mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-11 11:56:48 +00:00
21e726c4a3
The reserved bits (128~511) in the xsave header must be zero according to X86 SDM. Clear the bits in this patch. Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Link: http://lkml.kernel.org/r/1401387164-43416-12-git-send-email-fenghua.yu@intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
641 lines
15 KiB
C
641 lines
15 KiB
C
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/regset.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/sigcontext.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/math_emu.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/i387.h>
|
|
#include <asm/fpu-internal.h>
|
|
#include <asm/user.h>
|
|
|
|
/*
|
|
* Were we in an interrupt that interrupted kernel mode?
|
|
*
|
|
* On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
|
|
* pair does nothing at all: the thread must not have fpu (so
|
|
* that we don't try to save the FPU state), and TS must
|
|
* be set (so that the clts/stts pair does nothing that is
|
|
* visible in the interrupted kernel thread).
|
|
*
|
|
* Except for the eagerfpu case when we return 1 unless we've already
|
|
* been eager and saved the state in kernel_fpu_begin().
|
|
*/
|
|
static inline bool interrupted_kernel_fpu_idle(void)
|
|
{
|
|
if (use_eager_fpu())
|
|
return __thread_has_fpu(current);
|
|
|
|
return !__thread_has_fpu(current) &&
|
|
(read_cr0() & X86_CR0_TS);
|
|
}
|
|
|
|
/*
|
|
* Were we in user mode (or vm86 mode) when we were
|
|
* interrupted?
|
|
*
|
|
* Doing kernel_fpu_begin/end() is ok if we are running
|
|
* in an interrupt context from user mode - we'll just
|
|
* save the FPU state as required.
|
|
*/
|
|
static inline bool interrupted_user_mode(void)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
return regs && user_mode_vm(regs);
|
|
}
|
|
|
|
/*
|
|
* Can we use the FPU in kernel mode with the
|
|
* whole "kernel_fpu_begin/end()" sequence?
|
|
*
|
|
* It's always ok in process context (ie "not interrupt")
|
|
* but it is sometimes ok even from an irq.
|
|
*/
|
|
bool irq_fpu_usable(void)
|
|
{
|
|
return !in_interrupt() ||
|
|
interrupted_user_mode() ||
|
|
interrupted_kernel_fpu_idle();
|
|
}
|
|
EXPORT_SYMBOL(irq_fpu_usable);
|
|
|
|
void __kernel_fpu_begin(void)
|
|
{
|
|
struct task_struct *me = current;
|
|
|
|
if (__thread_has_fpu(me)) {
|
|
__thread_clear_has_fpu(me);
|
|
__save_init_fpu(me);
|
|
/* We do 'stts()' in __kernel_fpu_end() */
|
|
} else if (!use_eager_fpu()) {
|
|
this_cpu_write(fpu_owner_task, NULL);
|
|
clts();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__kernel_fpu_begin);
|
|
|
|
void __kernel_fpu_end(void)
|
|
{
|
|
if (use_eager_fpu()) {
|
|
/*
|
|
* For eager fpu, most the time, tsk_used_math() is true.
|
|
* Restore the user math as we are done with the kernel usage.
|
|
* At few instances during thread exit, signal handling etc,
|
|
* tsk_used_math() is false. Those few places will take proper
|
|
* actions, so we don't need to restore the math here.
|
|
*/
|
|
if (likely(tsk_used_math(current)))
|
|
math_state_restore();
|
|
} else {
|
|
stts();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__kernel_fpu_end);
|
|
|
|
void unlazy_fpu(struct task_struct *tsk)
|
|
{
|
|
preempt_disable();
|
|
if (__thread_has_fpu(tsk)) {
|
|
__save_init_fpu(tsk);
|
|
__thread_fpu_end(tsk);
|
|
} else
|
|
tsk->thread.fpu_counter = 0;
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL(unlazy_fpu);
|
|
|
|
unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
|
|
unsigned int xstate_size;
|
|
EXPORT_SYMBOL_GPL(xstate_size);
|
|
static struct i387_fxsave_struct fx_scratch;
|
|
|
|
static void mxcsr_feature_mask_init(void)
|
|
{
|
|
unsigned long mask = 0;
|
|
|
|
if (cpu_has_fxsr) {
|
|
memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
|
|
asm volatile("fxsave %0" : "+m" (fx_scratch));
|
|
mask = fx_scratch.mxcsr_mask;
|
|
if (mask == 0)
|
|
mask = 0x0000ffbf;
|
|
}
|
|
mxcsr_feature_mask &= mask;
|
|
}
|
|
|
|
static void init_thread_xstate(void)
|
|
{
|
|
/*
|
|
* Note that xstate_size might be overwriten later during
|
|
* xsave_init().
|
|
*/
|
|
|
|
if (!cpu_has_fpu) {
|
|
/*
|
|
* Disable xsave as we do not support it if i387
|
|
* emulation is enabled.
|
|
*/
|
|
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
|
|
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
|
|
xstate_size = sizeof(struct i387_soft_struct);
|
|
return;
|
|
}
|
|
|
|
if (cpu_has_fxsr)
|
|
xstate_size = sizeof(struct i387_fxsave_struct);
|
|
else
|
|
xstate_size = sizeof(struct i387_fsave_struct);
|
|
}
|
|
|
|
/*
|
|
* Called at bootup to set up the initial FPU state that is later cloned
|
|
* into all processes.
|
|
*/
|
|
|
|
void fpu_init(void)
|
|
{
|
|
unsigned long cr0;
|
|
unsigned long cr4_mask = 0;
|
|
|
|
#ifndef CONFIG_MATH_EMULATION
|
|
if (!cpu_has_fpu) {
|
|
pr_emerg("No FPU found and no math emulation present\n");
|
|
pr_emerg("Giving up\n");
|
|
for (;;)
|
|
asm volatile("hlt");
|
|
}
|
|
#endif
|
|
if (cpu_has_fxsr)
|
|
cr4_mask |= X86_CR4_OSFXSR;
|
|
if (cpu_has_xmm)
|
|
cr4_mask |= X86_CR4_OSXMMEXCPT;
|
|
if (cr4_mask)
|
|
set_in_cr4(cr4_mask);
|
|
|
|
cr0 = read_cr0();
|
|
cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
|
|
if (!cpu_has_fpu)
|
|
cr0 |= X86_CR0_EM;
|
|
write_cr0(cr0);
|
|
|
|
/*
|
|
* init_thread_xstate is only called once to avoid overriding
|
|
* xstate_size during boot time or during CPU hotplug.
|
|
*/
|
|
if (xstate_size == 0)
|
|
init_thread_xstate();
|
|
|
|
mxcsr_feature_mask_init();
|
|
xsave_init();
|
|
eager_fpu_init();
|
|
}
|
|
|
|
void fpu_finit(struct fpu *fpu)
|
|
{
|
|
if (!cpu_has_fpu) {
|
|
finit_soft_fpu(&fpu->state->soft);
|
|
return;
|
|
}
|
|
|
|
if (cpu_has_fxsr) {
|
|
fx_finit(&fpu->state->fxsave);
|
|
} else {
|
|
struct i387_fsave_struct *fp = &fpu->state->fsave;
|
|
memset(fp, 0, xstate_size);
|
|
fp->cwd = 0xffff037fu;
|
|
fp->swd = 0xffff0000u;
|
|
fp->twd = 0xffffffffu;
|
|
fp->fos = 0xffff0000u;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu_finit);
|
|
|
|
/*
|
|
* The _current_ task is using the FPU for the first time
|
|
* so initialize it and set the mxcsr to its default
|
|
* value at reset if we support XMM instructions and then
|
|
* remember the current task has used the FPU.
|
|
*/
|
|
int init_fpu(struct task_struct *tsk)
|
|
{
|
|
int ret;
|
|
|
|
if (tsk_used_math(tsk)) {
|
|
if (cpu_has_fpu && tsk == current)
|
|
unlazy_fpu(tsk);
|
|
tsk->thread.fpu.last_cpu = ~0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Memory allocation at the first usage of the FPU and other state.
|
|
*/
|
|
ret = fpu_alloc(&tsk->thread.fpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fpu_finit(&tsk->thread.fpu);
|
|
|
|
set_stopped_child_used_math(tsk);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(init_fpu);
|
|
|
|
/*
|
|
* The xstateregs_active() routine is the same as the fpregs_active() routine,
|
|
* as the "regset->n" for the xstate regset will be updated based on the feature
|
|
* capabilites supported by the xsave.
|
|
*/
|
|
int fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
return tsk_used_math(target) ? regset->n : 0;
|
|
}
|
|
|
|
int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
|
|
}
|
|
|
|
int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
int ret;
|
|
|
|
if (!cpu_has_fxsr)
|
|
return -ENODEV;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->fxsave, 0, -1);
|
|
}
|
|
|
|
int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
int ret;
|
|
|
|
if (!cpu_has_fxsr)
|
|
return -ENODEV;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->fxsave, 0, -1);
|
|
|
|
/*
|
|
* mxcsr reserved bits must be masked to zero for security reasons.
|
|
*/
|
|
target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
|
|
|
|
/*
|
|
* update the header bits in the xsave header, indicating the
|
|
* presence of FP and SSE state.
|
|
*/
|
|
if (cpu_has_xsave)
|
|
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
int ret;
|
|
|
|
if (!cpu_has_xsave)
|
|
return -ENODEV;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Copy the 48bytes defined by the software first into the xstate
|
|
* memory layout in the thread struct, so that we can copy the entire
|
|
* xstateregs to the user using one user_regset_copyout().
|
|
*/
|
|
memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
|
|
xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
|
|
|
|
/*
|
|
* Copy the xstate memory layout.
|
|
*/
|
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->xsave, 0, -1);
|
|
return ret;
|
|
}
|
|
|
|
int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
int ret;
|
|
struct xsave_hdr_struct *xsave_hdr;
|
|
|
|
if (!cpu_has_xsave)
|
|
return -ENODEV;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->xsave, 0, -1);
|
|
|
|
/*
|
|
* mxcsr reserved bits must be masked to zero for security reasons.
|
|
*/
|
|
target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
|
|
|
|
xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
|
|
|
|
xsave_hdr->xstate_bv &= pcntxt_mask;
|
|
/*
|
|
* These bits must be zero.
|
|
*/
|
|
memset(xsave_hdr->reserved, 0, 48);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
|
|
|
|
/*
|
|
* FPU tag word conversions.
|
|
*/
|
|
|
|
static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
|
|
{
|
|
unsigned int tmp; /* to avoid 16 bit prefixes in the code */
|
|
|
|
/* Transform each pair of bits into 01 (valid) or 00 (empty) */
|
|
tmp = ~twd;
|
|
tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
|
|
/* and move the valid bits to the lower byte. */
|
|
tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
|
|
tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
|
|
tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
|
|
|
|
return tmp;
|
|
}
|
|
|
|
#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
|
|
#define FP_EXP_TAG_VALID 0
|
|
#define FP_EXP_TAG_ZERO 1
|
|
#define FP_EXP_TAG_SPECIAL 2
|
|
#define FP_EXP_TAG_EMPTY 3
|
|
|
|
static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
|
|
{
|
|
struct _fpxreg *st;
|
|
u32 tos = (fxsave->swd >> 11) & 7;
|
|
u32 twd = (unsigned long) fxsave->twd;
|
|
u32 tag;
|
|
u32 ret = 0xffff0000u;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++, twd >>= 1) {
|
|
if (twd & 0x1) {
|
|
st = FPREG_ADDR(fxsave, (i - tos) & 7);
|
|
|
|
switch (st->exponent & 0x7fff) {
|
|
case 0x7fff:
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
case 0x0000:
|
|
if (!st->significand[0] &&
|
|
!st->significand[1] &&
|
|
!st->significand[2] &&
|
|
!st->significand[3])
|
|
tag = FP_EXP_TAG_ZERO;
|
|
else
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
default:
|
|
if (st->significand[3] & 0x8000)
|
|
tag = FP_EXP_TAG_VALID;
|
|
else
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
}
|
|
} else {
|
|
tag = FP_EXP_TAG_EMPTY;
|
|
}
|
|
ret |= tag << (2 * i);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* FXSR floating point environment conversions.
|
|
*/
|
|
|
|
void
|
|
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
|
|
{
|
|
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
|
|
struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
|
|
struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
|
|
int i;
|
|
|
|
env->cwd = fxsave->cwd | 0xffff0000u;
|
|
env->swd = fxsave->swd | 0xffff0000u;
|
|
env->twd = twd_fxsr_to_i387(fxsave);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
env->fip = fxsave->rip;
|
|
env->foo = fxsave->rdp;
|
|
/*
|
|
* should be actually ds/cs at fpu exception time, but
|
|
* that information is not available in 64bit mode.
|
|
*/
|
|
env->fcs = task_pt_regs(tsk)->cs;
|
|
if (tsk == current) {
|
|
savesegment(ds, env->fos);
|
|
} else {
|
|
env->fos = tsk->thread.ds;
|
|
}
|
|
env->fos |= 0xffff0000;
|
|
#else
|
|
env->fip = fxsave->fip;
|
|
env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
|
|
env->foo = fxsave->foo;
|
|
env->fos = fxsave->fos;
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
memcpy(&to[i], &from[i], sizeof(to[0]));
|
|
}
|
|
|
|
void convert_to_fxsr(struct task_struct *tsk,
|
|
const struct user_i387_ia32_struct *env)
|
|
|
|
{
|
|
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
|
|
struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
|
|
struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
|
|
int i;
|
|
|
|
fxsave->cwd = env->cwd;
|
|
fxsave->swd = env->swd;
|
|
fxsave->twd = twd_i387_to_fxsr(env->twd);
|
|
fxsave->fop = (u16) ((u32) env->fcs >> 16);
|
|
#ifdef CONFIG_X86_64
|
|
fxsave->rip = env->fip;
|
|
fxsave->rdp = env->foo;
|
|
/* cs and ds ignored */
|
|
#else
|
|
fxsave->fip = env->fip;
|
|
fxsave->fcs = (env->fcs & 0xffff);
|
|
fxsave->foo = env->foo;
|
|
fxsave->fos = env->fos;
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
memcpy(&to[i], &from[i], sizeof(from[0]));
|
|
}
|
|
|
|
int fpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
struct user_i387_ia32_struct env;
|
|
int ret;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
|
|
|
|
if (!cpu_has_fxsr)
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->fsave, 0,
|
|
-1);
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
if (kbuf && pos == 0 && count == sizeof(env)) {
|
|
convert_from_fxsr(kbuf, target);
|
|
return 0;
|
|
}
|
|
|
|
convert_from_fxsr(&env, target);
|
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
|
}
|
|
|
|
int fpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct user_i387_ia32_struct env;
|
|
int ret;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
|
|
|
|
if (!cpu_has_fxsr)
|
|
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->fsave, 0,
|
|
-1);
|
|
|
|
if (pos > 0 || count < sizeof(env))
|
|
convert_from_fxsr(&env, target);
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
|
if (!ret)
|
|
convert_to_fxsr(target, &env);
|
|
|
|
/*
|
|
* update the header bit in the xsave header, indicating the
|
|
* presence of FP.
|
|
*/
|
|
if (cpu_has_xsave)
|
|
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* FPU state for core dumps.
|
|
* This is only used for a.out dumps now.
|
|
* It is declared generically using elf_fpregset_t (which is
|
|
* struct user_i387_struct) but is in fact only used for 32-bit
|
|
* dumps, so on 64-bit it is really struct user_i387_ia32_struct.
|
|
*/
|
|
int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int fpvalid;
|
|
|
|
fpvalid = !!used_math();
|
|
if (fpvalid)
|
|
fpvalid = !fpregs_get(tsk, NULL,
|
|
0, sizeof(struct user_i387_ia32_struct),
|
|
fpu, NULL);
|
|
|
|
return fpvalid;
|
|
}
|
|
EXPORT_SYMBOL(dump_fpu);
|
|
|
|
#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
|
|
|
|
static int __init no_387(char *s)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_FPU);
|
|
return 1;
|
|
}
|
|
|
|
__setup("no387", no_387);
|
|
|
|
void fpu_detect(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long cr0;
|
|
u16 fsw, fcw;
|
|
|
|
fsw = fcw = 0xffff;
|
|
|
|
cr0 = read_cr0();
|
|
cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
|
|
write_cr0(cr0);
|
|
|
|
asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
|
|
: "+m" (fsw), "+m" (fcw));
|
|
|
|
if (fsw == 0 && (fcw & 0x103f) == 0x003f)
|
|
set_cpu_cap(c, X86_FEATURE_FPU);
|
|
else
|
|
clear_cpu_cap(c, X86_FEATURE_FPU);
|
|
|
|
/* The final cr0 value is set in fpu_init() */
|
|
}
|