linux/drivers/edac/amd64_edac.c
Doug Thompson 2da11654ea amd64_edac: add helper to dump relevant registers
Borislav:

- cleanup/fix comments
- fix function return value patterns
- cleanup dbg calls

Reviewed-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Signed-off-by: Doug Thompson <dougthompson@xmission.com>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2009-06-10 12:18:52 +02:00

874 lines
26 KiB
C

#include "amd64_edac.h"
static struct edac_pci_ctl_info *amd64_ctl_pci;
static int report_gart_errors;
module_param(report_gart_errors, int, 0644);
/*
* Set by command line parameter. If BIOS has enabled the ECC, this override is
* cleared to prevent re-enabling the hardware by this driver.
*/
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);
/* Lookup table for all possible MC control instances */
struct amd64_pvt;
static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
/*
* Memory scrubber control interface. For K8, memory scrubbing is handled by
* hardware and can involve L2 cache, dcache as well as the main memory. With
* F10, this is extended to L3 cache scrubbing on CPU models sporting that
* functionality.
*
* This causes the "units" for the scrubbing speed to vary from 64 byte blocks
* (dram) over to cache lines. This is nasty, so we will use bandwidth in
* bytes/sec for the setting.
*
* Currently, we only do dram scrubbing. If the scrubbing is done in software on
* other archs, we might not have access to the caches directly.
*/
/*
* scan the scrub rate mapping table for a close or matching bandwidth value to
* issue. If requested is too big, then use last maximum value found.
*/
static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
u32 min_scrubrate)
{
u32 scrubval;
int i;
/*
* map the configured rate (new_bw) to a value specific to the AMD64
* memory controller and apply to register. Search for the first
* bandwidth entry that is greater or equal than the setting requested
* and program that. If at last entry, turn off DRAM scrubbing.
*/
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
/*
* skip scrub rates which aren't recommended
* (see F10 BKDG, F3x58)
*/
if (scrubrates[i].scrubval < min_scrubrate)
continue;
if (scrubrates[i].bandwidth <= new_bw)
break;
/*
* if no suitable bandwidth found, turn off DRAM scrubbing
* entirely by falling back to the last element in the
* scrubrates array.
*/
}
scrubval = scrubrates[i].scrubval;
if (scrubval)
edac_printk(KERN_DEBUG, EDAC_MC,
"Setting scrub rate bandwidth: %u\n",
scrubrates[i].bandwidth);
else
edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
return 0;
}
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 min_scrubrate = 0x0;
switch (boot_cpu_data.x86) {
case 0xf:
min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
break;
case 0x10:
min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
break;
case 0x11:
min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
break;
default:
amd64_printk(KERN_ERR, "Unsupported family!\n");
break;
}
return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
min_scrubrate);
}
static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 scrubval = 0;
int status = -1, i, ret = 0;
ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
if (ret)
debugf0("Reading K8_SCRCTRL failed\n");
scrubval = scrubval & 0x001F;
edac_printk(KERN_DEBUG, EDAC_MC,
"pci-read, sdram scrub control value: %d \n", scrubval);
for (i = 0; ARRAY_SIZE(scrubrates); i++) {
if (scrubrates[i].scrubval == scrubval) {
*bw = scrubrates[i].bandwidth;
status = 0;
break;
}
}
return status;
}
/* Map from a CSROW entry to the mask entry that operates on it */
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
{
return csrow >> (pvt->num_dcsm >> 3);
}
/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
{
if (dct == 0)
return pvt->dcsb0[csrow];
else
return pvt->dcsb1[csrow];
}
/*
* Return the 'mask' address the i'th CS entry. This function is needed because
* there number of DCSM registers on Rev E and prior vs Rev F and later is
* different.
*/
static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
{
if (dct == 0)
return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
else
return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
}
/*
* In *base and *limit, pass back the full 40-bit base and limit physical
* addresses for the node given by node_id. This information is obtained from
* DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
* base and limit addresses are of type SysAddr, as defined at the start of
* section 3.4.4 (p. 70). They are the lowest and highest physical addresses
* in the address range they represent.
*/
static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
u64 *base, u64 *limit)
{
*base = pvt->dram_base[node_id];
*limit = pvt->dram_limit[node_id];
}
/*
* Return 1 if the SysAddr given by sys_addr matches the base/limit associated
* with node_id
*/
static int amd64_base_limit_match(struct amd64_pvt *pvt,
u64 sys_addr, int node_id)
{
u64 base, limit, addr;
amd64_get_base_and_limit(pvt, node_id, &base, &limit);
/* The K8 treats this as a 40-bit value. However, bits 63-40 will be
* all ones if the most significant implemented address bit is 1.
* Here we discard bits 63-40. See section 3.4.2 of AMD publication
* 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
* Application Programming.
*/
addr = sys_addr & 0x000000ffffffffffull;
return (addr >= base) && (addr <= limit);
}
/*
* Attempt to map a SysAddr to a node. On success, return a pointer to the
* mem_ctl_info structure for the node that the SysAddr maps to.
*
* On failure, return NULL.
*/
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
u64 sys_addr)
{
struct amd64_pvt *pvt;
int node_id;
u32 intlv_en, bits;
/*
* Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
* 3.4.4.2) registers to map the SysAddr to a node ID.
*/
pvt = mci->pvt_info;
/*
* The value of this field should be the same for all DRAM Base
* registers. Therefore we arbitrarily choose to read it from the
* register for node 0.
*/
intlv_en = pvt->dram_IntlvEn[0];
if (intlv_en == 0) {
for (node_id = 0; ; ) {
if (amd64_base_limit_match(pvt, sys_addr, node_id))
break;
if (++node_id >= DRAM_REG_COUNT)
goto err_no_match;
}
goto found;
}
if (unlikely((intlv_en != (0x01 << 8)) &&
(intlv_en != (0x03 << 8)) &&
(intlv_en != (0x07 << 8)))) {
amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
"IntlvEn field of DRAM Base Register for node 0: "
"This probably indicates a BIOS bug.\n", intlv_en);
return NULL;
}
bits = (((u32) sys_addr) >> 12) & intlv_en;
for (node_id = 0; ; ) {
if ((pvt->dram_limit[node_id] & intlv_en) == bits)
break; /* intlv_sel field matches */
if (++node_id >= DRAM_REG_COUNT)
goto err_no_match;
}
/* sanity test for sys_addr */
if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
amd64_printk(KERN_WARNING,
"%s(): sys_addr 0x%lx falls outside base/limit "
"address range for node %d with node interleaving "
"enabled.\n", __func__, (unsigned long)sys_addr,
node_id);
return NULL;
}
found:
return edac_mc_find(node_id);
err_no_match:
debugf2("sys_addr 0x%lx doesn't match any node\n",
(unsigned long)sys_addr);
return NULL;
}
/*
* Extract the DRAM CS base address from selected csrow register.
*/
static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
{
return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
pvt->dcs_shift;
}
/*
* Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
*/
static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
{
u64 dcsm_bits, other_bits;
u64 mask;
/* Extract bits from DRAM CS Mask. */
dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
other_bits = pvt->dcsm_mask;
other_bits = ~(other_bits << pvt->dcs_shift);
/*
* The extracted bits from DCSM belong in the spaces represented by
* the cleared bits in other_bits.
*/
mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
return mask;
}
/*
* @input_addr is an InputAddr associated with the node given by mci. Return the
* csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
*/
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
struct amd64_pvt *pvt;
int csrow;
u64 base, mask;
pvt = mci->pvt_info;
/*
* Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
* base/mask register pair, test the condition shown near the start of
* section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
*/
for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
/* This DRAM chip select is disabled on this node */
if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
continue;
base = base_from_dct_base(pvt, csrow);
mask = ~mask_from_dct_mask(pvt, csrow);
if ((input_addr & mask) == (base & mask)) {
debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
(unsigned long)input_addr, csrow,
pvt->mc_node_id);
return csrow;
}
}
debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
(unsigned long)input_addr, pvt->mc_node_id);
return -1;
}
/*
* Return the base value defined by the DRAM Base register for the node
* represented by mci. This function returns the full 40-bit value despite the
* fact that the register only stores bits 39-24 of the value. See section
* 3.4.4.1 (BKDG #26094, K8, revA-E)
*/
static inline u64 get_dram_base(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
return pvt->dram_base[pvt->mc_node_id];
}
/*
* Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
* for the node represented by mci. Info is passed back in *hole_base,
* *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
* info is invalid. Info may be invalid for either of the following reasons:
*
* - The revision of the node is not E or greater. In this case, the DRAM Hole
* Address Register does not exist.
*
* - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
* indicating that its contents are not valid.
*
* The values passed back in *hole_base, *hole_offset, and *hole_size are
* complete 32-bit values despite the fact that the bitfields in the DHAR
* only represent bits 31-24 of the base and offset values.
*/
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
u64 *hole_offset, u64 *hole_size)
{
struct amd64_pvt *pvt = mci->pvt_info;
u64 base;
/* only revE and later have the DRAM Hole Address Register */
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
debugf1(" revision %d for node %d does not support DHAR\n",
pvt->ext_model, pvt->mc_node_id);
return 1;
}
/* only valid for Fam10h */
if (boot_cpu_data.x86 == 0x10 &&
(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
return 1;
}
if ((pvt->dhar & DHAR_VALID) == 0) {
debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
pvt->mc_node_id);
return 1;
}
/* This node has Memory Hoisting */
/* +------------------+--------------------+--------------------+-----
* | memory | DRAM hole | relocated |
* | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
* | | | DRAM hole |
* | | | [0x100000000, |
* | | | (0x100000000+ |
* | | | (0xffffffff-x))] |
* +------------------+--------------------+--------------------+-----
*
* Above is a diagram of physical memory showing the DRAM hole and the
* relocated addresses from the DRAM hole. As shown, the DRAM hole
* starts at address x (the base address) and extends through address
* 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
* addresses in the hole so that they start at 0x100000000.
*/
base = dhar_base(pvt->dhar);
*hole_base = base;
*hole_size = (0x1ull << 32) - base;
if (boot_cpu_data.x86 > 0xf)
*hole_offset = f10_dhar_offset(pvt->dhar);
else
*hole_offset = k8_dhar_offset(pvt->dhar);
debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
pvt->mc_node_id, (unsigned long)*hole_base,
(unsigned long)*hole_offset, (unsigned long)*hole_size);
return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
/*
* Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
* assumed that sys_addr maps to the node given by mci.
*
* The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
* 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
* SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
* then it is also involved in translating a SysAddr to a DramAddr. Sections
* 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
* These parts of the documentation are unclear. I interpret them as follows:
*
* When node n receives a SysAddr, it processes the SysAddr as follows:
*
* 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
* Limit registers for node n. If the SysAddr is not within the range
* specified by the base and limit values, then node n ignores the Sysaddr
* (since it does not map to node n). Otherwise continue to step 2 below.
*
* 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
* disabled so skip to step 3 below. Otherwise see if the SysAddr is within
* the range of relocated addresses (starting at 0x100000000) from the DRAM
* hole. If not, skip to step 3 below. Else get the value of the
* DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
* offset defined by this value from the SysAddr.
*
* 3. Obtain the base address for node n from the DRAMBase field of the DRAM
* Base register for node n. To obtain the DramAddr, subtract the base
* address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
*/
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
int ret = 0;
dram_base = get_dram_base(mci);
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
&hole_size);
if (!ret) {
if ((sys_addr >= (1ull << 32)) &&
(sys_addr < ((1ull << 32) + hole_size))) {
/* use DHAR to translate SysAddr to DramAddr */
dram_addr = sys_addr - hole_offset;
debugf2("using DHAR to translate SysAddr 0x%lx to "
"DramAddr 0x%lx\n",
(unsigned long)sys_addr,
(unsigned long)dram_addr);
return dram_addr;
}
}
/*
* Translate the SysAddr to a DramAddr as shown near the start of
* section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
* only deals with 40-bit values. Therefore we discard bits 63-40 of
* sys_addr below. If bit 39 of sys_addr is 1 then the bits we
* discard are all 1s. Otherwise the bits we discard are all 0s. See
* section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
* Programmer's Manual Volume 1 Application Programming.
*/
dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
"DramAddr 0x%lx\n", (unsigned long)sys_addr,
(unsigned long)dram_addr);
return dram_addr;
}
/*
* @intlv_en is the value of the IntlvEn field from a DRAM Base register
* (section 3.4.4.1). Return the number of bits from a SysAddr that are used
* for node interleaving.
*/
static int num_node_interleave_bits(unsigned intlv_en)
{
static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
int n;
BUG_ON(intlv_en > 7);
n = intlv_shift_table[intlv_en];
return n;
}
/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
struct amd64_pvt *pvt;
int intlv_shift;
u64 input_addr;
pvt = mci->pvt_info;
/*
* See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
* concerning translating a DramAddr to an InputAddr.
*/
intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
(dram_addr & 0xfff);
debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
intlv_shift, (unsigned long)dram_addr,
(unsigned long)input_addr);
return input_addr;
}
/*
* Translate the SysAddr represented by @sys_addr to an InputAddr. It is
* assumed that @sys_addr maps to the node given by mci.
*/
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
u64 input_addr;
input_addr =
dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
(unsigned long)sys_addr, (unsigned long)input_addr);
return input_addr;
}
/*
* @input_addr is an InputAddr associated with the node represented by mci.
* Translate @input_addr to a DramAddr and return the result.
*/
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
struct amd64_pvt *pvt;
int node_id, intlv_shift;
u64 bits, dram_addr;
u32 intlv_sel;
/*
* Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
* shows how to translate a DramAddr to an InputAddr. Here we reverse
* this procedure. When translating from a DramAddr to an InputAddr, the
* bits used for node interleaving are discarded. Here we recover these
* bits from the IntlvSel field of the DRAM Limit register (section
* 3.4.4.2) for the node that input_addr is associated with.
*/
pvt = mci->pvt_info;
node_id = pvt->mc_node_id;
BUG_ON((node_id < 0) || (node_id > 7));
intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
if (intlv_shift == 0) {
debugf1(" InputAddr 0x%lx translates to DramAddr of "
"same value\n", (unsigned long)input_addr);
return input_addr;
}
bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
(input_addr & 0xfff);
intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
dram_addr = bits + (intlv_sel << 12);
debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
"(%d node interleave bits)\n", (unsigned long)input_addr,
(unsigned long)dram_addr, intlv_shift);
return dram_addr;
}
/*
* @dram_addr is a DramAddr that maps to the node represented by mci. Convert
* @dram_addr to a SysAddr.
*/
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
struct amd64_pvt *pvt = mci->pvt_info;
u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
int ret = 0;
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
&hole_size);
if (!ret) {
if ((dram_addr >= hole_base) &&
(dram_addr < (hole_base + hole_size))) {
sys_addr = dram_addr + hole_offset;
debugf1("using DHAR to translate DramAddr 0x%lx to "
"SysAddr 0x%lx\n", (unsigned long)dram_addr,
(unsigned long)sys_addr);
return sys_addr;
}
}
amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
sys_addr = dram_addr + base;
/*
* The sys_addr we have computed up to this point is a 40-bit value
* because the k8 deals with 40-bit values. However, the value we are
* supposed to return is a full 64-bit physical address. The AMD
* x86-64 architecture specifies that the most significant implemented
* address bit through bit 63 of a physical address must be either all
* 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
* 64-bit value below. See section 3.4.2 of AMD publication 24592:
* AMD x86-64 Architecture Programmer's Manual Volume 1 Application
* Programming.
*/
sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
pvt->mc_node_id, (unsigned long)dram_addr,
(unsigned long)sys_addr);
return sys_addr;
}
/*
* @input_addr is an InputAddr associated with the node given by mci. Translate
* @input_addr to a SysAddr.
*/
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
u64 input_addr)
{
return dram_addr_to_sys_addr(mci,
input_addr_to_dram_addr(mci, input_addr));
}
/*
* Find the minimum and maximum InputAddr values that map to the given @csrow.
* Pass back these values in *input_addr_min and *input_addr_max.
*/
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
u64 *input_addr_min, u64 *input_addr_max)
{
struct amd64_pvt *pvt;
u64 base, mask;
pvt = mci->pvt_info;
BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
base = base_from_dct_base(pvt, csrow);
mask = mask_from_dct_mask(pvt, csrow);
*input_addr_min = base & ~mask;
*input_addr_max = base | mask | pvt->dcs_mask_notused;
}
/*
* Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
* Address High (section 3.6.4.6) register values and return the result. Address
* is located in the info structure (nbeah and nbeal), the encoding is device
* specific.
*/
static u64 extract_error_address(struct mem_ctl_info *mci,
struct amd64_error_info_regs *info)
{
struct amd64_pvt *pvt = mci->pvt_info;
return pvt->ops->get_error_address(mci, info);
}
/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
u32 *page, u32 *offset)
{
*page = (u32) (error_address >> PAGE_SHIFT);
*offset = ((u32) error_address) & ~PAGE_MASK;
}
/*
* @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
* Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
* of a node that detected an ECC memory error. mci represents the node that
* the error address maps to (possibly different from the node that detected
* the error). Return the number of the csrow that sys_addr maps to, or -1 on
* error.
*/
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
int csrow;
csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
if (csrow == -1)
amd64_mc_printk(mci, KERN_ERR,
"Failed to translate InputAddr to csrow for "
"address 0x%lx\n", (unsigned long)sys_addr);
return csrow;
}
static int get_channel_from_ecc_syndrome(unsigned short syndrome);
static void amd64_cpu_display_info(struct amd64_pvt *pvt)
{
if (boot_cpu_data.x86 == 0x11)
edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
else if (boot_cpu_data.x86 == 0x10)
edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
else if (boot_cpu_data.x86 == 0xf)
edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
(pvt->ext_model >= OPTERON_CPU_REV_F) ?
"Rev F or later" : "Rev E or earlier");
else
/* we'll hardly ever ever get here */
edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
}
/*
* Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
* are ECC capable.
*/
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
int bit;
enum dev_type edac_cap = EDAC_NONE;
bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
? 19
: 17;
if (pvt->dclr0 >> BIT(bit))
edac_cap = EDAC_FLAG_SECDED;
return edac_cap;
}
static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
int ganged);
/* Display and decode various NB registers for debug purposes. */
static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
{
int ganged;
debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
pvt->nbcap,
(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
(pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
(pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
(pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
pvt->dclr0,
(pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
(pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
(pvt->dclr0 & BIT(11)) ? "128b" : "64b");
debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
(pvt->dclr0 & BIT(12)) ? "Y" : "N",
(pvt->dclr0 & BIT(13)) ? "Y" : "N",
(pvt->dclr0 & BIT(14)) ? "Y" : "N",
(pvt->dclr0 & BIT(15)) ? "Y" : "N",
(pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
if (boot_cpu_data.x86 == 0xf) {
debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
pvt->dhar, dhar_base(pvt->dhar),
k8_dhar_offset(pvt->dhar));
debugf1(" DramHoleValid=%s\n",
(pvt->dhar & DHAR_VALID) ? "True" : "False");
debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
/* everything below this point is Fam10h and above */
return;
} else {
debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
pvt->dhar, dhar_base(pvt->dhar),
f10_dhar_offset(pvt->dhar));
debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
"True" : "False",
(pvt->dhar & DHAR_VALID) ?
"True" : "False");
}
/* Only if NOT ganged does dcl1 have valid info */
if (!dct_ganging_enabled(pvt)) {
debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
"Width=%s\n", pvt->dclr1,
(pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
(pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
(pvt->dclr1 & BIT(11)) ? "128b" : "64b");
debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
"DIMM Type=%s\n",
(pvt->dclr1 & BIT(12)) ? "Y" : "N",
(pvt->dclr1 & BIT(13)) ? "Y" : "N",
(pvt->dclr1 & BIT(14)) ? "Y" : "N",
(pvt->dclr1 & BIT(15)) ? "Y" : "N",
(pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
}
/*
* Determine if ganged and then dump memory sizes for first controller,
* and if NOT ganged dump info for 2nd controller.
*/
ganged = dct_ganging_enabled(pvt);
f10_debug_display_dimm_sizes(0, pvt, ganged);
if (!ganged)
f10_debug_display_dimm_sizes(1, pvt, ganged);
}
/* Read in both of DBAM registers */
static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
{
int err = 0;
unsigned int reg;
reg = DBAM0;
err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
if (err)
goto err_reg;
if (boot_cpu_data.x86 >= 0x10) {
reg = DBAM1;
err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
if (err)
goto err_reg;
}
err_reg:
debugf0("Error reading F2x%03x.\n", reg);
}