUEST_RIP, ent[0]);
vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
}
static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
{
int word_index = __ffs(vcpu->irq_summary);
int bit_index = __ffs(vcpu->irq_pending[word_index]);
int irq = word_index * BITS_PER_LONG + bit_index;
clear_bit(bit_index, &vcpu->irq_pending[word_index]);
if (!vcpu->irq_pending[word_index])
clear_bit(word_index, &vcpu->irq_summary);
if (vcpu->rmode.active) {
inject_rmode_irq(vcpu, irq);
return;
}
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}
static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
{
if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
&& (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
/*
* Interrupts enabled, and not blocked by sti or mov ss. Good.
*/
kvm_do_inject_irq(vcpu);
else
/*
* Interrupts blocked. Wait for unblock.
*/
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
| CPU_BASED_VIRTUAL_INTR_PENDING);
}
static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
{
struct kvm_guest_debug *dbg = &vcpu->guest_debug;
set_debugreg(dbg->bp[0], 0);
set_debugreg(dbg->bp[1], 1);
set_debugreg(dbg->bp[2], 2);
set_debugreg(dbg->bp[3], 3);
if (dbg->singlestep) {
unsigned long flags;
flags = vmcs_readl(GUEST_RFLAGS);
flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
vmcs_writel(GUEST_RFLAGS, flags);
}
}
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
int vec, u32 err_code)
{
if (!vcpu->rmode.active)
return 0;
if (vec == GP_VECTOR && err_code == 0)
if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
return 1;
return 0;
}
static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 intr_info, error_code;
unsigned long cr2, rip;
u32 vect_info;
enum emulation_result er;
vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
!is_page_fault(intr_info)) {
printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
"intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
}
if (is_external_interrupt(vect_info)) {
int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
set_bit(irq, vcpu->irq_pending);
set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
}
if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
asm ("int $2");
return 1;
}
error_code = 0;
rip = vmcs_readl(GUEST_RIP);
if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
if (is_page_fault(intr_info)) {
cr2 = vmcs_readl(EXIT_QUALIFICATION);
spin_lock(&vcpu->kvm->lock);
if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
spin_unlock(&vcpu->kvm->lock);
return 1;
}
er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
spin_unlock(&vcpu->kvm->lock);
switch (er) {
case EMULATE_DONE:
return 1;
case EMULATE_DO_MMIO:
++kvm_stat.mmio_exits;
kvm_run->exit_reason = KVM_EXIT_MMIO;
return 0;
case EMULATE_FAIL:
vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
break;
default:
BUG();
}
}
if (vcpu->rmode.active &&
handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
error_code))
return 1;
if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
kvm_run->exit_reason = KVM_EXIT_DEBUG;
return 0;
}
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
kvm_run->ex.error_code = error_code;
return 0;
}
static int handle_external_interrupt(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
++kvm_stat.irq_exits;
return 1;
}
static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
{
u64 inst;
gva_t rip;
int countr_size;
int i, n;
if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
countr_size = 2;
} else {
u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
countr_size = (cs_ar & AR_L_MASK) ? 8:
(cs_ar & AR_DB_MASK) ? 4: 2;
}
rip = vmcs_readl(GUEST_RIP);
if (countr_size != 8)
rip += vmcs_readl(GUEST_CS_BASE);
n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
for (i = 0; i < n; i++) {
switch (((u8*)&inst)[i]) {
case 0xf0:
case 0xf2:
case 0xf3:
case 0x2e:
case 0x36:
case 0x3e:
case 0x26:
case 0x64:
case 0x65:
case 0x66:
break;
case 0x67:
countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
default:
goto done;
}
}
return 0;
done:
countr_size *= 8;
*count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
return 1;
}
static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u64 exit_qualification;
++kvm_stat.io_exits;
exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
kvm_run->exit_reason = KVM_EXIT_IO;
if (exit_qualification & 8)
kvm_run->io.direction = KVM_EXIT_IO_IN;
else
kvm_run->io.direction = KVM_EXIT_IO_OUT;
kvm_run->io.size = (exit_qualification & 7) + 1;
kvm_run->io.string = (exit_qualification & 16) != 0;
kvm_run->io.string_down
= (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
kvm_run->io.rep = (exit_qualification & 32) != 0;
kvm_run->io.port = exit_qualification >> 16;
if (kvm_run->io.string) {
if (!get_io_count(vcpu, &kvm_run->io.count))
return 1;
kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
} else
kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
return 0;
}
static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u64 address = vmcs_read64(EXIT_QUALIFICATION);
int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
spin_lock(&vcpu->kvm->lock);
vcpu->mmu.inval_page(vcpu, address);
spin_unlock(&vcpu->kvm->lock);
vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
return 1;
}
static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u64 exit_qualification;
int cr;
int reg;
exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
cr = exit_qualification & 15;
reg = (exit_qualification >> 8) & 15;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
switch (cr) {
case 0:
vcpu_load_rsp_rip(vcpu);
set_cr0(vcpu, vcpu->regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
case 3:
vcpu_load_rsp_rip(vcpu);
set_cr3(vcpu, vcpu->regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
case 4:
vcpu_load_rsp_rip(vcpu);
set_cr4(vcpu, vcpu->regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
case 8:
vcpu_load_rsp_rip(vcpu);
set_cr8(vcpu, vcpu->regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
};
break;
case 1: /*mov from cr*/
switch (cr) {
case 3:
vcpu_load_rsp_rip(vcpu);
vcpu->regs[reg] = vcpu->cr3;
vcpu_put_rsp_rip(vcpu);
skip_emulated_instruction(vcpu);
return 1;
case 8:
printk(KERN_DEBUG "handle_cr: read CR8 "
"cpu erratum AA15\n");
vcpu_load_rsp_rip(vcpu);
vcpu->regs[reg] = vcpu->cr8;
vcpu_put_rsp_rip(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
break;
case 3: /* lmsw */
lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
skip_emulated_instruction(vcpu);
return 1;
default:
break;
}
kvm_run->exit_reason = 0;
printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
(int)(exit_qualification >> 4) & 3, cr);
return 0;
}
static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u64 exit_qualification;
unsigned long val;
int dr, reg;
/*
* FIXME: this code assumes the host is debugging the guest.
* need to deal with guest debugging itself too.
*/
exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
dr = exit_qualification & 7;
reg = (exit_qualification >> 8) & 15;
vcpu_load_rsp_rip(vcpu);
if (exit_qualification & 16) {
/* mov from dr */
switch (dr) {
case 6:
val = 0xffff0ff0;
break;
case 7:
val = 0x400;
break;
default:
val = 0;
}
vcpu->regs[reg] = val;
} else {
/* mov to dr */
}
vcpu_put_rsp_rip(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
kvm_run->exit_reason = KVM_EXIT_CPUID;
return 0;
}
static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 ecx = vcpu->regs[VCPU_REGS_RCX];
u64 data;
if (vmx_get_msr(vcpu, ecx, &data)) {
vmx_inject_gp(vcpu, 0);
return 1;
}
/* FIXME: handling of bits 32:63 of rax, rdx */
vcpu->regs[VCPU_REGS_RAX] = data & -1u;
vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 ecx = vcpu->regs[VCPU_REGS_RCX];
u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
| ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
if (vmx_set_msr(vcpu, ecx, data) != 0) {
vmx_inject_gp(vcpu, 0);
return 1;
}
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_interrupt_window(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
/* Turn off interrupt window reporting. */
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
& ~CPU_BASED_VIRTUAL_INTR_PENDING);
return 1;
}
static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
skip_emulated_instruction(vcpu);
if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
return 1;
kvm_run->exit_reason = KVM_EXIT_HLT;
return 0;
}
/*
* The exit handlers return 1 if the exit was handled fully and guest execution
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
* to be done to userspace and return 0.
*/
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run) = {
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
[EXIT_REASON_INVLPG] = handle_invlpg,
[EXIT_REASON_CR_ACCESS] = handle_cr,
[EXIT_REASON_DR_ACCESS] = handle_dr,
[EXIT_REASON_CPUID] = handle_cpuid,
[EXIT_REASON_MSR_READ] = handle_rdmsr,
[EXIT_REASON_MSR_WRITE] = handle_wrmsr,
[EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
[EXIT_REASON_HLT] = handle_halt,
};
static const int kvm_vmx_max_exit_handlers =
sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
/*
* The guest has exited. See if we can fix it or if we need userspace
* assistance.
*/
static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
exit_reason != EXIT_REASON_EXCEPTION_NMI )
printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
"exit reason is 0x%x\n", __FUNCTION__, exit_reason);
kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
if (exit_reason < kvm_vmx_max_exit_handlers
&& kvm_vmx_exit_handlers[exit_reason])
return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
else {
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
kvm_run->hw.hardware_exit_reason = exit_reason;
}
return 0;
}
static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u8 fail;
u16 fs_sel, gs_sel, ldt_sel;
int fs_gs_ldt_reload_needed;
again:
/*
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
* allow segment selectors with cpl > 0 or ti == 1.
*/
fs_sel = read_fs();
gs_sel = read_gs();
ldt_sel = read_ldt();
fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
if (!fs_gs_ldt_reload_needed) {
vmcs_write16(HOST_FS_SELECTOR, fs_sel);
vmcs_write16(HOST_GS_SELECTOR, gs_sel);
} else {
vmcs_write16(HOST_FS_SELECTOR, 0);
vmcs_write16(HOST_GS_SELECTOR, 0);
}
#ifdef CONFIG_X86_64
vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
#else
vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
#endif
if (vcpu->irq_summary &&
!(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
kvm_try_inject_irq(vcpu);
if (vcpu->guest_debug.enabled)
kvm_guest_debug_pre(vcpu);
fx_save(vcpu->host_fx_image);
fx_restore(vcpu->guest_fx_image);
save_msrs(vcpu->host_msrs, vcpu->nmsrs);
load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
asm (
/* Store host registers */
"pushf \n\t"
#ifdef CONFIG_X86_64
"push %%rax; push %%rbx; push %%rdx;"
"push %%rsi; push %%rdi; push %%rbp;"
"push %%r8; push %%r9; push %%r10; push %%r11;"
"push %%r12; push %%r13; push %%r14; push %%r15;"
"push %%rcx \n\t"
ASM_VMX_VMWRITE_RSP_RDX "\n\t"
#else
"pusha; push %%ecx \n\t"
ASM_VMX_VMWRITE_RSP_RDX "\n\t"
#endif
/* Check if vmlaunch of vmresume is needed */
"cmp $0, %1 \n\t"
/* Load guest registers. Don't clobber flags. */
#ifdef CONFIG_X86_64
"mov %c[cr2](%3), %%rax \n\t"
"mov %%rax, %%cr2 \n\t"
"mov %c[rax](%3), %%rax \n\t"
"mov %c[rbx](%3), %%rbx \n\t"
"mov %c[rdx](%3), %%rdx \n\t"
"mov %c[rsi](%3), %%rsi \n\t"
"mov %c[rdi](%3), %%rdi \n\t"
"mov %c[rbp](%3), %%rbp \n\t"
"mov %c[r8](%3), %%r8 \n\t"
"mov %c[r9](%3), %%r9 \n\t"
"mov %c[r10](%3), %%r10 \n\t"
"mov %c[r11](%3), %%r11 \n\t"
"mov %c[r12](%3), %%r12 \n\t"
"mov %c[r13](%3), %%r13 \n\t"
"mov %c[r14](%3), %%r14 \n\t"
"mov %c[r15](%3), %%r15 \n\t"
"mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
#else
"mov %c[cr2](%3), %%eax \n\t"
"mov %%eax, %%cr2 \n\t"
"mov %c[rax](%3), %%eax \n\t"
"mov %c[rbx](%3), %%ebx \n\t"
"mov %c[rdx](%3), %%edx \n\t"
"mov %c[rsi](%3), %%esi \n\t"
"mov %c[rdi](%3), %%edi \n\t"
"mov %c[rbp](%3), %%ebp \n\t"
"mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
#endif
/* Enter guest mode */
"jne launched \n\t"
ASM_VMX_VMLAUNCH "\n\t"
"jmp kvm_vmx_return \n\t"
"launched: " ASM_VMX_VMRESUME "\n\t"
".globl kvm_vmx_return \n\t"
"kvm_vmx_return: "
/* Save guest registers, load host registers, keep flags */
#ifdef CONFIG_X86_64
"xchg %3, 0(%%rsp) \n\t"
"mov %%rax, %c[rax](%3) \n\t"
"mov %%rbx, %c[rbx](%3) \n\t"
"pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
"mov %%rdx, %c[rdx](%3) \n\t"
"mov %%rsi, %c[rsi](%3) \n\t"
"mov %%rdi, %c[rdi](%3) \n\t"
"mov %%rbp, %c[rbp](%3) \n\t"
"mov %%r8, %c[r8](%3) \n\t"
"mov %%r9, %c[r9](%3) \n\t"
"mov %%r10, %c[r10](%3) \n\t"
"mov %%r11, %c[r11](%3) \n\t"
"mov %%r12, %c[r12](%3) \n\t"
"mov %%r13, %c[r13](%3) \n\t"
"mov %%r14, %c[r14](%3) \n\t"
"mov %%r15, %c[r15](%3) \n\t"
"mov %%cr2, %%rax \n\t"
"mov %%rax, %c[cr2](%3) \n\t"
"mov 0(%%rsp), %3 \n\t"
"pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
"pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
"pop %%rbp; pop %%rdi; pop %%rsi;"
"pop %%rdx; pop %%rbx; pop %%rax \n\t"
#else
"xchg %3, 0(%%esp) \n\t"
"mov %%eax, %c[rax](%3) \n\t"
"mov %%ebx, %c[rbx](%3) \n\t"
"pushl 0(%%esp); popl %c[rcx](%3) \n\t"
"mov %%edx, %c[rdx](%3) \n\t"
"mov %%esi, %c[rsi](%3) \n\t"
"mov %%edi, %c[rdi](%3) \n\t"
"mov %%ebp, %c[rbp](%3) \n\t"
"mov %%cr2, %%eax \n\t"
"mov %%eax, %c[cr2](%3) \n\t"
"mov 0(%%esp), %3 \n\t"
"pop %%ecx; popa \n\t"
#endif
"setbe %0 \n\t"
"popf \n\t"
: "=g" (fail)
: "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
"c"(vcpu),
[rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
[rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
#ifdef CONFIG_X86_64
[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
[r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
[r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
#endif
[cr2]"i"(offsetof(struct kvm_vcpu, cr2))
: "cc", "memory" );
++kvm_stat.exits;
save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
fx_save(vcpu->guest_fx_image);
fx_restore(vcpu->host_fx_image);
#ifndef CONFIG_X86_64
asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
#endif
kvm_run->exit_type = 0;
if (fail) {
kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
} else {
if (fs_gs_ldt_reload_needed) {
load_ldt(ldt_sel);
load_fs(fs_sel);
/*
* If we have to reload gs, we must take care to
* preserve our gs base.
*/
local_irq_disable();
load_gs(gs_sel);
#ifdef CONFIG_X86_64
wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
#endif
local_irq_enable();
reload_tss();
}
vcpu->launched = 1;
kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
if (kvm_handle_exit(kvm_run, vcpu)) {
/* Give scheduler a change to reschedule. */
if (signal_pending(current)) {
++kvm_stat.signal_exits;
return -EINTR;
}
kvm_resched(vcpu);
goto again;
}
}
return 0;
}
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
{
vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
}
static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
unsigned long addr,
u32 err_code)
{
u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
++kvm_stat.pf_guest;
if (is_page_fault(vect_info)) {
printk(KERN_DEBUG "inject_page_fault: "
"double fault 0x%lx @ 0x%lx\n",
addr, vmcs_readl(GUEST_RIP));
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
DF_VECTOR |
INTR_TYPE_EXCEPTION |
INTR_INFO_DELIEVER_CODE_MASK |
INTR_INFO_VALID_MASK);
return;
}
vcpu->cr2 = addr;
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
PF_VECTOR |
INTR_TYPE_EXCEPTION |
INTR_INFO_DELIEVER_CODE_MASK |
INTR_INFO_VALID_MASK);
}
static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
{
if (vcpu->vmcs) {
on_each_cpu(__vcpu_clear, vcpu, 0, 1);
free_vmcs(vcpu->vmcs);
vcpu->vmcs = NULL;
}
}
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
vmx_free_vmcs(vcpu);
}
static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
{
struct vmcs *vmcs;
vmcs = alloc_vmcs();
if (!vmcs)
return -ENOMEM;
vmcs_clear(vmcs);
vcpu->vmcs = vmcs;
vcpu->launched = 0;
return 0;
}
static struct kvm_arch_ops vmx_arch_ops = {
.cpu_has_kvm_support = cpu_has_kvm_support,
.disabled_by_bios = vmx_disabled_by_bios,
.hardware_setup = hardware_setup,
.hardware_unsetup = hardware_unsetup,
.hardware_enable = hardware_enable,
.hardware_disable = hardware_disable,
.vcpu_create = vmx_create_vcpu,
.vcpu_free = vmx_free_vcpu,
.vcpu_load = vmx_vcpu_load,
.vcpu_put = vmx_vcpu_put,
.set_guest_debug = set_guest_debug,
.get_msr = vmx_get_msr,
.set_msr = vmx_set_msr,
.get_segment_base = vmx_get_segment_base,
.get_segment = vmx_get_segment,
.set_segment = vmx_set_segment,
.is_long_mode = vmx_is_long_mode,
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
.set_cr0 = vmx_set_cr0,
.set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
.set_cr3 = vmx_set_cr3,
.set_cr4 = vmx_set_cr4,
#ifdef CONFIG_X86_64
.set_efer = vmx_set_efer,
#endif
.get_idt = vmx_get_idt,
.set_idt = vmx_set_idt,
.get_gdt = vmx_get_gdt,
.set_gdt = vmx_set_gdt,
.cache_regs = vcpu_load_rsp_rip,
.decache_regs = vcpu_put_rsp_rip,
.get_rflags = vmx_get_rflags,
.set_rflags = vmx_set_rflags,
.tlb_flush = vmx_flush_tlb,
.inject_page_fault = vmx_inject_page_fault,
.inject_gp = vmx_inject_gp,
.run = vmx_vcpu_run,
.skip_emulated_instruction = skip_emulated_instruction,
.vcpu_setup = vmx_vcpu_setup,
};
static int __init vmx_init(void)
{
return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
}
static void __exit vmx_exit(void)
{
kvm_exit_arch();
}
module_init(vmx_init)
module_exit(vmx_exit)