mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 10:03:24 +00:00
3499495205
2.6.12-rc1-pa6 use work queue in LED/LCD driver instead of tasklet. Main advantage is it allows use of msleep() in the led_LCD_driver to "atomically" perform two MMIO writes (CMD, then DATA). Lead to nice cleanup of the main led_work_func() and led_LCD_driver(). Kudos to David for being persistent. From: David Pye <dmp@davidmpye.dyndns.org> Signed-off-by: Grant Grundler <grundler@parisc-linux.org> Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
251 lines
5.7 KiB
C
251 lines
5.7 KiB
C
/*
|
|
* linux/arch/parisc/kernel/time.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
|
|
* Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
|
|
* Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
|
|
*
|
|
* 1994-07-02 Alan Modra
|
|
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
|
|
* 1998-12-20 Updated NTP code according to technical memorandum Jan '96
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/time.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/profile.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/param.h>
|
|
#include <asm/pdc.h>
|
|
#include <asm/led.h>
|
|
|
|
#include <linux/timex.h>
|
|
|
|
u64 jiffies_64 = INITIAL_JIFFIES;
|
|
|
|
EXPORT_SYMBOL(jiffies_64);
|
|
|
|
/* xtime and wall_jiffies keep wall-clock time */
|
|
extern unsigned long wall_jiffies;
|
|
|
|
static long clocktick; /* timer cycles per tick */
|
|
static long halftick;
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void smp_do_timer(struct pt_regs *regs);
|
|
#endif
|
|
|
|
irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
long now;
|
|
long next_tick;
|
|
int nticks;
|
|
int cpu = smp_processor_id();
|
|
|
|
profile_tick(CPU_PROFILING, regs);
|
|
|
|
now = mfctl(16);
|
|
/* initialize next_tick to time at last clocktick */
|
|
next_tick = cpu_data[cpu].it_value;
|
|
|
|
/* since time passes between the interrupt and the mfctl()
|
|
* above, it is never true that last_tick + clocktick == now. If we
|
|
* never miss a clocktick, we could set next_tick = last_tick + clocktick
|
|
* but maybe we'll miss ticks, hence the loop.
|
|
*
|
|
* Variables are *signed*.
|
|
*/
|
|
|
|
nticks = 0;
|
|
while((next_tick - now) < halftick) {
|
|
next_tick += clocktick;
|
|
nticks++;
|
|
}
|
|
mtctl(next_tick, 16);
|
|
cpu_data[cpu].it_value = next_tick;
|
|
|
|
while (nticks--) {
|
|
#ifdef CONFIG_SMP
|
|
smp_do_timer(regs);
|
|
#else
|
|
update_process_times(user_mode(regs));
|
|
#endif
|
|
if (cpu == 0) {
|
|
write_seqlock(&xtime_lock);
|
|
do_timer(regs);
|
|
write_sequnlock(&xtime_lock);
|
|
}
|
|
}
|
|
|
|
/* check soft power switch status */
|
|
if (cpu == 0 && !atomic_read(&power_tasklet.count))
|
|
tasklet_schedule(&power_tasklet);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
unsigned long profile_pc(struct pt_regs *regs)
|
|
{
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
if (regs->gr[0] & PSW_N)
|
|
pc -= 4;
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (in_lock_functions(pc))
|
|
pc = regs->gr[2];
|
|
#endif
|
|
|
|
return pc;
|
|
}
|
|
EXPORT_SYMBOL(profile_pc);
|
|
|
|
|
|
/*** converted from ia64 ***/
|
|
/*
|
|
* Return the number of micro-seconds that elapsed since the last
|
|
* update to wall time (aka xtime aka wall_jiffies). The xtime_lock
|
|
* must be at least read-locked when calling this routine.
|
|
*/
|
|
static inline unsigned long
|
|
gettimeoffset (void)
|
|
{
|
|
#ifndef CONFIG_SMP
|
|
/*
|
|
* FIXME: This won't work on smp because jiffies are updated by cpu 0.
|
|
* Once parisc-linux learns the cr16 difference between processors,
|
|
* this could be made to work.
|
|
*/
|
|
long last_tick;
|
|
long elapsed_cycles;
|
|
|
|
/* it_value is the intended time of the next tick */
|
|
last_tick = cpu_data[smp_processor_id()].it_value;
|
|
|
|
/* Subtract one tick and account for possible difference between
|
|
* when we expected the tick and when it actually arrived.
|
|
* (aka wall vs real)
|
|
*/
|
|
last_tick -= clocktick * (jiffies - wall_jiffies + 1);
|
|
elapsed_cycles = mfctl(16) - last_tick;
|
|
|
|
/* the precision of this math could be improved */
|
|
return elapsed_cycles / (PAGE0->mem_10msec / 10000);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
void
|
|
do_gettimeofday (struct timeval *tv)
|
|
{
|
|
unsigned long flags, seq, usec, sec;
|
|
|
|
do {
|
|
seq = read_seqbegin_irqsave(&xtime_lock, flags);
|
|
usec = gettimeoffset();
|
|
sec = xtime.tv_sec;
|
|
usec += (xtime.tv_nsec / 1000);
|
|
} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
|
|
|
|
while (usec >= 1000000) {
|
|
usec -= 1000000;
|
|
++sec;
|
|
}
|
|
|
|
tv->tv_sec = sec;
|
|
tv->tv_usec = usec;
|
|
}
|
|
|
|
EXPORT_SYMBOL(do_gettimeofday);
|
|
|
|
int
|
|
do_settimeofday (struct timespec *tv)
|
|
{
|
|
time_t wtm_sec, sec = tv->tv_sec;
|
|
long wtm_nsec, nsec = tv->tv_nsec;
|
|
|
|
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
|
|
return -EINVAL;
|
|
|
|
write_seqlock_irq(&xtime_lock);
|
|
{
|
|
/*
|
|
* This is revolting. We need to set "xtime"
|
|
* correctly. However, the value in this location is
|
|
* the value at the most recent update of wall time.
|
|
* Discover what correction gettimeofday would have
|
|
* done, and then undo it!
|
|
*/
|
|
nsec -= gettimeoffset() * 1000;
|
|
|
|
wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
|
|
wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
|
|
|
|
set_normalized_timespec(&xtime, sec, nsec);
|
|
set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
|
|
|
|
ntp_clear();
|
|
}
|
|
write_sequnlock_irq(&xtime_lock);
|
|
clock_was_set();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(do_settimeofday);
|
|
|
|
/*
|
|
* XXX: We can do better than this.
|
|
* Returns nanoseconds
|
|
*/
|
|
|
|
unsigned long long sched_clock(void)
|
|
{
|
|
return (unsigned long long)jiffies * (1000000000 / HZ);
|
|
}
|
|
|
|
|
|
void __init time_init(void)
|
|
{
|
|
unsigned long next_tick;
|
|
static struct pdc_tod tod_data;
|
|
|
|
clocktick = (100 * PAGE0->mem_10msec) / HZ;
|
|
halftick = clocktick / 2;
|
|
|
|
/* Setup clock interrupt timing */
|
|
|
|
next_tick = mfctl(16);
|
|
next_tick += clocktick;
|
|
cpu_data[smp_processor_id()].it_value = next_tick;
|
|
|
|
/* kick off Itimer (CR16) */
|
|
mtctl(next_tick, 16);
|
|
|
|
if(pdc_tod_read(&tod_data) == 0) {
|
|
write_seqlock_irq(&xtime_lock);
|
|
xtime.tv_sec = tod_data.tod_sec;
|
|
xtime.tv_nsec = tod_data.tod_usec * 1000;
|
|
set_normalized_timespec(&wall_to_monotonic,
|
|
-xtime.tv_sec, -xtime.tv_nsec);
|
|
write_sequnlock_irq(&xtime_lock);
|
|
} else {
|
|
printk(KERN_ERR "Error reading tod clock\n");
|
|
xtime.tv_sec = 0;
|
|
xtime.tv_nsec = 0;
|
|
}
|
|
}
|
|
|