mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-15 06:00:41 +00:00
2b60311dd1
Sometimes, after running generic/270 of fstest, fsck reports summary info and actual position of block address in direct node becoming inconsistent. The root cause is race in between __f2fs_replace_block and change_curseg as below: Thread A Thread B - __clone_blkaddrs - f2fs_replace_block - __f2fs_replace_block - segnoA = GET_SEGNO(sbi, blkaddrA); - type = se->type:=CURSEG_HOT_DATA - if (!IS_CURSEG(sbi, segnoA)) type = CURSEG_WARM_DATA - allocate_data_block - allocate_segment - get_ssr_segment - change_curseg(segnoA, CURSEG_HOT_DATA) - change_curseg(segnoA, CURSEG_WARM_DATA) - reset_curseg - __set_sit_entry_type - change se->type from CURSEG_HOT_DATA to CURSEG_WARM_DATA So finally, hot curseg locates in segnoA, but type of segnoA becomes CURSEG_WARM_DATA. Then if we invoke __f2fs_replace_block(blkaddrB, blkaddrA, true, false), as blkaddrA locates in segnoA, so we will move warm type curseg to segnoA, then change its summary cache and writeback it to summary block. But segnoA is used by hot type curseg too, once it moves or persist, it will cover summary block content with inner old summary cache, result in inconsistent status. This patch tries to fix this issue by introduce global curseg lock to avoid race in between __f2fs_replace_block and change_curseg. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
3887 lines
97 KiB
C
3887 lines
97 KiB
C
/*
|
|
* fs/f2fs/segment.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/sched/signal.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "segment.h"
|
|
#include "node.h"
|
|
#include "gc.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
#define __reverse_ffz(x) __reverse_ffs(~(x))
|
|
|
|
static struct kmem_cache *discard_entry_slab;
|
|
static struct kmem_cache *discard_cmd_slab;
|
|
static struct kmem_cache *sit_entry_set_slab;
|
|
static struct kmem_cache *inmem_entry_slab;
|
|
|
|
static unsigned long __reverse_ulong(unsigned char *str)
|
|
{
|
|
unsigned long tmp = 0;
|
|
int shift = 24, idx = 0;
|
|
|
|
#if BITS_PER_LONG == 64
|
|
shift = 56;
|
|
#endif
|
|
while (shift >= 0) {
|
|
tmp |= (unsigned long)str[idx++] << shift;
|
|
shift -= BITS_PER_BYTE;
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
|
|
* MSB and LSB are reversed in a byte by f2fs_set_bit.
|
|
*/
|
|
static inline unsigned long __reverse_ffs(unsigned long word)
|
|
{
|
|
int num = 0;
|
|
|
|
#if BITS_PER_LONG == 64
|
|
if ((word & 0xffffffff00000000UL) == 0)
|
|
num += 32;
|
|
else
|
|
word >>= 32;
|
|
#endif
|
|
if ((word & 0xffff0000) == 0)
|
|
num += 16;
|
|
else
|
|
word >>= 16;
|
|
|
|
if ((word & 0xff00) == 0)
|
|
num += 8;
|
|
else
|
|
word >>= 8;
|
|
|
|
if ((word & 0xf0) == 0)
|
|
num += 4;
|
|
else
|
|
word >>= 4;
|
|
|
|
if ((word & 0xc) == 0)
|
|
num += 2;
|
|
else
|
|
word >>= 2;
|
|
|
|
if ((word & 0x2) == 0)
|
|
num += 1;
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
|
|
* f2fs_set_bit makes MSB and LSB reversed in a byte.
|
|
* @size must be integral times of unsigned long.
|
|
* Example:
|
|
* MSB <--> LSB
|
|
* f2fs_set_bit(0, bitmap) => 1000 0000
|
|
* f2fs_set_bit(7, bitmap) => 0000 0001
|
|
*/
|
|
static unsigned long __find_rev_next_bit(const unsigned long *addr,
|
|
unsigned long size, unsigned long offset)
|
|
{
|
|
const unsigned long *p = addr + BIT_WORD(offset);
|
|
unsigned long result = size;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
|
|
size -= (offset & ~(BITS_PER_LONG - 1));
|
|
offset %= BITS_PER_LONG;
|
|
|
|
while (1) {
|
|
if (*p == 0)
|
|
goto pass;
|
|
|
|
tmp = __reverse_ulong((unsigned char *)p);
|
|
|
|
tmp &= ~0UL >> offset;
|
|
if (size < BITS_PER_LONG)
|
|
tmp &= (~0UL << (BITS_PER_LONG - size));
|
|
if (tmp)
|
|
goto found;
|
|
pass:
|
|
if (size <= BITS_PER_LONG)
|
|
break;
|
|
size -= BITS_PER_LONG;
|
|
offset = 0;
|
|
p++;
|
|
}
|
|
return result;
|
|
found:
|
|
return result - size + __reverse_ffs(tmp);
|
|
}
|
|
|
|
static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
|
|
unsigned long size, unsigned long offset)
|
|
{
|
|
const unsigned long *p = addr + BIT_WORD(offset);
|
|
unsigned long result = size;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
|
|
size -= (offset & ~(BITS_PER_LONG - 1));
|
|
offset %= BITS_PER_LONG;
|
|
|
|
while (1) {
|
|
if (*p == ~0UL)
|
|
goto pass;
|
|
|
|
tmp = __reverse_ulong((unsigned char *)p);
|
|
|
|
if (offset)
|
|
tmp |= ~0UL << (BITS_PER_LONG - offset);
|
|
if (size < BITS_PER_LONG)
|
|
tmp |= ~0UL >> size;
|
|
if (tmp != ~0UL)
|
|
goto found;
|
|
pass:
|
|
if (size <= BITS_PER_LONG)
|
|
break;
|
|
size -= BITS_PER_LONG;
|
|
offset = 0;
|
|
p++;
|
|
}
|
|
return result;
|
|
found:
|
|
return result - size + __reverse_ffz(tmp);
|
|
}
|
|
|
|
bool need_SSR(struct f2fs_sb_info *sbi)
|
|
{
|
|
int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
|
|
int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
|
|
int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
|
|
|
|
if (test_opt(sbi, LFS))
|
|
return false;
|
|
if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
|
|
return true;
|
|
|
|
return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
|
|
SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
|
|
}
|
|
|
|
void register_inmem_page(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct inmem_pages *new;
|
|
|
|
f2fs_trace_pid(page);
|
|
|
|
set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
|
|
SetPagePrivate(page);
|
|
|
|
new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
|
|
|
|
/* add atomic page indices to the list */
|
|
new->page = page;
|
|
INIT_LIST_HEAD(&new->list);
|
|
|
|
/* increase reference count with clean state */
|
|
mutex_lock(&fi->inmem_lock);
|
|
get_page(page);
|
|
list_add_tail(&new->list, &fi->inmem_pages);
|
|
spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
if (list_empty(&fi->inmem_ilist))
|
|
list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
|
|
spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
|
|
mutex_unlock(&fi->inmem_lock);
|
|
|
|
trace_f2fs_register_inmem_page(page, INMEM);
|
|
}
|
|
|
|
static int __revoke_inmem_pages(struct inode *inode,
|
|
struct list_head *head, bool drop, bool recover)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct inmem_pages *cur, *tmp;
|
|
int err = 0;
|
|
|
|
list_for_each_entry_safe(cur, tmp, head, list) {
|
|
struct page *page = cur->page;
|
|
|
|
if (drop)
|
|
trace_f2fs_commit_inmem_page(page, INMEM_DROP);
|
|
|
|
lock_page(page);
|
|
|
|
if (recover) {
|
|
struct dnode_of_data dn;
|
|
struct node_info ni;
|
|
|
|
trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
|
|
retry:
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
|
|
if (err) {
|
|
if (err == -ENOMEM) {
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
err = -EAGAIN;
|
|
goto next;
|
|
}
|
|
get_node_info(sbi, dn.nid, &ni);
|
|
f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
|
|
cur->old_addr, ni.version, true, true);
|
|
f2fs_put_dnode(&dn);
|
|
}
|
|
next:
|
|
/* we don't need to invalidate this in the sccessful status */
|
|
if (drop || recover)
|
|
ClearPageUptodate(page);
|
|
set_page_private(page, 0);
|
|
ClearPagePrivate(page);
|
|
f2fs_put_page(page, 1);
|
|
|
|
list_del(&cur->list);
|
|
kmem_cache_free(inmem_entry_slab, cur);
|
|
dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
|
|
struct inode *inode;
|
|
struct f2fs_inode_info *fi;
|
|
next:
|
|
spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
if (list_empty(head)) {
|
|
spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
return;
|
|
}
|
|
fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
|
|
inode = igrab(&fi->vfs_inode);
|
|
spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
|
|
if (inode) {
|
|
drop_inmem_pages(inode);
|
|
iput(inode);
|
|
}
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
cond_resched();
|
|
goto next;
|
|
}
|
|
|
|
void drop_inmem_pages(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
|
|
mutex_lock(&fi->inmem_lock);
|
|
__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
|
|
spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
if (!list_empty(&fi->inmem_ilist))
|
|
list_del_init(&fi->inmem_ilist);
|
|
spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
mutex_unlock(&fi->inmem_lock);
|
|
|
|
clear_inode_flag(inode, FI_ATOMIC_FILE);
|
|
clear_inode_flag(inode, FI_HOT_DATA);
|
|
stat_dec_atomic_write(inode);
|
|
}
|
|
|
|
void drop_inmem_page(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct list_head *head = &fi->inmem_pages;
|
|
struct inmem_pages *cur = NULL;
|
|
|
|
f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
|
|
|
|
mutex_lock(&fi->inmem_lock);
|
|
list_for_each_entry(cur, head, list) {
|
|
if (cur->page == page)
|
|
break;
|
|
}
|
|
|
|
f2fs_bug_on(sbi, !cur || cur->page != page);
|
|
list_del(&cur->list);
|
|
mutex_unlock(&fi->inmem_lock);
|
|
|
|
dec_page_count(sbi, F2FS_INMEM_PAGES);
|
|
kmem_cache_free(inmem_entry_slab, cur);
|
|
|
|
ClearPageUptodate(page);
|
|
set_page_private(page, 0);
|
|
ClearPagePrivate(page);
|
|
f2fs_put_page(page, 0);
|
|
|
|
trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
|
|
}
|
|
|
|
static int __commit_inmem_pages(struct inode *inode,
|
|
struct list_head *revoke_list)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct inmem_pages *cur, *tmp;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.ino = inode->i_ino,
|
|
.type = DATA,
|
|
.op = REQ_OP_WRITE,
|
|
.op_flags = REQ_SYNC | REQ_PRIO,
|
|
.io_type = FS_DATA_IO,
|
|
};
|
|
pgoff_t last_idx = ULONG_MAX;
|
|
int err = 0;
|
|
|
|
list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
|
|
struct page *page = cur->page;
|
|
|
|
lock_page(page);
|
|
if (page->mapping == inode->i_mapping) {
|
|
trace_f2fs_commit_inmem_page(page, INMEM);
|
|
|
|
set_page_dirty(page);
|
|
f2fs_wait_on_page_writeback(page, DATA, true);
|
|
if (clear_page_dirty_for_io(page)) {
|
|
inode_dec_dirty_pages(inode);
|
|
remove_dirty_inode(inode);
|
|
}
|
|
retry:
|
|
fio.page = page;
|
|
fio.old_blkaddr = NULL_ADDR;
|
|
fio.encrypted_page = NULL;
|
|
fio.need_lock = LOCK_DONE;
|
|
err = do_write_data_page(&fio);
|
|
if (err) {
|
|
if (err == -ENOMEM) {
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
/* record old blkaddr for revoking */
|
|
cur->old_addr = fio.old_blkaddr;
|
|
last_idx = page->index;
|
|
}
|
|
unlock_page(page);
|
|
list_move_tail(&cur->list, revoke_list);
|
|
}
|
|
|
|
if (last_idx != ULONG_MAX)
|
|
f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
|
|
|
|
if (!err)
|
|
__revoke_inmem_pages(inode, revoke_list, false, false);
|
|
|
|
return err;
|
|
}
|
|
|
|
int commit_inmem_pages(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct list_head revoke_list;
|
|
int err;
|
|
|
|
INIT_LIST_HEAD(&revoke_list);
|
|
f2fs_balance_fs(sbi, true);
|
|
f2fs_lock_op(sbi);
|
|
|
|
set_inode_flag(inode, FI_ATOMIC_COMMIT);
|
|
|
|
mutex_lock(&fi->inmem_lock);
|
|
err = __commit_inmem_pages(inode, &revoke_list);
|
|
if (err) {
|
|
int ret;
|
|
/*
|
|
* try to revoke all committed pages, but still we could fail
|
|
* due to no memory or other reason, if that happened, EAGAIN
|
|
* will be returned, which means in such case, transaction is
|
|
* already not integrity, caller should use journal to do the
|
|
* recovery or rewrite & commit last transaction. For other
|
|
* error number, revoking was done by filesystem itself.
|
|
*/
|
|
ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
|
|
if (ret)
|
|
err = ret;
|
|
|
|
/* drop all uncommitted pages */
|
|
__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
|
|
}
|
|
spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
if (!list_empty(&fi->inmem_ilist))
|
|
list_del_init(&fi->inmem_ilist);
|
|
spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
mutex_unlock(&fi->inmem_lock);
|
|
|
|
clear_inode_flag(inode, FI_ATOMIC_COMMIT);
|
|
|
|
f2fs_unlock_op(sbi);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* This function balances dirty node and dentry pages.
|
|
* In addition, it controls garbage collection.
|
|
*/
|
|
void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
|
|
{
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
|
|
f2fs_show_injection_info(FAULT_CHECKPOINT);
|
|
f2fs_stop_checkpoint(sbi, false);
|
|
}
|
|
#endif
|
|
|
|
/* balance_fs_bg is able to be pending */
|
|
if (need && excess_cached_nats(sbi))
|
|
f2fs_balance_fs_bg(sbi);
|
|
|
|
/*
|
|
* We should do GC or end up with checkpoint, if there are so many dirty
|
|
* dir/node pages without enough free segments.
|
|
*/
|
|
if (has_not_enough_free_secs(sbi, 0, 0)) {
|
|
mutex_lock(&sbi->gc_mutex);
|
|
f2fs_gc(sbi, false, false, NULL_SEGNO);
|
|
}
|
|
}
|
|
|
|
void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
|
|
{
|
|
/* try to shrink extent cache when there is no enough memory */
|
|
if (!available_free_memory(sbi, EXTENT_CACHE))
|
|
f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
|
|
|
|
/* check the # of cached NAT entries */
|
|
if (!available_free_memory(sbi, NAT_ENTRIES))
|
|
try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
|
|
|
|
if (!available_free_memory(sbi, FREE_NIDS))
|
|
try_to_free_nids(sbi, MAX_FREE_NIDS);
|
|
else
|
|
build_free_nids(sbi, false, false);
|
|
|
|
if (!is_idle(sbi) && !excess_dirty_nats(sbi))
|
|
return;
|
|
|
|
/* checkpoint is the only way to shrink partial cached entries */
|
|
if (!available_free_memory(sbi, NAT_ENTRIES) ||
|
|
!available_free_memory(sbi, INO_ENTRIES) ||
|
|
excess_prefree_segs(sbi) ||
|
|
excess_dirty_nats(sbi) ||
|
|
f2fs_time_over(sbi, CP_TIME)) {
|
|
if (test_opt(sbi, DATA_FLUSH)) {
|
|
struct blk_plug plug;
|
|
|
|
blk_start_plug(&plug);
|
|
sync_dirty_inodes(sbi, FILE_INODE);
|
|
blk_finish_plug(&plug);
|
|
}
|
|
f2fs_sync_fs(sbi->sb, true);
|
|
stat_inc_bg_cp_count(sbi->stat_info);
|
|
}
|
|
}
|
|
|
|
static int __submit_flush_wait(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev)
|
|
{
|
|
struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
|
|
int ret;
|
|
|
|
bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
|
|
bio_set_dev(bio, bdev);
|
|
ret = submit_bio_wait(bio);
|
|
bio_put(bio);
|
|
|
|
trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
|
|
test_opt(sbi, FLUSH_MERGE), ret);
|
|
return ret;
|
|
}
|
|
|
|
static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
|
|
if (!sbi->s_ndevs)
|
|
return __submit_flush_wait(sbi, sbi->sb->s_bdev);
|
|
|
|
for (i = 0; i < sbi->s_ndevs; i++) {
|
|
if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
|
|
continue;
|
|
ret = __submit_flush_wait(sbi, FDEV(i).bdev);
|
|
if (ret)
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int issue_flush_thread(void *data)
|
|
{
|
|
struct f2fs_sb_info *sbi = data;
|
|
struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
|
|
wait_queue_head_t *q = &fcc->flush_wait_queue;
|
|
repeat:
|
|
if (kthread_should_stop())
|
|
return 0;
|
|
|
|
sb_start_intwrite(sbi->sb);
|
|
|
|
if (!llist_empty(&fcc->issue_list)) {
|
|
struct flush_cmd *cmd, *next;
|
|
int ret;
|
|
|
|
fcc->dispatch_list = llist_del_all(&fcc->issue_list);
|
|
fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
|
|
|
|
cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
|
|
|
|
ret = submit_flush_wait(sbi, cmd->ino);
|
|
atomic_inc(&fcc->issued_flush);
|
|
|
|
llist_for_each_entry_safe(cmd, next,
|
|
fcc->dispatch_list, llnode) {
|
|
cmd->ret = ret;
|
|
complete(&cmd->wait);
|
|
}
|
|
fcc->dispatch_list = NULL;
|
|
}
|
|
|
|
sb_end_intwrite(sbi->sb);
|
|
|
|
wait_event_interruptible(*q,
|
|
kthread_should_stop() || !llist_empty(&fcc->issue_list));
|
|
goto repeat;
|
|
}
|
|
|
|
int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
|
|
struct flush_cmd cmd;
|
|
int ret;
|
|
|
|
if (test_opt(sbi, NOBARRIER))
|
|
return 0;
|
|
|
|
if (!test_opt(sbi, FLUSH_MERGE)) {
|
|
ret = submit_flush_wait(sbi, ino);
|
|
atomic_inc(&fcc->issued_flush);
|
|
return ret;
|
|
}
|
|
|
|
if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
|
|
ret = submit_flush_wait(sbi, ino);
|
|
atomic_dec(&fcc->issing_flush);
|
|
|
|
atomic_inc(&fcc->issued_flush);
|
|
return ret;
|
|
}
|
|
|
|
cmd.ino = ino;
|
|
init_completion(&cmd.wait);
|
|
|
|
llist_add(&cmd.llnode, &fcc->issue_list);
|
|
|
|
/* update issue_list before we wake up issue_flush thread */
|
|
smp_mb();
|
|
|
|
if (waitqueue_active(&fcc->flush_wait_queue))
|
|
wake_up(&fcc->flush_wait_queue);
|
|
|
|
if (fcc->f2fs_issue_flush) {
|
|
wait_for_completion(&cmd.wait);
|
|
atomic_dec(&fcc->issing_flush);
|
|
} else {
|
|
struct llist_node *list;
|
|
|
|
list = llist_del_all(&fcc->issue_list);
|
|
if (!list) {
|
|
wait_for_completion(&cmd.wait);
|
|
atomic_dec(&fcc->issing_flush);
|
|
} else {
|
|
struct flush_cmd *tmp, *next;
|
|
|
|
ret = submit_flush_wait(sbi, ino);
|
|
|
|
llist_for_each_entry_safe(tmp, next, list, llnode) {
|
|
if (tmp == &cmd) {
|
|
cmd.ret = ret;
|
|
atomic_dec(&fcc->issing_flush);
|
|
continue;
|
|
}
|
|
tmp->ret = ret;
|
|
complete(&tmp->wait);
|
|
}
|
|
}
|
|
}
|
|
|
|
return cmd.ret;
|
|
}
|
|
|
|
int create_flush_cmd_control(struct f2fs_sb_info *sbi)
|
|
{
|
|
dev_t dev = sbi->sb->s_bdev->bd_dev;
|
|
struct flush_cmd_control *fcc;
|
|
int err = 0;
|
|
|
|
if (SM_I(sbi)->fcc_info) {
|
|
fcc = SM_I(sbi)->fcc_info;
|
|
if (fcc->f2fs_issue_flush)
|
|
return err;
|
|
goto init_thread;
|
|
}
|
|
|
|
fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
|
|
if (!fcc)
|
|
return -ENOMEM;
|
|
atomic_set(&fcc->issued_flush, 0);
|
|
atomic_set(&fcc->issing_flush, 0);
|
|
init_waitqueue_head(&fcc->flush_wait_queue);
|
|
init_llist_head(&fcc->issue_list);
|
|
SM_I(sbi)->fcc_info = fcc;
|
|
if (!test_opt(sbi, FLUSH_MERGE))
|
|
return err;
|
|
|
|
init_thread:
|
|
fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
|
|
"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
|
|
if (IS_ERR(fcc->f2fs_issue_flush)) {
|
|
err = PTR_ERR(fcc->f2fs_issue_flush);
|
|
kfree(fcc);
|
|
SM_I(sbi)->fcc_info = NULL;
|
|
return err;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
|
|
{
|
|
struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
|
|
|
|
if (fcc && fcc->f2fs_issue_flush) {
|
|
struct task_struct *flush_thread = fcc->f2fs_issue_flush;
|
|
|
|
fcc->f2fs_issue_flush = NULL;
|
|
kthread_stop(flush_thread);
|
|
}
|
|
if (free) {
|
|
kfree(fcc);
|
|
SM_I(sbi)->fcc_info = NULL;
|
|
}
|
|
}
|
|
|
|
int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
|
|
{
|
|
int ret = 0, i;
|
|
|
|
if (!sbi->s_ndevs)
|
|
return 0;
|
|
|
|
for (i = 1; i < sbi->s_ndevs; i++) {
|
|
if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
|
|
continue;
|
|
ret = __submit_flush_wait(sbi, FDEV(i).bdev);
|
|
if (ret)
|
|
break;
|
|
|
|
spin_lock(&sbi->dev_lock);
|
|
f2fs_clear_bit(i, (char *)&sbi->dirty_device);
|
|
spin_unlock(&sbi->dev_lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
|
|
enum dirty_type dirty_type)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
|
|
/* need not be added */
|
|
if (IS_CURSEG(sbi, segno))
|
|
return;
|
|
|
|
if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
|
|
dirty_i->nr_dirty[dirty_type]++;
|
|
|
|
if (dirty_type == DIRTY) {
|
|
struct seg_entry *sentry = get_seg_entry(sbi, segno);
|
|
enum dirty_type t = sentry->type;
|
|
|
|
if (unlikely(t >= DIRTY)) {
|
|
f2fs_bug_on(sbi, 1);
|
|
return;
|
|
}
|
|
if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
|
|
dirty_i->nr_dirty[t]++;
|
|
}
|
|
}
|
|
|
|
static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
|
|
enum dirty_type dirty_type)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
|
|
if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
|
|
dirty_i->nr_dirty[dirty_type]--;
|
|
|
|
if (dirty_type == DIRTY) {
|
|
struct seg_entry *sentry = get_seg_entry(sbi, segno);
|
|
enum dirty_type t = sentry->type;
|
|
|
|
if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
|
|
dirty_i->nr_dirty[t]--;
|
|
|
|
if (get_valid_blocks(sbi, segno, true) == 0)
|
|
clear_bit(GET_SEC_FROM_SEG(sbi, segno),
|
|
dirty_i->victim_secmap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Should not occur error such as -ENOMEM.
|
|
* Adding dirty entry into seglist is not critical operation.
|
|
* If a given segment is one of current working segments, it won't be added.
|
|
*/
|
|
static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned short valid_blocks;
|
|
|
|
if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
|
|
return;
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
|
|
valid_blocks = get_valid_blocks(sbi, segno, false);
|
|
|
|
if (valid_blocks == 0) {
|
|
__locate_dirty_segment(sbi, segno, PRE);
|
|
__remove_dirty_segment(sbi, segno, DIRTY);
|
|
} else if (valid_blocks < sbi->blocks_per_seg) {
|
|
__locate_dirty_segment(sbi, segno, DIRTY);
|
|
} else {
|
|
/* Recovery routine with SSR needs this */
|
|
__remove_dirty_segment(sbi, segno, DIRTY);
|
|
}
|
|
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
}
|
|
|
|
static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t lstart,
|
|
block_t start, block_t len)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *pend_list;
|
|
struct discard_cmd *dc;
|
|
|
|
f2fs_bug_on(sbi, !len);
|
|
|
|
pend_list = &dcc->pend_list[plist_idx(len)];
|
|
|
|
dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
|
|
INIT_LIST_HEAD(&dc->list);
|
|
dc->bdev = bdev;
|
|
dc->lstart = lstart;
|
|
dc->start = start;
|
|
dc->len = len;
|
|
dc->ref = 0;
|
|
dc->state = D_PREP;
|
|
dc->error = 0;
|
|
init_completion(&dc->wait);
|
|
list_add_tail(&dc->list, pend_list);
|
|
atomic_inc(&dcc->discard_cmd_cnt);
|
|
dcc->undiscard_blks += len;
|
|
|
|
return dc;
|
|
}
|
|
|
|
static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t lstart,
|
|
block_t start, block_t len,
|
|
struct rb_node *parent, struct rb_node **p)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_cmd *dc;
|
|
|
|
dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
|
|
|
|
rb_link_node(&dc->rb_node, parent, p);
|
|
rb_insert_color(&dc->rb_node, &dcc->root);
|
|
|
|
return dc;
|
|
}
|
|
|
|
static void __detach_discard_cmd(struct discard_cmd_control *dcc,
|
|
struct discard_cmd *dc)
|
|
{
|
|
if (dc->state == D_DONE)
|
|
atomic_dec(&dcc->issing_discard);
|
|
|
|
list_del(&dc->list);
|
|
rb_erase(&dc->rb_node, &dcc->root);
|
|
dcc->undiscard_blks -= dc->len;
|
|
|
|
kmem_cache_free(discard_cmd_slab, dc);
|
|
|
|
atomic_dec(&dcc->discard_cmd_cnt);
|
|
}
|
|
|
|
static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct discard_cmd *dc)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
|
|
trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
|
|
|
|
f2fs_bug_on(sbi, dc->ref);
|
|
|
|
if (dc->error == -EOPNOTSUPP)
|
|
dc->error = 0;
|
|
|
|
if (dc->error)
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"Issue discard(%u, %u, %u) failed, ret: %d",
|
|
dc->lstart, dc->start, dc->len, dc->error);
|
|
__detach_discard_cmd(dcc, dc);
|
|
}
|
|
|
|
static void f2fs_submit_discard_endio(struct bio *bio)
|
|
{
|
|
struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
|
|
|
|
dc->error = blk_status_to_errno(bio->bi_status);
|
|
dc->state = D_DONE;
|
|
complete_all(&dc->wait);
|
|
bio_put(bio);
|
|
}
|
|
|
|
void __check_sit_bitmap(struct f2fs_sb_info *sbi,
|
|
block_t start, block_t end)
|
|
{
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
struct seg_entry *sentry;
|
|
unsigned int segno;
|
|
block_t blk = start;
|
|
unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
|
|
unsigned long *map;
|
|
|
|
while (blk < end) {
|
|
segno = GET_SEGNO(sbi, blk);
|
|
sentry = get_seg_entry(sbi, segno);
|
|
offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
|
|
|
|
if (end < START_BLOCK(sbi, segno + 1))
|
|
size = GET_BLKOFF_FROM_SEG0(sbi, end);
|
|
else
|
|
size = max_blocks;
|
|
map = (unsigned long *)(sentry->cur_valid_map);
|
|
offset = __find_rev_next_bit(map, size, offset);
|
|
f2fs_bug_on(sbi, offset != size);
|
|
blk = START_BLOCK(sbi, segno + 1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
|
|
static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy,
|
|
struct discard_cmd *dc)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
|
|
&(dcc->fstrim_list) : &(dcc->wait_list);
|
|
struct bio *bio = NULL;
|
|
int flag = dpolicy->sync ? REQ_SYNC : 0;
|
|
|
|
if (dc->state != D_PREP)
|
|
return;
|
|
|
|
trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
|
|
|
|
dc->error = __blkdev_issue_discard(dc->bdev,
|
|
SECTOR_FROM_BLOCK(dc->start),
|
|
SECTOR_FROM_BLOCK(dc->len),
|
|
GFP_NOFS, 0, &bio);
|
|
if (!dc->error) {
|
|
/* should keep before submission to avoid D_DONE right away */
|
|
dc->state = D_SUBMIT;
|
|
atomic_inc(&dcc->issued_discard);
|
|
atomic_inc(&dcc->issing_discard);
|
|
if (bio) {
|
|
bio->bi_private = dc;
|
|
bio->bi_end_io = f2fs_submit_discard_endio;
|
|
bio->bi_opf |= flag;
|
|
submit_bio(bio);
|
|
list_move_tail(&dc->list, wait_list);
|
|
__check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
|
|
|
|
f2fs_update_iostat(sbi, FS_DISCARD, 1);
|
|
}
|
|
} else {
|
|
__remove_discard_cmd(sbi, dc);
|
|
}
|
|
}
|
|
|
|
static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t lstart,
|
|
block_t start, block_t len,
|
|
struct rb_node **insert_p,
|
|
struct rb_node *insert_parent)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
struct discard_cmd *dc = NULL;
|
|
|
|
if (insert_p && insert_parent) {
|
|
parent = insert_parent;
|
|
p = insert_p;
|
|
goto do_insert;
|
|
}
|
|
|
|
p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
|
|
do_insert:
|
|
dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
|
|
if (!dc)
|
|
return NULL;
|
|
|
|
return dc;
|
|
}
|
|
|
|
static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
|
|
struct discard_cmd *dc)
|
|
{
|
|
list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
|
|
}
|
|
|
|
static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct discard_cmd *dc, block_t blkaddr)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_info di = dc->di;
|
|
bool modified = false;
|
|
|
|
if (dc->state == D_DONE || dc->len == 1) {
|
|
__remove_discard_cmd(sbi, dc);
|
|
return;
|
|
}
|
|
|
|
dcc->undiscard_blks -= di.len;
|
|
|
|
if (blkaddr > di.lstart) {
|
|
dc->len = blkaddr - dc->lstart;
|
|
dcc->undiscard_blks += dc->len;
|
|
__relocate_discard_cmd(dcc, dc);
|
|
modified = true;
|
|
}
|
|
|
|
if (blkaddr < di.lstart + di.len - 1) {
|
|
if (modified) {
|
|
__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
|
|
di.start + blkaddr + 1 - di.lstart,
|
|
di.lstart + di.len - 1 - blkaddr,
|
|
NULL, NULL);
|
|
} else {
|
|
dc->lstart++;
|
|
dc->len--;
|
|
dc->start++;
|
|
dcc->undiscard_blks += dc->len;
|
|
__relocate_discard_cmd(dcc, dc);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t lstart,
|
|
block_t start, block_t len)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
|
|
struct discard_cmd *dc;
|
|
struct discard_info di = {0};
|
|
struct rb_node **insert_p = NULL, *insert_parent = NULL;
|
|
block_t end = lstart + len;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
|
|
dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
|
|
NULL, lstart,
|
|
(struct rb_entry **)&prev_dc,
|
|
(struct rb_entry **)&next_dc,
|
|
&insert_p, &insert_parent, true);
|
|
if (dc)
|
|
prev_dc = dc;
|
|
|
|
if (!prev_dc) {
|
|
di.lstart = lstart;
|
|
di.len = next_dc ? next_dc->lstart - lstart : len;
|
|
di.len = min(di.len, len);
|
|
di.start = start;
|
|
}
|
|
|
|
while (1) {
|
|
struct rb_node *node;
|
|
bool merged = false;
|
|
struct discard_cmd *tdc = NULL;
|
|
|
|
if (prev_dc) {
|
|
di.lstart = prev_dc->lstart + prev_dc->len;
|
|
if (di.lstart < lstart)
|
|
di.lstart = lstart;
|
|
if (di.lstart >= end)
|
|
break;
|
|
|
|
if (!next_dc || next_dc->lstart > end)
|
|
di.len = end - di.lstart;
|
|
else
|
|
di.len = next_dc->lstart - di.lstart;
|
|
di.start = start + di.lstart - lstart;
|
|
}
|
|
|
|
if (!di.len)
|
|
goto next;
|
|
|
|
if (prev_dc && prev_dc->state == D_PREP &&
|
|
prev_dc->bdev == bdev &&
|
|
__is_discard_back_mergeable(&di, &prev_dc->di)) {
|
|
prev_dc->di.len += di.len;
|
|
dcc->undiscard_blks += di.len;
|
|
__relocate_discard_cmd(dcc, prev_dc);
|
|
di = prev_dc->di;
|
|
tdc = prev_dc;
|
|
merged = true;
|
|
}
|
|
|
|
if (next_dc && next_dc->state == D_PREP &&
|
|
next_dc->bdev == bdev &&
|
|
__is_discard_front_mergeable(&di, &next_dc->di)) {
|
|
next_dc->di.lstart = di.lstart;
|
|
next_dc->di.len += di.len;
|
|
next_dc->di.start = di.start;
|
|
dcc->undiscard_blks += di.len;
|
|
__relocate_discard_cmd(dcc, next_dc);
|
|
if (tdc)
|
|
__remove_discard_cmd(sbi, tdc);
|
|
merged = true;
|
|
}
|
|
|
|
if (!merged) {
|
|
__insert_discard_tree(sbi, bdev, di.lstart, di.start,
|
|
di.len, NULL, NULL);
|
|
}
|
|
next:
|
|
prev_dc = next_dc;
|
|
if (!prev_dc)
|
|
break;
|
|
|
|
node = rb_next(&prev_dc->rb_node);
|
|
next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
|
|
}
|
|
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
}
|
|
|
|
static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t blkstart, block_t blklen)
|
|
{
|
|
block_t lblkstart = blkstart;
|
|
|
|
trace_f2fs_queue_discard(bdev, blkstart, blklen);
|
|
|
|
if (sbi->s_ndevs) {
|
|
int devi = f2fs_target_device_index(sbi, blkstart);
|
|
|
|
blkstart -= FDEV(devi).start_blk;
|
|
}
|
|
__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
|
|
return 0;
|
|
}
|
|
|
|
static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy,
|
|
unsigned int start, unsigned int end)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
|
|
struct rb_node **insert_p = NULL, *insert_parent = NULL;
|
|
struct discard_cmd *dc;
|
|
struct blk_plug plug;
|
|
int issued;
|
|
|
|
next:
|
|
issued = 0;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
|
|
|
|
dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
|
|
NULL, start,
|
|
(struct rb_entry **)&prev_dc,
|
|
(struct rb_entry **)&next_dc,
|
|
&insert_p, &insert_parent, true);
|
|
if (!dc)
|
|
dc = next_dc;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
while (dc && dc->lstart <= end) {
|
|
struct rb_node *node;
|
|
|
|
if (dc->len < dpolicy->granularity)
|
|
goto skip;
|
|
|
|
if (dc->state != D_PREP) {
|
|
list_move_tail(&dc->list, &dcc->fstrim_list);
|
|
goto skip;
|
|
}
|
|
|
|
__submit_discard_cmd(sbi, dpolicy, dc);
|
|
|
|
if (++issued >= dpolicy->max_requests) {
|
|
start = dc->lstart + dc->len;
|
|
|
|
blk_finish_plug(&plug);
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
schedule();
|
|
|
|
goto next;
|
|
}
|
|
skip:
|
|
node = rb_next(&dc->rb_node);
|
|
dc = rb_entry_safe(node, struct discard_cmd, rb_node);
|
|
|
|
if (fatal_signal_pending(current))
|
|
break;
|
|
}
|
|
|
|
blk_finish_plug(&plug);
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
}
|
|
|
|
static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *pend_list;
|
|
struct discard_cmd *dc, *tmp;
|
|
struct blk_plug plug;
|
|
int i, iter = 0, issued = 0;
|
|
bool io_interrupted = false;
|
|
|
|
for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
|
|
if (i + 1 < dpolicy->granularity)
|
|
break;
|
|
pend_list = &dcc->pend_list[i];
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
|
|
blk_start_plug(&plug);
|
|
list_for_each_entry_safe(dc, tmp, pend_list, list) {
|
|
f2fs_bug_on(sbi, dc->state != D_PREP);
|
|
|
|
if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
|
|
!is_idle(sbi)) {
|
|
io_interrupted = true;
|
|
goto skip;
|
|
}
|
|
|
|
__submit_discard_cmd(sbi, dpolicy, dc);
|
|
issued++;
|
|
skip:
|
|
if (++iter >= dpolicy->max_requests)
|
|
break;
|
|
}
|
|
blk_finish_plug(&plug);
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
if (iter >= dpolicy->max_requests)
|
|
break;
|
|
}
|
|
|
|
if (!issued && io_interrupted)
|
|
issued = -1;
|
|
|
|
return issued;
|
|
}
|
|
|
|
static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *pend_list;
|
|
struct discard_cmd *dc, *tmp;
|
|
int i;
|
|
bool dropped = false;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
|
|
pend_list = &dcc->pend_list[i];
|
|
list_for_each_entry_safe(dc, tmp, pend_list, list) {
|
|
f2fs_bug_on(sbi, dc->state != D_PREP);
|
|
__remove_discard_cmd(sbi, dc);
|
|
dropped = true;
|
|
}
|
|
}
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
return dropped;
|
|
}
|
|
|
|
static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
|
|
struct discard_cmd *dc)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
unsigned int len = 0;
|
|
|
|
wait_for_completion_io(&dc->wait);
|
|
mutex_lock(&dcc->cmd_lock);
|
|
f2fs_bug_on(sbi, dc->state != D_DONE);
|
|
dc->ref--;
|
|
if (!dc->ref) {
|
|
if (!dc->error)
|
|
len = dc->len;
|
|
__remove_discard_cmd(sbi, dc);
|
|
}
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
return len;
|
|
}
|
|
|
|
static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy,
|
|
block_t start, block_t end)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
|
|
&(dcc->fstrim_list) : &(dcc->wait_list);
|
|
struct discard_cmd *dc, *tmp;
|
|
bool need_wait;
|
|
unsigned int trimmed = 0;
|
|
|
|
next:
|
|
need_wait = false;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
list_for_each_entry_safe(dc, tmp, wait_list, list) {
|
|
if (dc->lstart + dc->len <= start || end <= dc->lstart)
|
|
continue;
|
|
if (dc->len < dpolicy->granularity)
|
|
continue;
|
|
if (dc->state == D_DONE && !dc->ref) {
|
|
wait_for_completion_io(&dc->wait);
|
|
if (!dc->error)
|
|
trimmed += dc->len;
|
|
__remove_discard_cmd(sbi, dc);
|
|
} else {
|
|
dc->ref++;
|
|
need_wait = true;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
if (need_wait) {
|
|
trimmed += __wait_one_discard_bio(sbi, dc);
|
|
goto next;
|
|
}
|
|
|
|
return trimmed;
|
|
}
|
|
|
|
static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy)
|
|
{
|
|
__wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
|
|
}
|
|
|
|
/* This should be covered by global mutex, &sit_i->sentry_lock */
|
|
void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_cmd *dc;
|
|
bool need_wait = false;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
|
|
if (dc) {
|
|
if (dc->state == D_PREP) {
|
|
__punch_discard_cmd(sbi, dc, blkaddr);
|
|
} else {
|
|
dc->ref++;
|
|
need_wait = true;
|
|
}
|
|
}
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
if (need_wait)
|
|
__wait_one_discard_bio(sbi, dc);
|
|
}
|
|
|
|
void stop_discard_thread(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
|
|
if (dcc && dcc->f2fs_issue_discard) {
|
|
struct task_struct *discard_thread = dcc->f2fs_issue_discard;
|
|
|
|
dcc->f2fs_issue_discard = NULL;
|
|
kthread_stop(discard_thread);
|
|
}
|
|
}
|
|
|
|
/* This comes from f2fs_put_super */
|
|
bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_policy dpolicy;
|
|
bool dropped;
|
|
|
|
init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
|
|
__issue_discard_cmd(sbi, &dpolicy);
|
|
dropped = __drop_discard_cmd(sbi);
|
|
__wait_all_discard_cmd(sbi, &dpolicy);
|
|
|
|
return dropped;
|
|
}
|
|
|
|
static int issue_discard_thread(void *data)
|
|
{
|
|
struct f2fs_sb_info *sbi = data;
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
wait_queue_head_t *q = &dcc->discard_wait_queue;
|
|
struct discard_policy dpolicy;
|
|
unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
|
|
int issued;
|
|
|
|
set_freezable();
|
|
|
|
do {
|
|
init_discard_policy(&dpolicy, DPOLICY_BG,
|
|
dcc->discard_granularity);
|
|
|
|
wait_event_interruptible_timeout(*q,
|
|
kthread_should_stop() || freezing(current) ||
|
|
dcc->discard_wake,
|
|
msecs_to_jiffies(wait_ms));
|
|
if (try_to_freeze())
|
|
continue;
|
|
if (kthread_should_stop())
|
|
return 0;
|
|
|
|
if (dcc->discard_wake) {
|
|
dcc->discard_wake = 0;
|
|
if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
|
|
init_discard_policy(&dpolicy,
|
|
DPOLICY_FORCE, 1);
|
|
}
|
|
|
|
sb_start_intwrite(sbi->sb);
|
|
|
|
issued = __issue_discard_cmd(sbi, &dpolicy);
|
|
if (issued) {
|
|
__wait_all_discard_cmd(sbi, &dpolicy);
|
|
wait_ms = dpolicy.min_interval;
|
|
} else {
|
|
wait_ms = dpolicy.max_interval;
|
|
}
|
|
|
|
sb_end_intwrite(sbi->sb);
|
|
|
|
} while (!kthread_should_stop());
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t blkstart, block_t blklen)
|
|
{
|
|
sector_t sector, nr_sects;
|
|
block_t lblkstart = blkstart;
|
|
int devi = 0;
|
|
|
|
if (sbi->s_ndevs) {
|
|
devi = f2fs_target_device_index(sbi, blkstart);
|
|
blkstart -= FDEV(devi).start_blk;
|
|
}
|
|
|
|
/*
|
|
* We need to know the type of the zone: for conventional zones,
|
|
* use regular discard if the drive supports it. For sequential
|
|
* zones, reset the zone write pointer.
|
|
*/
|
|
switch (get_blkz_type(sbi, bdev, blkstart)) {
|
|
|
|
case BLK_ZONE_TYPE_CONVENTIONAL:
|
|
if (!blk_queue_discard(bdev_get_queue(bdev)))
|
|
return 0;
|
|
return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
|
|
case BLK_ZONE_TYPE_SEQWRITE_REQ:
|
|
case BLK_ZONE_TYPE_SEQWRITE_PREF:
|
|
sector = SECTOR_FROM_BLOCK(blkstart);
|
|
nr_sects = SECTOR_FROM_BLOCK(blklen);
|
|
|
|
if (sector & (bdev_zone_sectors(bdev) - 1) ||
|
|
nr_sects != bdev_zone_sectors(bdev)) {
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"(%d) %s: Unaligned discard attempted (block %x + %x)",
|
|
devi, sbi->s_ndevs ? FDEV(devi).path: "",
|
|
blkstart, blklen);
|
|
return -EIO;
|
|
}
|
|
trace_f2fs_issue_reset_zone(bdev, blkstart);
|
|
return blkdev_reset_zones(bdev, sector,
|
|
nr_sects, GFP_NOFS);
|
|
default:
|
|
/* Unknown zone type: broken device ? */
|
|
return -EIO;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int __issue_discard_async(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t blkstart, block_t blklen)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
|
|
bdev_zoned_model(bdev) != BLK_ZONED_NONE)
|
|
return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
|
|
#endif
|
|
return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
|
|
}
|
|
|
|
static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
|
|
block_t blkstart, block_t blklen)
|
|
{
|
|
sector_t start = blkstart, len = 0;
|
|
struct block_device *bdev;
|
|
struct seg_entry *se;
|
|
unsigned int offset;
|
|
block_t i;
|
|
int err = 0;
|
|
|
|
bdev = f2fs_target_device(sbi, blkstart, NULL);
|
|
|
|
for (i = blkstart; i < blkstart + blklen; i++, len++) {
|
|
if (i != start) {
|
|
struct block_device *bdev2 =
|
|
f2fs_target_device(sbi, i, NULL);
|
|
|
|
if (bdev2 != bdev) {
|
|
err = __issue_discard_async(sbi, bdev,
|
|
start, len);
|
|
if (err)
|
|
return err;
|
|
bdev = bdev2;
|
|
start = i;
|
|
len = 0;
|
|
}
|
|
}
|
|
|
|
se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
|
|
offset = GET_BLKOFF_FROM_SEG0(sbi, i);
|
|
|
|
if (!f2fs_test_and_set_bit(offset, se->discard_map))
|
|
sbi->discard_blks--;
|
|
}
|
|
|
|
if (len)
|
|
err = __issue_discard_async(sbi, bdev, start, len);
|
|
return err;
|
|
}
|
|
|
|
static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
|
|
bool check_only)
|
|
{
|
|
int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
|
|
int max_blocks = sbi->blocks_per_seg;
|
|
struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
|
|
unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
|
|
unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
|
|
unsigned long *discard_map = (unsigned long *)se->discard_map;
|
|
unsigned long *dmap = SIT_I(sbi)->tmp_map;
|
|
unsigned int start = 0, end = -1;
|
|
bool force = (cpc->reason & CP_DISCARD);
|
|
struct discard_entry *de = NULL;
|
|
struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
|
|
int i;
|
|
|
|
if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
|
|
return false;
|
|
|
|
if (!force) {
|
|
if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
|
|
SM_I(sbi)->dcc_info->nr_discards >=
|
|
SM_I(sbi)->dcc_info->max_discards)
|
|
return false;
|
|
}
|
|
|
|
/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
|
|
for (i = 0; i < entries; i++)
|
|
dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
|
|
(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
|
|
|
|
while (force || SM_I(sbi)->dcc_info->nr_discards <=
|
|
SM_I(sbi)->dcc_info->max_discards) {
|
|
start = __find_rev_next_bit(dmap, max_blocks, end + 1);
|
|
if (start >= max_blocks)
|
|
break;
|
|
|
|
end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
|
|
if (force && start && end != max_blocks
|
|
&& (end - start) < cpc->trim_minlen)
|
|
continue;
|
|
|
|
if (check_only)
|
|
return true;
|
|
|
|
if (!de) {
|
|
de = f2fs_kmem_cache_alloc(discard_entry_slab,
|
|
GFP_F2FS_ZERO);
|
|
de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
|
|
list_add_tail(&de->list, head);
|
|
}
|
|
|
|
for (i = start; i < end; i++)
|
|
__set_bit_le(i, (void *)de->discard_map);
|
|
|
|
SM_I(sbi)->dcc_info->nr_discards += end - start;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void release_discard_addrs(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
|
|
struct discard_entry *entry, *this;
|
|
|
|
/* drop caches */
|
|
list_for_each_entry_safe(entry, this, head, list) {
|
|
list_del(&entry->list);
|
|
kmem_cache_free(discard_entry_slab, entry);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Should call clear_prefree_segments after checkpoint is done.
|
|
*/
|
|
static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned int segno;
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
|
|
__set_test_and_free(sbi, segno);
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
}
|
|
|
|
void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *head = &dcc->entry_list;
|
|
struct discard_entry *entry, *this;
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
|
|
unsigned int start = 0, end = -1;
|
|
unsigned int secno, start_segno;
|
|
bool force = (cpc->reason & CP_DISCARD);
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
|
|
while (1) {
|
|
int i;
|
|
start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
|
|
if (start >= MAIN_SEGS(sbi))
|
|
break;
|
|
end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
|
|
start + 1);
|
|
|
|
for (i = start; i < end; i++)
|
|
clear_bit(i, prefree_map);
|
|
|
|
dirty_i->nr_dirty[PRE] -= end - start;
|
|
|
|
if (!test_opt(sbi, DISCARD))
|
|
continue;
|
|
|
|
if (force && start >= cpc->trim_start &&
|
|
(end - 1) <= cpc->trim_end)
|
|
continue;
|
|
|
|
if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
|
|
f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
|
|
(end - start) << sbi->log_blocks_per_seg);
|
|
continue;
|
|
}
|
|
next:
|
|
secno = GET_SEC_FROM_SEG(sbi, start);
|
|
start_segno = GET_SEG_FROM_SEC(sbi, secno);
|
|
if (!IS_CURSEC(sbi, secno) &&
|
|
!get_valid_blocks(sbi, start, true))
|
|
f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
|
|
sbi->segs_per_sec << sbi->log_blocks_per_seg);
|
|
|
|
start = start_segno + sbi->segs_per_sec;
|
|
if (start < end)
|
|
goto next;
|
|
else
|
|
end = start - 1;
|
|
}
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
|
|
/* send small discards */
|
|
list_for_each_entry_safe(entry, this, head, list) {
|
|
unsigned int cur_pos = 0, next_pos, len, total_len = 0;
|
|
bool is_valid = test_bit_le(0, entry->discard_map);
|
|
|
|
find_next:
|
|
if (is_valid) {
|
|
next_pos = find_next_zero_bit_le(entry->discard_map,
|
|
sbi->blocks_per_seg, cur_pos);
|
|
len = next_pos - cur_pos;
|
|
|
|
if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
|
|
(force && len < cpc->trim_minlen))
|
|
goto skip;
|
|
|
|
f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
|
|
len);
|
|
total_len += len;
|
|
} else {
|
|
next_pos = find_next_bit_le(entry->discard_map,
|
|
sbi->blocks_per_seg, cur_pos);
|
|
}
|
|
skip:
|
|
cur_pos = next_pos;
|
|
is_valid = !is_valid;
|
|
|
|
if (cur_pos < sbi->blocks_per_seg)
|
|
goto find_next;
|
|
|
|
list_del(&entry->list);
|
|
dcc->nr_discards -= total_len;
|
|
kmem_cache_free(discard_entry_slab, entry);
|
|
}
|
|
|
|
wake_up_discard_thread(sbi, false);
|
|
}
|
|
|
|
void init_discard_policy(struct discard_policy *dpolicy,
|
|
int discard_type, unsigned int granularity)
|
|
{
|
|
/* common policy */
|
|
dpolicy->type = discard_type;
|
|
dpolicy->sync = true;
|
|
dpolicy->granularity = granularity;
|
|
|
|
if (discard_type == DPOLICY_BG) {
|
|
dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
|
|
dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
|
|
dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
|
|
dpolicy->io_aware_gran = MAX_PLIST_NUM;
|
|
dpolicy->io_aware = true;
|
|
} else if (discard_type == DPOLICY_FORCE) {
|
|
dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
|
|
dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
|
|
dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
|
|
dpolicy->io_aware_gran = MAX_PLIST_NUM;
|
|
dpolicy->io_aware = true;
|
|
} else if (discard_type == DPOLICY_FSTRIM) {
|
|
dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
|
|
dpolicy->io_aware_gran = MAX_PLIST_NUM;
|
|
dpolicy->io_aware = false;
|
|
} else if (discard_type == DPOLICY_UMOUNT) {
|
|
dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
|
|
dpolicy->io_aware_gran = MAX_PLIST_NUM;
|
|
dpolicy->io_aware = false;
|
|
}
|
|
}
|
|
|
|
static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
|
|
{
|
|
dev_t dev = sbi->sb->s_bdev->bd_dev;
|
|
struct discard_cmd_control *dcc;
|
|
int err = 0, i;
|
|
|
|
if (SM_I(sbi)->dcc_info) {
|
|
dcc = SM_I(sbi)->dcc_info;
|
|
goto init_thread;
|
|
}
|
|
|
|
dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
|
|
if (!dcc)
|
|
return -ENOMEM;
|
|
|
|
dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
|
|
INIT_LIST_HEAD(&dcc->entry_list);
|
|
for (i = 0; i < MAX_PLIST_NUM; i++)
|
|
INIT_LIST_HEAD(&dcc->pend_list[i]);
|
|
INIT_LIST_HEAD(&dcc->wait_list);
|
|
INIT_LIST_HEAD(&dcc->fstrim_list);
|
|
mutex_init(&dcc->cmd_lock);
|
|
atomic_set(&dcc->issued_discard, 0);
|
|
atomic_set(&dcc->issing_discard, 0);
|
|
atomic_set(&dcc->discard_cmd_cnt, 0);
|
|
dcc->nr_discards = 0;
|
|
dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
|
|
dcc->undiscard_blks = 0;
|
|
dcc->root = RB_ROOT;
|
|
|
|
init_waitqueue_head(&dcc->discard_wait_queue);
|
|
SM_I(sbi)->dcc_info = dcc;
|
|
init_thread:
|
|
dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
|
|
"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
|
|
if (IS_ERR(dcc->f2fs_issue_discard)) {
|
|
err = PTR_ERR(dcc->f2fs_issue_discard);
|
|
kfree(dcc);
|
|
SM_I(sbi)->dcc_info = NULL;
|
|
return err;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
|
|
if (!dcc)
|
|
return;
|
|
|
|
stop_discard_thread(sbi);
|
|
|
|
kfree(dcc);
|
|
SM_I(sbi)->dcc_info = NULL;
|
|
}
|
|
|
|
static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
|
|
if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
|
|
sit_i->dirty_sentries++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
|
|
unsigned int segno, int modified)
|
|
{
|
|
struct seg_entry *se = get_seg_entry(sbi, segno);
|
|
se->type = type;
|
|
if (modified)
|
|
__mark_sit_entry_dirty(sbi, segno);
|
|
}
|
|
|
|
static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
|
|
{
|
|
struct seg_entry *se;
|
|
unsigned int segno, offset;
|
|
long int new_vblocks;
|
|
bool exist;
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
bool mir_exist;
|
|
#endif
|
|
|
|
segno = GET_SEGNO(sbi, blkaddr);
|
|
|
|
se = get_seg_entry(sbi, segno);
|
|
new_vblocks = se->valid_blocks + del;
|
|
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
|
|
|
|
f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
|
|
(new_vblocks > sbi->blocks_per_seg)));
|
|
|
|
se->valid_blocks = new_vblocks;
|
|
se->mtime = get_mtime(sbi);
|
|
SIT_I(sbi)->max_mtime = se->mtime;
|
|
|
|
/* Update valid block bitmap */
|
|
if (del > 0) {
|
|
exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
mir_exist = f2fs_test_and_set_bit(offset,
|
|
se->cur_valid_map_mir);
|
|
if (unlikely(exist != mir_exist)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
|
|
"when setting bitmap, blk:%u, old bit:%d",
|
|
blkaddr, exist);
|
|
f2fs_bug_on(sbi, 1);
|
|
}
|
|
#endif
|
|
if (unlikely(exist)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Bitmap was wrongly set, blk:%u", blkaddr);
|
|
f2fs_bug_on(sbi, 1);
|
|
se->valid_blocks--;
|
|
del = 0;
|
|
}
|
|
|
|
if (f2fs_discard_en(sbi) &&
|
|
!f2fs_test_and_set_bit(offset, se->discard_map))
|
|
sbi->discard_blks--;
|
|
|
|
/* don't overwrite by SSR to keep node chain */
|
|
if (se->type == CURSEG_WARM_NODE) {
|
|
if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
|
|
se->ckpt_valid_blocks++;
|
|
}
|
|
} else {
|
|
exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
mir_exist = f2fs_test_and_clear_bit(offset,
|
|
se->cur_valid_map_mir);
|
|
if (unlikely(exist != mir_exist)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
|
|
"when clearing bitmap, blk:%u, old bit:%d",
|
|
blkaddr, exist);
|
|
f2fs_bug_on(sbi, 1);
|
|
}
|
|
#endif
|
|
if (unlikely(!exist)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Bitmap was wrongly cleared, blk:%u", blkaddr);
|
|
f2fs_bug_on(sbi, 1);
|
|
se->valid_blocks++;
|
|
del = 0;
|
|
}
|
|
|
|
if (f2fs_discard_en(sbi) &&
|
|
f2fs_test_and_clear_bit(offset, se->discard_map))
|
|
sbi->discard_blks++;
|
|
}
|
|
if (!f2fs_test_bit(offset, se->ckpt_valid_map))
|
|
se->ckpt_valid_blocks += del;
|
|
|
|
__mark_sit_entry_dirty(sbi, segno);
|
|
|
|
/* update total number of valid blocks to be written in ckpt area */
|
|
SIT_I(sbi)->written_valid_blocks += del;
|
|
|
|
if (sbi->segs_per_sec > 1)
|
|
get_sec_entry(sbi, segno)->valid_blocks += del;
|
|
}
|
|
|
|
void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
|
|
{
|
|
unsigned int segno = GET_SEGNO(sbi, addr);
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
|
|
f2fs_bug_on(sbi, addr == NULL_ADDR);
|
|
if (addr == NEW_ADDR)
|
|
return;
|
|
|
|
/* add it into sit main buffer */
|
|
down_write(&sit_i->sentry_lock);
|
|
|
|
update_sit_entry(sbi, addr, -1);
|
|
|
|
/* add it into dirty seglist */
|
|
locate_dirty_segment(sbi, segno);
|
|
|
|
up_write(&sit_i->sentry_lock);
|
|
}
|
|
|
|
bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
unsigned int segno, offset;
|
|
struct seg_entry *se;
|
|
bool is_cp = false;
|
|
|
|
if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
|
|
return true;
|
|
|
|
down_read(&sit_i->sentry_lock);
|
|
|
|
segno = GET_SEGNO(sbi, blkaddr);
|
|
se = get_seg_entry(sbi, segno);
|
|
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
|
|
|
|
if (f2fs_test_bit(offset, se->ckpt_valid_map))
|
|
is_cp = true;
|
|
|
|
up_read(&sit_i->sentry_lock);
|
|
|
|
return is_cp;
|
|
}
|
|
|
|
/*
|
|
* This function should be resided under the curseg_mutex lock
|
|
*/
|
|
static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
|
|
struct f2fs_summary *sum)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
void *addr = curseg->sum_blk;
|
|
addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
|
|
memcpy(addr, sum, sizeof(struct f2fs_summary));
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of current summary pages for writing
|
|
*/
|
|
int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
|
|
{
|
|
int valid_sum_count = 0;
|
|
int i, sum_in_page;
|
|
|
|
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
|
|
if (sbi->ckpt->alloc_type[i] == SSR)
|
|
valid_sum_count += sbi->blocks_per_seg;
|
|
else {
|
|
if (for_ra)
|
|
valid_sum_count += le16_to_cpu(
|
|
F2FS_CKPT(sbi)->cur_data_blkoff[i]);
|
|
else
|
|
valid_sum_count += curseg_blkoff(sbi, i);
|
|
}
|
|
}
|
|
|
|
sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
|
|
SUM_FOOTER_SIZE) / SUMMARY_SIZE;
|
|
if (valid_sum_count <= sum_in_page)
|
|
return 1;
|
|
else if ((valid_sum_count - sum_in_page) <=
|
|
(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
/*
|
|
* Caller should put this summary page
|
|
*/
|
|
struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
|
|
}
|
|
|
|
void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
|
|
{
|
|
struct page *page = grab_meta_page(sbi, blk_addr);
|
|
|
|
memcpy(page_address(page), src, PAGE_SIZE);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
static void write_sum_page(struct f2fs_sb_info *sbi,
|
|
struct f2fs_summary_block *sum_blk, block_t blk_addr)
|
|
{
|
|
update_meta_page(sbi, (void *)sum_blk, blk_addr);
|
|
}
|
|
|
|
static void write_current_sum_page(struct f2fs_sb_info *sbi,
|
|
int type, block_t blk_addr)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
struct page *page = grab_meta_page(sbi, blk_addr);
|
|
struct f2fs_summary_block *src = curseg->sum_blk;
|
|
struct f2fs_summary_block *dst;
|
|
|
|
dst = (struct f2fs_summary_block *)page_address(page);
|
|
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
|
|
down_read(&curseg->journal_rwsem);
|
|
memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
|
|
up_read(&curseg->journal_rwsem);
|
|
|
|
memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
|
|
memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
|
|
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
unsigned int segno = curseg->segno + 1;
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
|
|
if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
|
|
return !test_bit(segno, free_i->free_segmap);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find a new segment from the free segments bitmap to right order
|
|
* This function should be returned with success, otherwise BUG
|
|
*/
|
|
static void get_new_segment(struct f2fs_sb_info *sbi,
|
|
unsigned int *newseg, bool new_sec, int dir)
|
|
{
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int segno, secno, zoneno;
|
|
unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
|
|
unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
|
|
unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
|
|
unsigned int left_start = hint;
|
|
bool init = true;
|
|
int go_left = 0;
|
|
int i;
|
|
|
|
spin_lock(&free_i->segmap_lock);
|
|
|
|
if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
|
|
segno = find_next_zero_bit(free_i->free_segmap,
|
|
GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
|
|
if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
|
|
goto got_it;
|
|
}
|
|
find_other_zone:
|
|
secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
|
|
if (secno >= MAIN_SECS(sbi)) {
|
|
if (dir == ALLOC_RIGHT) {
|
|
secno = find_next_zero_bit(free_i->free_secmap,
|
|
MAIN_SECS(sbi), 0);
|
|
f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
|
|
} else {
|
|
go_left = 1;
|
|
left_start = hint - 1;
|
|
}
|
|
}
|
|
if (go_left == 0)
|
|
goto skip_left;
|
|
|
|
while (test_bit(left_start, free_i->free_secmap)) {
|
|
if (left_start > 0) {
|
|
left_start--;
|
|
continue;
|
|
}
|
|
left_start = find_next_zero_bit(free_i->free_secmap,
|
|
MAIN_SECS(sbi), 0);
|
|
f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
|
|
break;
|
|
}
|
|
secno = left_start;
|
|
skip_left:
|
|
segno = GET_SEG_FROM_SEC(sbi, secno);
|
|
zoneno = GET_ZONE_FROM_SEC(sbi, secno);
|
|
|
|
/* give up on finding another zone */
|
|
if (!init)
|
|
goto got_it;
|
|
if (sbi->secs_per_zone == 1)
|
|
goto got_it;
|
|
if (zoneno == old_zoneno)
|
|
goto got_it;
|
|
if (dir == ALLOC_LEFT) {
|
|
if (!go_left && zoneno + 1 >= total_zones)
|
|
goto got_it;
|
|
if (go_left && zoneno == 0)
|
|
goto got_it;
|
|
}
|
|
for (i = 0; i < NR_CURSEG_TYPE; i++)
|
|
if (CURSEG_I(sbi, i)->zone == zoneno)
|
|
break;
|
|
|
|
if (i < NR_CURSEG_TYPE) {
|
|
/* zone is in user, try another */
|
|
if (go_left)
|
|
hint = zoneno * sbi->secs_per_zone - 1;
|
|
else if (zoneno + 1 >= total_zones)
|
|
hint = 0;
|
|
else
|
|
hint = (zoneno + 1) * sbi->secs_per_zone;
|
|
init = false;
|
|
goto find_other_zone;
|
|
}
|
|
got_it:
|
|
/* set it as dirty segment in free segmap */
|
|
f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
|
|
__set_inuse(sbi, segno);
|
|
*newseg = segno;
|
|
spin_unlock(&free_i->segmap_lock);
|
|
}
|
|
|
|
static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
struct summary_footer *sum_footer;
|
|
|
|
curseg->segno = curseg->next_segno;
|
|
curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
|
|
curseg->next_blkoff = 0;
|
|
curseg->next_segno = NULL_SEGNO;
|
|
|
|
sum_footer = &(curseg->sum_blk->footer);
|
|
memset(sum_footer, 0, sizeof(struct summary_footer));
|
|
if (IS_DATASEG(type))
|
|
SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
|
|
if (IS_NODESEG(type))
|
|
SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
|
|
__set_sit_entry_type(sbi, type, curseg->segno, modified);
|
|
}
|
|
|
|
static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
/* if segs_per_sec is large than 1, we need to keep original policy. */
|
|
if (sbi->segs_per_sec != 1)
|
|
return CURSEG_I(sbi, type)->segno;
|
|
|
|
if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
|
|
return 0;
|
|
|
|
if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
|
|
return SIT_I(sbi)->last_victim[ALLOC_NEXT];
|
|
return CURSEG_I(sbi, type)->segno;
|
|
}
|
|
|
|
/*
|
|
* Allocate a current working segment.
|
|
* This function always allocates a free segment in LFS manner.
|
|
*/
|
|
static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
unsigned int segno = curseg->segno;
|
|
int dir = ALLOC_LEFT;
|
|
|
|
write_sum_page(sbi, curseg->sum_blk,
|
|
GET_SUM_BLOCK(sbi, segno));
|
|
if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
|
|
dir = ALLOC_RIGHT;
|
|
|
|
if (test_opt(sbi, NOHEAP))
|
|
dir = ALLOC_RIGHT;
|
|
|
|
segno = __get_next_segno(sbi, type);
|
|
get_new_segment(sbi, &segno, new_sec, dir);
|
|
curseg->next_segno = segno;
|
|
reset_curseg(sbi, type, 1);
|
|
curseg->alloc_type = LFS;
|
|
}
|
|
|
|
static void __next_free_blkoff(struct f2fs_sb_info *sbi,
|
|
struct curseg_info *seg, block_t start)
|
|
{
|
|
struct seg_entry *se = get_seg_entry(sbi, seg->segno);
|
|
int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
|
|
unsigned long *target_map = SIT_I(sbi)->tmp_map;
|
|
unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
|
|
unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
|
|
int i, pos;
|
|
|
|
for (i = 0; i < entries; i++)
|
|
target_map[i] = ckpt_map[i] | cur_map[i];
|
|
|
|
pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
|
|
|
|
seg->next_blkoff = pos;
|
|
}
|
|
|
|
/*
|
|
* If a segment is written by LFS manner, next block offset is just obtained
|
|
* by increasing the current block offset. However, if a segment is written by
|
|
* SSR manner, next block offset obtained by calling __next_free_blkoff
|
|
*/
|
|
static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
|
|
struct curseg_info *seg)
|
|
{
|
|
if (seg->alloc_type == SSR)
|
|
__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
|
|
else
|
|
seg->next_blkoff++;
|
|
}
|
|
|
|
/*
|
|
* This function always allocates a used segment(from dirty seglist) by SSR
|
|
* manner, so it should recover the existing segment information of valid blocks
|
|
*/
|
|
static void change_curseg(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
unsigned int new_segno = curseg->next_segno;
|
|
struct f2fs_summary_block *sum_node;
|
|
struct page *sum_page;
|
|
|
|
write_sum_page(sbi, curseg->sum_blk,
|
|
GET_SUM_BLOCK(sbi, curseg->segno));
|
|
__set_test_and_inuse(sbi, new_segno);
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
__remove_dirty_segment(sbi, new_segno, PRE);
|
|
__remove_dirty_segment(sbi, new_segno, DIRTY);
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
|
|
reset_curseg(sbi, type, 1);
|
|
curseg->alloc_type = SSR;
|
|
__next_free_blkoff(sbi, curseg, 0);
|
|
|
|
sum_page = get_sum_page(sbi, new_segno);
|
|
sum_node = (struct f2fs_summary_block *)page_address(sum_page);
|
|
memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
|
|
f2fs_put_page(sum_page, 1);
|
|
}
|
|
|
|
static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
|
|
unsigned segno = NULL_SEGNO;
|
|
int i, cnt;
|
|
bool reversed = false;
|
|
|
|
/* need_SSR() already forces to do this */
|
|
if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
|
|
curseg->next_segno = segno;
|
|
return 1;
|
|
}
|
|
|
|
/* For node segments, let's do SSR more intensively */
|
|
if (IS_NODESEG(type)) {
|
|
if (type >= CURSEG_WARM_NODE) {
|
|
reversed = true;
|
|
i = CURSEG_COLD_NODE;
|
|
} else {
|
|
i = CURSEG_HOT_NODE;
|
|
}
|
|
cnt = NR_CURSEG_NODE_TYPE;
|
|
} else {
|
|
if (type >= CURSEG_WARM_DATA) {
|
|
reversed = true;
|
|
i = CURSEG_COLD_DATA;
|
|
} else {
|
|
i = CURSEG_HOT_DATA;
|
|
}
|
|
cnt = NR_CURSEG_DATA_TYPE;
|
|
}
|
|
|
|
for (; cnt-- > 0; reversed ? i-- : i++) {
|
|
if (i == type)
|
|
continue;
|
|
if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
|
|
curseg->next_segno = segno;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* flush out current segment and replace it with new segment
|
|
* This function should be returned with success, otherwise BUG
|
|
*/
|
|
static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
|
|
int type, bool force)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
|
|
if (force)
|
|
new_curseg(sbi, type, true);
|
|
else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
|
|
type == CURSEG_WARM_NODE)
|
|
new_curseg(sbi, type, false);
|
|
else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
|
|
new_curseg(sbi, type, false);
|
|
else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
|
|
change_curseg(sbi, type);
|
|
else
|
|
new_curseg(sbi, type, false);
|
|
|
|
stat_inc_seg_type(sbi, curseg);
|
|
}
|
|
|
|
void allocate_new_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct curseg_info *curseg;
|
|
unsigned int old_segno;
|
|
int i;
|
|
|
|
down_write(&SIT_I(sbi)->sentry_lock);
|
|
|
|
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
|
|
curseg = CURSEG_I(sbi, i);
|
|
old_segno = curseg->segno;
|
|
SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
|
|
locate_dirty_segment(sbi, old_segno);
|
|
}
|
|
|
|
up_write(&SIT_I(sbi)->sentry_lock);
|
|
}
|
|
|
|
static const struct segment_allocation default_salloc_ops = {
|
|
.allocate_segment = allocate_segment_by_default,
|
|
};
|
|
|
|
bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
__u64 trim_start = cpc->trim_start;
|
|
bool has_candidate = false;
|
|
|
|
down_write(&SIT_I(sbi)->sentry_lock);
|
|
for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
|
|
if (add_discard_addrs(sbi, cpc, true)) {
|
|
has_candidate = true;
|
|
break;
|
|
}
|
|
}
|
|
up_write(&SIT_I(sbi)->sentry_lock);
|
|
|
|
cpc->trim_start = trim_start;
|
|
return has_candidate;
|
|
}
|
|
|
|
int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
|
|
{
|
|
__u64 start = F2FS_BYTES_TO_BLK(range->start);
|
|
__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
|
|
unsigned int start_segno, end_segno, cur_segno;
|
|
block_t start_block, end_block;
|
|
struct cp_control cpc;
|
|
struct discard_policy dpolicy;
|
|
unsigned long long trimmed = 0;
|
|
int err = 0;
|
|
|
|
if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
|
|
return -EINVAL;
|
|
|
|
if (end <= MAIN_BLKADDR(sbi))
|
|
goto out;
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
|
|
f2fs_msg(sbi->sb, KERN_WARNING,
|
|
"Found FS corruption, run fsck to fix.");
|
|
goto out;
|
|
}
|
|
|
|
/* start/end segment number in main_area */
|
|
start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
|
|
end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
|
|
GET_SEGNO(sbi, end);
|
|
|
|
cpc.reason = CP_DISCARD;
|
|
cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
|
|
|
|
/* do checkpoint to issue discard commands safely */
|
|
for (cur_segno = start_segno; cur_segno <= end_segno;
|
|
cur_segno = cpc.trim_end + 1) {
|
|
cpc.trim_start = cur_segno;
|
|
|
|
if (sbi->discard_blks == 0)
|
|
break;
|
|
else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
|
|
cpc.trim_end = end_segno;
|
|
else
|
|
cpc.trim_end = min_t(unsigned int,
|
|
rounddown(cur_segno +
|
|
BATCHED_TRIM_SEGMENTS(sbi),
|
|
sbi->segs_per_sec) - 1, end_segno);
|
|
|
|
mutex_lock(&sbi->gc_mutex);
|
|
err = write_checkpoint(sbi, &cpc);
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
if (err)
|
|
break;
|
|
|
|
schedule();
|
|
}
|
|
|
|
start_block = START_BLOCK(sbi, start_segno);
|
|
end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
|
|
|
|
init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
|
|
__issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
|
|
trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
|
|
start_block, end_block);
|
|
out:
|
|
range->len = F2FS_BLK_TO_BYTES(trimmed);
|
|
return err;
|
|
}
|
|
|
|
static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
if (curseg->next_blkoff < sbi->blocks_per_seg)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int __get_segment_type_2(struct f2fs_io_info *fio)
|
|
{
|
|
if (fio->type == DATA)
|
|
return CURSEG_HOT_DATA;
|
|
else
|
|
return CURSEG_HOT_NODE;
|
|
}
|
|
|
|
static int __get_segment_type_4(struct f2fs_io_info *fio)
|
|
{
|
|
if (fio->type == DATA) {
|
|
struct inode *inode = fio->page->mapping->host;
|
|
|
|
if (S_ISDIR(inode->i_mode))
|
|
return CURSEG_HOT_DATA;
|
|
else
|
|
return CURSEG_COLD_DATA;
|
|
} else {
|
|
if (IS_DNODE(fio->page) && is_cold_node(fio->page))
|
|
return CURSEG_WARM_NODE;
|
|
else
|
|
return CURSEG_COLD_NODE;
|
|
}
|
|
}
|
|
|
|
static int __get_segment_type_6(struct f2fs_io_info *fio)
|
|
{
|
|
if (fio->type == DATA) {
|
|
struct inode *inode = fio->page->mapping->host;
|
|
|
|
if (is_cold_data(fio->page) || file_is_cold(inode))
|
|
return CURSEG_COLD_DATA;
|
|
if (is_inode_flag_set(inode, FI_HOT_DATA))
|
|
return CURSEG_HOT_DATA;
|
|
return CURSEG_WARM_DATA;
|
|
} else {
|
|
if (IS_DNODE(fio->page))
|
|
return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
|
|
CURSEG_HOT_NODE;
|
|
return CURSEG_COLD_NODE;
|
|
}
|
|
}
|
|
|
|
static int __get_segment_type(struct f2fs_io_info *fio)
|
|
{
|
|
int type = 0;
|
|
|
|
switch (fio->sbi->active_logs) {
|
|
case 2:
|
|
type = __get_segment_type_2(fio);
|
|
break;
|
|
case 4:
|
|
type = __get_segment_type_4(fio);
|
|
break;
|
|
case 6:
|
|
type = __get_segment_type_6(fio);
|
|
break;
|
|
default:
|
|
f2fs_bug_on(fio->sbi, true);
|
|
}
|
|
|
|
if (IS_HOT(type))
|
|
fio->temp = HOT;
|
|
else if (IS_WARM(type))
|
|
fio->temp = WARM;
|
|
else
|
|
fio->temp = COLD;
|
|
return type;
|
|
}
|
|
|
|
void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
|
|
block_t old_blkaddr, block_t *new_blkaddr,
|
|
struct f2fs_summary *sum, int type,
|
|
struct f2fs_io_info *fio, bool add_list)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
|
|
down_read(&SM_I(sbi)->curseg_lock);
|
|
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
down_write(&sit_i->sentry_lock);
|
|
|
|
*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
|
|
|
|
f2fs_wait_discard_bio(sbi, *new_blkaddr);
|
|
|
|
/*
|
|
* __add_sum_entry should be resided under the curseg_mutex
|
|
* because, this function updates a summary entry in the
|
|
* current summary block.
|
|
*/
|
|
__add_sum_entry(sbi, type, sum);
|
|
|
|
__refresh_next_blkoff(sbi, curseg);
|
|
|
|
stat_inc_block_count(sbi, curseg);
|
|
|
|
/*
|
|
* SIT information should be updated before segment allocation,
|
|
* since SSR needs latest valid block information.
|
|
*/
|
|
update_sit_entry(sbi, *new_blkaddr, 1);
|
|
if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
|
|
update_sit_entry(sbi, old_blkaddr, -1);
|
|
|
|
if (!__has_curseg_space(sbi, type))
|
|
sit_i->s_ops->allocate_segment(sbi, type, false);
|
|
|
|
/*
|
|
* segment dirty status should be updated after segment allocation,
|
|
* so we just need to update status only one time after previous
|
|
* segment being closed.
|
|
*/
|
|
locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
|
|
locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
|
|
|
|
up_write(&sit_i->sentry_lock);
|
|
|
|
if (page && IS_NODESEG(type)) {
|
|
fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
|
|
|
|
f2fs_inode_chksum_set(sbi, page);
|
|
}
|
|
|
|
if (add_list) {
|
|
struct f2fs_bio_info *io;
|
|
|
|
INIT_LIST_HEAD(&fio->list);
|
|
fio->in_list = true;
|
|
io = sbi->write_io[fio->type] + fio->temp;
|
|
spin_lock(&io->io_lock);
|
|
list_add_tail(&fio->list, &io->io_list);
|
|
spin_unlock(&io->io_lock);
|
|
}
|
|
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
|
|
up_read(&SM_I(sbi)->curseg_lock);
|
|
}
|
|
|
|
static void update_device_state(struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
unsigned int devidx;
|
|
|
|
if (!sbi->s_ndevs)
|
|
return;
|
|
|
|
devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
|
|
|
|
/* update device state for fsync */
|
|
set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
|
|
|
|
/* update device state for checkpoint */
|
|
if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
|
|
spin_lock(&sbi->dev_lock);
|
|
f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
|
|
spin_unlock(&sbi->dev_lock);
|
|
}
|
|
}
|
|
|
|
static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
|
|
{
|
|
int type = __get_segment_type(fio);
|
|
int err;
|
|
|
|
reallocate:
|
|
allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
|
|
&fio->new_blkaddr, sum, type, fio, true);
|
|
|
|
/* writeout dirty page into bdev */
|
|
err = f2fs_submit_page_write(fio);
|
|
if (err == -EAGAIN) {
|
|
fio->old_blkaddr = fio->new_blkaddr;
|
|
goto reallocate;
|
|
} else if (!err) {
|
|
update_device_state(fio);
|
|
}
|
|
}
|
|
|
|
void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
|
|
enum iostat_type io_type)
|
|
{
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = META,
|
|
.op = REQ_OP_WRITE,
|
|
.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
|
|
.old_blkaddr = page->index,
|
|
.new_blkaddr = page->index,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
.in_list = false,
|
|
};
|
|
|
|
if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
|
|
fio.op_flags &= ~REQ_META;
|
|
|
|
set_page_writeback(page);
|
|
f2fs_submit_page_write(&fio);
|
|
|
|
f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
|
|
}
|
|
|
|
void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_summary sum;
|
|
|
|
set_summary(&sum, nid, 0, 0);
|
|
do_write_page(&sum, fio);
|
|
|
|
f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
|
|
}
|
|
|
|
void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
struct f2fs_summary sum;
|
|
struct node_info ni;
|
|
|
|
f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
|
|
get_node_info(sbi, dn->nid, &ni);
|
|
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
|
|
do_write_page(&sum, fio);
|
|
f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
|
|
|
|
f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
|
|
}
|
|
|
|
int rewrite_data_page(struct f2fs_io_info *fio)
|
|
{
|
|
int err;
|
|
|
|
fio->new_blkaddr = fio->old_blkaddr;
|
|
stat_inc_inplace_blocks(fio->sbi);
|
|
|
|
err = f2fs_submit_page_bio(fio);
|
|
if (!err)
|
|
update_device_state(fio);
|
|
|
|
f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
int i;
|
|
|
|
for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
|
|
if (CURSEG_I(sbi, i)->segno == segno)
|
|
break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
|
|
block_t old_blkaddr, block_t new_blkaddr,
|
|
bool recover_curseg, bool recover_newaddr)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
struct curseg_info *curseg;
|
|
unsigned int segno, old_cursegno;
|
|
struct seg_entry *se;
|
|
int type;
|
|
unsigned short old_blkoff;
|
|
|
|
segno = GET_SEGNO(sbi, new_blkaddr);
|
|
se = get_seg_entry(sbi, segno);
|
|
type = se->type;
|
|
|
|
down_write(&SM_I(sbi)->curseg_lock);
|
|
|
|
if (!recover_curseg) {
|
|
/* for recovery flow */
|
|
if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
|
|
if (old_blkaddr == NULL_ADDR)
|
|
type = CURSEG_COLD_DATA;
|
|
else
|
|
type = CURSEG_WARM_DATA;
|
|
}
|
|
} else {
|
|
if (IS_CURSEG(sbi, segno)) {
|
|
/* se->type is volatile as SSR allocation */
|
|
type = __f2fs_get_curseg(sbi, segno);
|
|
f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
|
|
} else {
|
|
type = CURSEG_WARM_DATA;
|
|
}
|
|
}
|
|
|
|
curseg = CURSEG_I(sbi, type);
|
|
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
down_write(&sit_i->sentry_lock);
|
|
|
|
old_cursegno = curseg->segno;
|
|
old_blkoff = curseg->next_blkoff;
|
|
|
|
/* change the current segment */
|
|
if (segno != curseg->segno) {
|
|
curseg->next_segno = segno;
|
|
change_curseg(sbi, type);
|
|
}
|
|
|
|
curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
|
|
__add_sum_entry(sbi, type, sum);
|
|
|
|
if (!recover_curseg || recover_newaddr)
|
|
update_sit_entry(sbi, new_blkaddr, 1);
|
|
if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
|
|
update_sit_entry(sbi, old_blkaddr, -1);
|
|
|
|
locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
|
|
locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
|
|
|
|
locate_dirty_segment(sbi, old_cursegno);
|
|
|
|
if (recover_curseg) {
|
|
if (old_cursegno != curseg->segno) {
|
|
curseg->next_segno = old_cursegno;
|
|
change_curseg(sbi, type);
|
|
}
|
|
curseg->next_blkoff = old_blkoff;
|
|
}
|
|
|
|
up_write(&sit_i->sentry_lock);
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
up_write(&SM_I(sbi)->curseg_lock);
|
|
}
|
|
|
|
void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
|
|
block_t old_addr, block_t new_addr,
|
|
unsigned char version, bool recover_curseg,
|
|
bool recover_newaddr)
|
|
{
|
|
struct f2fs_summary sum;
|
|
|
|
set_summary(&sum, dn->nid, dn->ofs_in_node, version);
|
|
|
|
__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
|
|
recover_curseg, recover_newaddr);
|
|
|
|
f2fs_update_data_blkaddr(dn, new_addr);
|
|
}
|
|
|
|
void f2fs_wait_on_page_writeback(struct page *page,
|
|
enum page_type type, bool ordered)
|
|
{
|
|
if (PageWriteback(page)) {
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
|
|
|
|
f2fs_submit_merged_write_cond(sbi, page->mapping->host,
|
|
0, page->index, type);
|
|
if (ordered)
|
|
wait_on_page_writeback(page);
|
|
else
|
|
wait_for_stable_page(page);
|
|
}
|
|
}
|
|
|
|
void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
|
|
{
|
|
struct page *cpage;
|
|
|
|
if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
|
|
return;
|
|
|
|
cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
|
|
if (cpage) {
|
|
f2fs_wait_on_page_writeback(cpage, DATA, true);
|
|
f2fs_put_page(cpage, 1);
|
|
}
|
|
}
|
|
|
|
static int read_compacted_summaries(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct curseg_info *seg_i;
|
|
unsigned char *kaddr;
|
|
struct page *page;
|
|
block_t start;
|
|
int i, j, offset;
|
|
|
|
start = start_sum_block(sbi);
|
|
|
|
page = get_meta_page(sbi, start++);
|
|
kaddr = (unsigned char *)page_address(page);
|
|
|
|
/* Step 1: restore nat cache */
|
|
seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
|
|
|
|
/* Step 2: restore sit cache */
|
|
seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
|
|
memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
|
|
offset = 2 * SUM_JOURNAL_SIZE;
|
|
|
|
/* Step 3: restore summary entries */
|
|
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
|
|
unsigned short blk_off;
|
|
unsigned int segno;
|
|
|
|
seg_i = CURSEG_I(sbi, i);
|
|
segno = le32_to_cpu(ckpt->cur_data_segno[i]);
|
|
blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
|
|
seg_i->next_segno = segno;
|
|
reset_curseg(sbi, i, 0);
|
|
seg_i->alloc_type = ckpt->alloc_type[i];
|
|
seg_i->next_blkoff = blk_off;
|
|
|
|
if (seg_i->alloc_type == SSR)
|
|
blk_off = sbi->blocks_per_seg;
|
|
|
|
for (j = 0; j < blk_off; j++) {
|
|
struct f2fs_summary *s;
|
|
s = (struct f2fs_summary *)(kaddr + offset);
|
|
seg_i->sum_blk->entries[j] = *s;
|
|
offset += SUMMARY_SIZE;
|
|
if (offset + SUMMARY_SIZE <= PAGE_SIZE -
|
|
SUM_FOOTER_SIZE)
|
|
continue;
|
|
|
|
f2fs_put_page(page, 1);
|
|
page = NULL;
|
|
|
|
page = get_meta_page(sbi, start++);
|
|
kaddr = (unsigned char *)page_address(page);
|
|
offset = 0;
|
|
}
|
|
}
|
|
f2fs_put_page(page, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct f2fs_summary_block *sum;
|
|
struct curseg_info *curseg;
|
|
struct page *new;
|
|
unsigned short blk_off;
|
|
unsigned int segno = 0;
|
|
block_t blk_addr = 0;
|
|
|
|
/* get segment number and block addr */
|
|
if (IS_DATASEG(type)) {
|
|
segno = le32_to_cpu(ckpt->cur_data_segno[type]);
|
|
blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
|
|
CURSEG_HOT_DATA]);
|
|
if (__exist_node_summaries(sbi))
|
|
blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
|
|
else
|
|
blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
|
|
} else {
|
|
segno = le32_to_cpu(ckpt->cur_node_segno[type -
|
|
CURSEG_HOT_NODE]);
|
|
blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
|
|
CURSEG_HOT_NODE]);
|
|
if (__exist_node_summaries(sbi))
|
|
blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
|
|
type - CURSEG_HOT_NODE);
|
|
else
|
|
blk_addr = GET_SUM_BLOCK(sbi, segno);
|
|
}
|
|
|
|
new = get_meta_page(sbi, blk_addr);
|
|
sum = (struct f2fs_summary_block *)page_address(new);
|
|
|
|
if (IS_NODESEG(type)) {
|
|
if (__exist_node_summaries(sbi)) {
|
|
struct f2fs_summary *ns = &sum->entries[0];
|
|
int i;
|
|
for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
|
|
ns->version = 0;
|
|
ns->ofs_in_node = 0;
|
|
}
|
|
} else {
|
|
int err;
|
|
|
|
err = restore_node_summary(sbi, segno, sum);
|
|
if (err) {
|
|
f2fs_put_page(new, 1);
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* set uncompleted segment to curseg */
|
|
curseg = CURSEG_I(sbi, type);
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
|
|
/* update journal info */
|
|
down_write(&curseg->journal_rwsem);
|
|
memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
|
|
up_write(&curseg->journal_rwsem);
|
|
|
|
memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
|
|
memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
|
|
curseg->next_segno = segno;
|
|
reset_curseg(sbi, type, 0);
|
|
curseg->alloc_type = ckpt->alloc_type[type];
|
|
curseg->next_blkoff = blk_off;
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
f2fs_put_page(new, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
|
|
struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
|
|
int type = CURSEG_HOT_DATA;
|
|
int err;
|
|
|
|
if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
|
|
int npages = npages_for_summary_flush(sbi, true);
|
|
|
|
if (npages >= 2)
|
|
ra_meta_pages(sbi, start_sum_block(sbi), npages,
|
|
META_CP, true);
|
|
|
|
/* restore for compacted data summary */
|
|
if (read_compacted_summaries(sbi))
|
|
return -EINVAL;
|
|
type = CURSEG_HOT_NODE;
|
|
}
|
|
|
|
if (__exist_node_summaries(sbi))
|
|
ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
|
|
NR_CURSEG_TYPE - type, META_CP, true);
|
|
|
|
for (; type <= CURSEG_COLD_NODE; type++) {
|
|
err = read_normal_summaries(sbi, type);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* sanity check for summary blocks */
|
|
if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
|
|
sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
|
|
{
|
|
struct page *page;
|
|
unsigned char *kaddr;
|
|
struct f2fs_summary *summary;
|
|
struct curseg_info *seg_i;
|
|
int written_size = 0;
|
|
int i, j;
|
|
|
|
page = grab_meta_page(sbi, blkaddr++);
|
|
kaddr = (unsigned char *)page_address(page);
|
|
|
|
/* Step 1: write nat cache */
|
|
seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
|
|
written_size += SUM_JOURNAL_SIZE;
|
|
|
|
/* Step 2: write sit cache */
|
|
seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
|
|
memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
|
|
written_size += SUM_JOURNAL_SIZE;
|
|
|
|
/* Step 3: write summary entries */
|
|
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
|
|
unsigned short blkoff;
|
|
seg_i = CURSEG_I(sbi, i);
|
|
if (sbi->ckpt->alloc_type[i] == SSR)
|
|
blkoff = sbi->blocks_per_seg;
|
|
else
|
|
blkoff = curseg_blkoff(sbi, i);
|
|
|
|
for (j = 0; j < blkoff; j++) {
|
|
if (!page) {
|
|
page = grab_meta_page(sbi, blkaddr++);
|
|
kaddr = (unsigned char *)page_address(page);
|
|
written_size = 0;
|
|
}
|
|
summary = (struct f2fs_summary *)(kaddr + written_size);
|
|
*summary = seg_i->sum_blk->entries[j];
|
|
written_size += SUMMARY_SIZE;
|
|
|
|
if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
|
|
SUM_FOOTER_SIZE)
|
|
continue;
|
|
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
page = NULL;
|
|
}
|
|
}
|
|
if (page) {
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
}
|
|
|
|
static void write_normal_summaries(struct f2fs_sb_info *sbi,
|
|
block_t blkaddr, int type)
|
|
{
|
|
int i, end;
|
|
if (IS_DATASEG(type))
|
|
end = type + NR_CURSEG_DATA_TYPE;
|
|
else
|
|
end = type + NR_CURSEG_NODE_TYPE;
|
|
|
|
for (i = type; i < end; i++)
|
|
write_current_sum_page(sbi, i, blkaddr + (i - type));
|
|
}
|
|
|
|
void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
|
|
{
|
|
if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
|
|
write_compacted_summaries(sbi, start_blk);
|
|
else
|
|
write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
|
|
}
|
|
|
|
void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
|
|
{
|
|
write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
|
|
}
|
|
|
|
int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
|
|
unsigned int val, int alloc)
|
|
{
|
|
int i;
|
|
|
|
if (type == NAT_JOURNAL) {
|
|
for (i = 0; i < nats_in_cursum(journal); i++) {
|
|
if (le32_to_cpu(nid_in_journal(journal, i)) == val)
|
|
return i;
|
|
}
|
|
if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
|
|
return update_nats_in_cursum(journal, 1);
|
|
} else if (type == SIT_JOURNAL) {
|
|
for (i = 0; i < sits_in_cursum(journal); i++)
|
|
if (le32_to_cpu(segno_in_journal(journal, i)) == val)
|
|
return i;
|
|
if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
|
|
return update_sits_in_cursum(journal, 1);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
return get_meta_page(sbi, current_sit_addr(sbi, segno));
|
|
}
|
|
|
|
static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
|
|
unsigned int start)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
struct page *src_page, *dst_page;
|
|
pgoff_t src_off, dst_off;
|
|
void *src_addr, *dst_addr;
|
|
|
|
src_off = current_sit_addr(sbi, start);
|
|
dst_off = next_sit_addr(sbi, src_off);
|
|
|
|
/* get current sit block page without lock */
|
|
src_page = get_meta_page(sbi, src_off);
|
|
dst_page = grab_meta_page(sbi, dst_off);
|
|
f2fs_bug_on(sbi, PageDirty(src_page));
|
|
|
|
src_addr = page_address(src_page);
|
|
dst_addr = page_address(dst_page);
|
|
memcpy(dst_addr, src_addr, PAGE_SIZE);
|
|
|
|
set_page_dirty(dst_page);
|
|
f2fs_put_page(src_page, 1);
|
|
|
|
set_to_next_sit(sit_i, start);
|
|
|
|
return dst_page;
|
|
}
|
|
|
|
static struct sit_entry_set *grab_sit_entry_set(void)
|
|
{
|
|
struct sit_entry_set *ses =
|
|
f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
|
|
|
|
ses->entry_cnt = 0;
|
|
INIT_LIST_HEAD(&ses->set_list);
|
|
return ses;
|
|
}
|
|
|
|
static void release_sit_entry_set(struct sit_entry_set *ses)
|
|
{
|
|
list_del(&ses->set_list);
|
|
kmem_cache_free(sit_entry_set_slab, ses);
|
|
}
|
|
|
|
static void adjust_sit_entry_set(struct sit_entry_set *ses,
|
|
struct list_head *head)
|
|
{
|
|
struct sit_entry_set *next = ses;
|
|
|
|
if (list_is_last(&ses->set_list, head))
|
|
return;
|
|
|
|
list_for_each_entry_continue(next, head, set_list)
|
|
if (ses->entry_cnt <= next->entry_cnt)
|
|
break;
|
|
|
|
list_move_tail(&ses->set_list, &next->set_list);
|
|
}
|
|
|
|
static void add_sit_entry(unsigned int segno, struct list_head *head)
|
|
{
|
|
struct sit_entry_set *ses;
|
|
unsigned int start_segno = START_SEGNO(segno);
|
|
|
|
list_for_each_entry(ses, head, set_list) {
|
|
if (ses->start_segno == start_segno) {
|
|
ses->entry_cnt++;
|
|
adjust_sit_entry_set(ses, head);
|
|
return;
|
|
}
|
|
}
|
|
|
|
ses = grab_sit_entry_set();
|
|
|
|
ses->start_segno = start_segno;
|
|
ses->entry_cnt++;
|
|
list_add(&ses->set_list, head);
|
|
}
|
|
|
|
static void add_sits_in_set(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_sm_info *sm_info = SM_I(sbi);
|
|
struct list_head *set_list = &sm_info->sit_entry_set;
|
|
unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
|
|
unsigned int segno;
|
|
|
|
for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
|
|
add_sit_entry(segno, set_list);
|
|
}
|
|
|
|
static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
int i;
|
|
|
|
down_write(&curseg->journal_rwsem);
|
|
for (i = 0; i < sits_in_cursum(journal); i++) {
|
|
unsigned int segno;
|
|
bool dirtied;
|
|
|
|
segno = le32_to_cpu(segno_in_journal(journal, i));
|
|
dirtied = __mark_sit_entry_dirty(sbi, segno);
|
|
|
|
if (!dirtied)
|
|
add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
|
|
}
|
|
update_sits_in_cursum(journal, -i);
|
|
up_write(&curseg->journal_rwsem);
|
|
}
|
|
|
|
/*
|
|
* CP calls this function, which flushes SIT entries including sit_journal,
|
|
* and moves prefree segs to free segs.
|
|
*/
|
|
void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
struct sit_entry_set *ses, *tmp;
|
|
struct list_head *head = &SM_I(sbi)->sit_entry_set;
|
|
bool to_journal = true;
|
|
struct seg_entry *se;
|
|
|
|
down_write(&sit_i->sentry_lock);
|
|
|
|
if (!sit_i->dirty_sentries)
|
|
goto out;
|
|
|
|
/*
|
|
* add and account sit entries of dirty bitmap in sit entry
|
|
* set temporarily
|
|
*/
|
|
add_sits_in_set(sbi);
|
|
|
|
/*
|
|
* if there are no enough space in journal to store dirty sit
|
|
* entries, remove all entries from journal and add and account
|
|
* them in sit entry set.
|
|
*/
|
|
if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
|
|
remove_sits_in_journal(sbi);
|
|
|
|
/*
|
|
* there are two steps to flush sit entries:
|
|
* #1, flush sit entries to journal in current cold data summary block.
|
|
* #2, flush sit entries to sit page.
|
|
*/
|
|
list_for_each_entry_safe(ses, tmp, head, set_list) {
|
|
struct page *page = NULL;
|
|
struct f2fs_sit_block *raw_sit = NULL;
|
|
unsigned int start_segno = ses->start_segno;
|
|
unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
|
|
(unsigned long)MAIN_SEGS(sbi));
|
|
unsigned int segno = start_segno;
|
|
|
|
if (to_journal &&
|
|
!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
|
|
to_journal = false;
|
|
|
|
if (to_journal) {
|
|
down_write(&curseg->journal_rwsem);
|
|
} else {
|
|
page = get_next_sit_page(sbi, start_segno);
|
|
raw_sit = page_address(page);
|
|
}
|
|
|
|
/* flush dirty sit entries in region of current sit set */
|
|
for_each_set_bit_from(segno, bitmap, end) {
|
|
int offset, sit_offset;
|
|
|
|
se = get_seg_entry(sbi, segno);
|
|
|
|
/* add discard candidates */
|
|
if (!(cpc->reason & CP_DISCARD)) {
|
|
cpc->trim_start = segno;
|
|
add_discard_addrs(sbi, cpc, false);
|
|
}
|
|
|
|
if (to_journal) {
|
|
offset = lookup_journal_in_cursum(journal,
|
|
SIT_JOURNAL, segno, 1);
|
|
f2fs_bug_on(sbi, offset < 0);
|
|
segno_in_journal(journal, offset) =
|
|
cpu_to_le32(segno);
|
|
seg_info_to_raw_sit(se,
|
|
&sit_in_journal(journal, offset));
|
|
} else {
|
|
sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
|
|
seg_info_to_raw_sit(se,
|
|
&raw_sit->entries[sit_offset]);
|
|
}
|
|
|
|
__clear_bit(segno, bitmap);
|
|
sit_i->dirty_sentries--;
|
|
ses->entry_cnt--;
|
|
}
|
|
|
|
if (to_journal)
|
|
up_write(&curseg->journal_rwsem);
|
|
else
|
|
f2fs_put_page(page, 1);
|
|
|
|
f2fs_bug_on(sbi, ses->entry_cnt);
|
|
release_sit_entry_set(ses);
|
|
}
|
|
|
|
f2fs_bug_on(sbi, !list_empty(head));
|
|
f2fs_bug_on(sbi, sit_i->dirty_sentries);
|
|
out:
|
|
if (cpc->reason & CP_DISCARD) {
|
|
__u64 trim_start = cpc->trim_start;
|
|
|
|
for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
|
|
add_discard_addrs(sbi, cpc, false);
|
|
|
|
cpc->trim_start = trim_start;
|
|
}
|
|
up_write(&sit_i->sentry_lock);
|
|
|
|
set_prefree_as_free_segments(sbi);
|
|
}
|
|
|
|
static int build_sit_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
|
|
struct sit_info *sit_i;
|
|
unsigned int sit_segs, start;
|
|
char *src_bitmap;
|
|
unsigned int bitmap_size;
|
|
|
|
/* allocate memory for SIT information */
|
|
sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
|
|
if (!sit_i)
|
|
return -ENOMEM;
|
|
|
|
SM_I(sbi)->sit_info = sit_i;
|
|
|
|
sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
|
|
sizeof(struct seg_entry), GFP_KERNEL);
|
|
if (!sit_i->sentries)
|
|
return -ENOMEM;
|
|
|
|
bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
|
|
sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
|
|
if (!sit_i->dirty_sentries_bitmap)
|
|
return -ENOMEM;
|
|
|
|
for (start = 0; start < MAIN_SEGS(sbi); start++) {
|
|
sit_i->sentries[start].cur_valid_map
|
|
= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
|
|
sit_i->sentries[start].ckpt_valid_map
|
|
= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
|
|
if (!sit_i->sentries[start].cur_valid_map ||
|
|
!sit_i->sentries[start].ckpt_valid_map)
|
|
return -ENOMEM;
|
|
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
sit_i->sentries[start].cur_valid_map_mir
|
|
= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
|
|
if (!sit_i->sentries[start].cur_valid_map_mir)
|
|
return -ENOMEM;
|
|
#endif
|
|
|
|
if (f2fs_discard_en(sbi)) {
|
|
sit_i->sentries[start].discard_map
|
|
= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
|
|
if (!sit_i->sentries[start].discard_map)
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
|
|
if (!sit_i->tmp_map)
|
|
return -ENOMEM;
|
|
|
|
if (sbi->segs_per_sec > 1) {
|
|
sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
|
|
sizeof(struct sec_entry), GFP_KERNEL);
|
|
if (!sit_i->sec_entries)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* get information related with SIT */
|
|
sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
|
|
|
|
/* setup SIT bitmap from ckeckpoint pack */
|
|
bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
|
|
src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
|
|
|
|
sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
|
|
if (!sit_i->sit_bitmap)
|
|
return -ENOMEM;
|
|
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
|
|
if (!sit_i->sit_bitmap_mir)
|
|
return -ENOMEM;
|
|
#endif
|
|
|
|
/* init SIT information */
|
|
sit_i->s_ops = &default_salloc_ops;
|
|
|
|
sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
|
|
sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
|
|
sit_i->written_valid_blocks = 0;
|
|
sit_i->bitmap_size = bitmap_size;
|
|
sit_i->dirty_sentries = 0;
|
|
sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
|
|
sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
|
|
sit_i->mounted_time = ktime_get_real_seconds();
|
|
init_rwsem(&sit_i->sentry_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int build_free_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct free_segmap_info *free_i;
|
|
unsigned int bitmap_size, sec_bitmap_size;
|
|
|
|
/* allocate memory for free segmap information */
|
|
free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
|
|
if (!free_i)
|
|
return -ENOMEM;
|
|
|
|
SM_I(sbi)->free_info = free_i;
|
|
|
|
bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
|
|
free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
|
|
if (!free_i->free_segmap)
|
|
return -ENOMEM;
|
|
|
|
sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
|
|
free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
|
|
if (!free_i->free_secmap)
|
|
return -ENOMEM;
|
|
|
|
/* set all segments as dirty temporarily */
|
|
memset(free_i->free_segmap, 0xff, bitmap_size);
|
|
memset(free_i->free_secmap, 0xff, sec_bitmap_size);
|
|
|
|
/* init free segmap information */
|
|
free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
|
|
free_i->free_segments = 0;
|
|
free_i->free_sections = 0;
|
|
spin_lock_init(&free_i->segmap_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int build_curseg(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct curseg_info *array;
|
|
int i;
|
|
|
|
array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
|
|
if (!array)
|
|
return -ENOMEM;
|
|
|
|
SM_I(sbi)->curseg_array = array;
|
|
|
|
for (i = 0; i < NR_CURSEG_TYPE; i++) {
|
|
mutex_init(&array[i].curseg_mutex);
|
|
array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!array[i].sum_blk)
|
|
return -ENOMEM;
|
|
init_rwsem(&array[i].journal_rwsem);
|
|
array[i].journal = kzalloc(sizeof(struct f2fs_journal),
|
|
GFP_KERNEL);
|
|
if (!array[i].journal)
|
|
return -ENOMEM;
|
|
array[i].segno = NULL_SEGNO;
|
|
array[i].next_blkoff = 0;
|
|
}
|
|
return restore_curseg_summaries(sbi);
|
|
}
|
|
|
|
static void build_sit_entries(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
struct seg_entry *se;
|
|
struct f2fs_sit_entry sit;
|
|
int sit_blk_cnt = SIT_BLK_CNT(sbi);
|
|
unsigned int i, start, end;
|
|
unsigned int readed, start_blk = 0;
|
|
|
|
do {
|
|
readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
|
|
META_SIT, true);
|
|
|
|
start = start_blk * sit_i->sents_per_block;
|
|
end = (start_blk + readed) * sit_i->sents_per_block;
|
|
|
|
for (; start < end && start < MAIN_SEGS(sbi); start++) {
|
|
struct f2fs_sit_block *sit_blk;
|
|
struct page *page;
|
|
|
|
se = &sit_i->sentries[start];
|
|
page = get_current_sit_page(sbi, start);
|
|
sit_blk = (struct f2fs_sit_block *)page_address(page);
|
|
sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
|
|
f2fs_put_page(page, 1);
|
|
|
|
check_block_count(sbi, start, &sit);
|
|
seg_info_from_raw_sit(se, &sit);
|
|
|
|
/* build discard map only one time */
|
|
if (f2fs_discard_en(sbi)) {
|
|
if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
|
|
memset(se->discard_map, 0xff,
|
|
SIT_VBLOCK_MAP_SIZE);
|
|
} else {
|
|
memcpy(se->discard_map,
|
|
se->cur_valid_map,
|
|
SIT_VBLOCK_MAP_SIZE);
|
|
sbi->discard_blks +=
|
|
sbi->blocks_per_seg -
|
|
se->valid_blocks;
|
|
}
|
|
}
|
|
|
|
if (sbi->segs_per_sec > 1)
|
|
get_sec_entry(sbi, start)->valid_blocks +=
|
|
se->valid_blocks;
|
|
}
|
|
start_blk += readed;
|
|
} while (start_blk < sit_blk_cnt);
|
|
|
|
down_read(&curseg->journal_rwsem);
|
|
for (i = 0; i < sits_in_cursum(journal); i++) {
|
|
unsigned int old_valid_blocks;
|
|
|
|
start = le32_to_cpu(segno_in_journal(journal, i));
|
|
se = &sit_i->sentries[start];
|
|
sit = sit_in_journal(journal, i);
|
|
|
|
old_valid_blocks = se->valid_blocks;
|
|
|
|
check_block_count(sbi, start, &sit);
|
|
seg_info_from_raw_sit(se, &sit);
|
|
|
|
if (f2fs_discard_en(sbi)) {
|
|
if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
|
|
memset(se->discard_map, 0xff,
|
|
SIT_VBLOCK_MAP_SIZE);
|
|
} else {
|
|
memcpy(se->discard_map, se->cur_valid_map,
|
|
SIT_VBLOCK_MAP_SIZE);
|
|
sbi->discard_blks += old_valid_blocks -
|
|
se->valid_blocks;
|
|
}
|
|
}
|
|
|
|
if (sbi->segs_per_sec > 1)
|
|
get_sec_entry(sbi, start)->valid_blocks +=
|
|
se->valid_blocks - old_valid_blocks;
|
|
}
|
|
up_read(&curseg->journal_rwsem);
|
|
}
|
|
|
|
static void init_free_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned int start;
|
|
int type;
|
|
|
|
for (start = 0; start < MAIN_SEGS(sbi); start++) {
|
|
struct seg_entry *sentry = get_seg_entry(sbi, start);
|
|
if (!sentry->valid_blocks)
|
|
__set_free(sbi, start);
|
|
else
|
|
SIT_I(sbi)->written_valid_blocks +=
|
|
sentry->valid_blocks;
|
|
}
|
|
|
|
/* set use the current segments */
|
|
for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
|
|
struct curseg_info *curseg_t = CURSEG_I(sbi, type);
|
|
__set_test_and_inuse(sbi, curseg_t->segno);
|
|
}
|
|
}
|
|
|
|
static void init_dirty_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int segno = 0, offset = 0;
|
|
unsigned short valid_blocks;
|
|
|
|
while (1) {
|
|
/* find dirty segment based on free segmap */
|
|
segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
|
|
if (segno >= MAIN_SEGS(sbi))
|
|
break;
|
|
offset = segno + 1;
|
|
valid_blocks = get_valid_blocks(sbi, segno, false);
|
|
if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
|
|
continue;
|
|
if (valid_blocks > sbi->blocks_per_seg) {
|
|
f2fs_bug_on(sbi, 1);
|
|
continue;
|
|
}
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
__locate_dirty_segment(sbi, segno, DIRTY);
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
}
|
|
}
|
|
|
|
static int init_victim_secmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
|
|
|
|
dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
|
|
if (!dirty_i->victim_secmap)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static int build_dirty_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i;
|
|
unsigned int bitmap_size, i;
|
|
|
|
/* allocate memory for dirty segments list information */
|
|
dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
|
|
if (!dirty_i)
|
|
return -ENOMEM;
|
|
|
|
SM_I(sbi)->dirty_info = dirty_i;
|
|
mutex_init(&dirty_i->seglist_lock);
|
|
|
|
bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
|
|
|
|
for (i = 0; i < NR_DIRTY_TYPE; i++) {
|
|
dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
|
|
if (!dirty_i->dirty_segmap[i])
|
|
return -ENOMEM;
|
|
}
|
|
|
|
init_dirty_segmap(sbi);
|
|
return init_victim_secmap(sbi);
|
|
}
|
|
|
|
/*
|
|
* Update min, max modified time for cost-benefit GC algorithm
|
|
*/
|
|
static void init_min_max_mtime(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
unsigned int segno;
|
|
|
|
down_write(&sit_i->sentry_lock);
|
|
|
|
sit_i->min_mtime = LLONG_MAX;
|
|
|
|
for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
|
|
unsigned int i;
|
|
unsigned long long mtime = 0;
|
|
|
|
for (i = 0; i < sbi->segs_per_sec; i++)
|
|
mtime += get_seg_entry(sbi, segno + i)->mtime;
|
|
|
|
mtime = div_u64(mtime, sbi->segs_per_sec);
|
|
|
|
if (sit_i->min_mtime > mtime)
|
|
sit_i->min_mtime = mtime;
|
|
}
|
|
sit_i->max_mtime = get_mtime(sbi);
|
|
up_write(&sit_i->sentry_lock);
|
|
}
|
|
|
|
int build_segment_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct f2fs_sm_info *sm_info;
|
|
int err;
|
|
|
|
sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
|
|
if (!sm_info)
|
|
return -ENOMEM;
|
|
|
|
/* init sm info */
|
|
sbi->sm_info = sm_info;
|
|
sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
|
|
sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
|
|
sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
|
|
sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
|
|
sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
|
|
sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
|
|
sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
|
|
sm_info->rec_prefree_segments = sm_info->main_segments *
|
|
DEF_RECLAIM_PREFREE_SEGMENTS / 100;
|
|
if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
|
|
sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
|
|
|
|
if (!test_opt(sbi, LFS))
|
|
sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
|
|
sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
|
|
sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
|
|
sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
|
|
sm_info->min_ssr_sections = reserved_sections(sbi);
|
|
|
|
sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
|
|
|
|
INIT_LIST_HEAD(&sm_info->sit_entry_set);
|
|
|
|
init_rwsem(&sm_info->curseg_lock);
|
|
|
|
if (!f2fs_readonly(sbi->sb)) {
|
|
err = create_flush_cmd_control(sbi);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = create_discard_cmd_control(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
err = build_sit_info(sbi);
|
|
if (err)
|
|
return err;
|
|
err = build_free_segmap(sbi);
|
|
if (err)
|
|
return err;
|
|
err = build_curseg(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
/* reinit free segmap based on SIT */
|
|
build_sit_entries(sbi);
|
|
|
|
init_free_segmap(sbi);
|
|
err = build_dirty_segmap(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
init_min_max_mtime(sbi);
|
|
return 0;
|
|
}
|
|
|
|
static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
|
|
enum dirty_type dirty_type)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
kvfree(dirty_i->dirty_segmap[dirty_type]);
|
|
dirty_i->nr_dirty[dirty_type] = 0;
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
}
|
|
|
|
static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
kvfree(dirty_i->victim_secmap);
|
|
}
|
|
|
|
static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
int i;
|
|
|
|
if (!dirty_i)
|
|
return;
|
|
|
|
/* discard pre-free/dirty segments list */
|
|
for (i = 0; i < NR_DIRTY_TYPE; i++)
|
|
discard_dirty_segmap(sbi, i);
|
|
|
|
destroy_victim_secmap(sbi);
|
|
SM_I(sbi)->dirty_info = NULL;
|
|
kfree(dirty_i);
|
|
}
|
|
|
|
static void destroy_curseg(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct curseg_info *array = SM_I(sbi)->curseg_array;
|
|
int i;
|
|
|
|
if (!array)
|
|
return;
|
|
SM_I(sbi)->curseg_array = NULL;
|
|
for (i = 0; i < NR_CURSEG_TYPE; i++) {
|
|
kfree(array[i].sum_blk);
|
|
kfree(array[i].journal);
|
|
}
|
|
kfree(array);
|
|
}
|
|
|
|
static void destroy_free_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct free_segmap_info *free_i = SM_I(sbi)->free_info;
|
|
if (!free_i)
|
|
return;
|
|
SM_I(sbi)->free_info = NULL;
|
|
kvfree(free_i->free_segmap);
|
|
kvfree(free_i->free_secmap);
|
|
kfree(free_i);
|
|
}
|
|
|
|
static void destroy_sit_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
unsigned int start;
|
|
|
|
if (!sit_i)
|
|
return;
|
|
|
|
if (sit_i->sentries) {
|
|
for (start = 0; start < MAIN_SEGS(sbi); start++) {
|
|
kfree(sit_i->sentries[start].cur_valid_map);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
kfree(sit_i->sentries[start].cur_valid_map_mir);
|
|
#endif
|
|
kfree(sit_i->sentries[start].ckpt_valid_map);
|
|
kfree(sit_i->sentries[start].discard_map);
|
|
}
|
|
}
|
|
kfree(sit_i->tmp_map);
|
|
|
|
kvfree(sit_i->sentries);
|
|
kvfree(sit_i->sec_entries);
|
|
kvfree(sit_i->dirty_sentries_bitmap);
|
|
|
|
SM_I(sbi)->sit_info = NULL;
|
|
kfree(sit_i->sit_bitmap);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
kfree(sit_i->sit_bitmap_mir);
|
|
#endif
|
|
kfree(sit_i);
|
|
}
|
|
|
|
void destroy_segment_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_sm_info *sm_info = SM_I(sbi);
|
|
|
|
if (!sm_info)
|
|
return;
|
|
destroy_flush_cmd_control(sbi, true);
|
|
destroy_discard_cmd_control(sbi);
|
|
destroy_dirty_segmap(sbi);
|
|
destroy_curseg(sbi);
|
|
destroy_free_segmap(sbi);
|
|
destroy_sit_info(sbi);
|
|
sbi->sm_info = NULL;
|
|
kfree(sm_info);
|
|
}
|
|
|
|
int __init create_segment_manager_caches(void)
|
|
{
|
|
discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
|
|
sizeof(struct discard_entry));
|
|
if (!discard_entry_slab)
|
|
goto fail;
|
|
|
|
discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
|
|
sizeof(struct discard_cmd));
|
|
if (!discard_cmd_slab)
|
|
goto destroy_discard_entry;
|
|
|
|
sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
|
|
sizeof(struct sit_entry_set));
|
|
if (!sit_entry_set_slab)
|
|
goto destroy_discard_cmd;
|
|
|
|
inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
|
|
sizeof(struct inmem_pages));
|
|
if (!inmem_entry_slab)
|
|
goto destroy_sit_entry_set;
|
|
return 0;
|
|
|
|
destroy_sit_entry_set:
|
|
kmem_cache_destroy(sit_entry_set_slab);
|
|
destroy_discard_cmd:
|
|
kmem_cache_destroy(discard_cmd_slab);
|
|
destroy_discard_entry:
|
|
kmem_cache_destroy(discard_entry_slab);
|
|
fail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void destroy_segment_manager_caches(void)
|
|
{
|
|
kmem_cache_destroy(sit_entry_set_slab);
|
|
kmem_cache_destroy(discard_cmd_slab);
|
|
kmem_cache_destroy(discard_entry_slab);
|
|
kmem_cache_destroy(inmem_entry_slab);
|
|
}
|