linux/Documentation/sysctl
Wang YanQing 03f5781be2 bpf, x86_32: add eBPF JIT compiler for ia32
The JIT compiler emits ia32 bit instructions. Currently, It supports eBPF
only. Classic BPF is supported because of the conversion by BPF core.

Almost all instructions from eBPF ISA supported except the following:
BPF_ALU64 | BPF_DIV | BPF_K
BPF_ALU64 | BPF_DIV | BPF_X
BPF_ALU64 | BPF_MOD | BPF_K
BPF_ALU64 | BPF_MOD | BPF_X
BPF_STX | BPF_XADD | BPF_W
BPF_STX | BPF_XADD | BPF_DW

It doesn't support BPF_JMP|BPF_CALL with BPF_PSEUDO_CALL at the moment.

IA32 has few general purpose registers, EAX|EDX|ECX|EBX|ESI|EDI. I use
EAX|EDX|ECX|EBX as temporary registers to simulate instructions in eBPF
ISA, and allocate ESI|EDI to BPF_REG_AX for constant blinding, all others
eBPF registers, R0-R10, are simulated through scratch space on stack.

The reasons behind the hardware registers allocation policy are:
1:MUL need EAX:EDX, shift operation need ECX, so they aren't fit
  for general eBPF 64bit register simulation.
2:We need at least 4 registers to simulate most eBPF ISA operations
  on registers operands instead of on register&memory operands.
3:We need to put BPF_REG_AX on hardware registers, or constant blinding
  will degrade jit performance heavily.

Tested on PC (Intel(R) Core(TM) i5-5200U CPU).
Testing results on i5-5200U:
1) test_bpf: Summary: 349 PASSED, 0 FAILED, [319/341 JIT'ed]
2) test_progs: Summary: 83 PASSED, 0 FAILED.
3) test_lpm: OK
4) test_lru_map: OK
5) test_verifier: Summary: 828 PASSED, 0 FAILED.

Above tests are all done in following two conditions separately:
1:bpf_jit_enable=1 and bpf_jit_harden=0
2:bpf_jit_enable=1 and bpf_jit_harden=2

Below are some numbers for this jit implementation:
Note:
  I run test_progs in kselftest 100 times continuously for every condition,
  the numbers are in format: total/times=avg.
  The numbers that test_bpf reports show almost the same relation.

a:jit_enable=0 and jit_harden=0            b:jit_enable=1 and jit_harden=0
  test_pkt_access:PASS:ipv4:15622/100=156    test_pkt_access:PASS:ipv4:10674/100=106
  test_pkt_access:PASS:ipv6:9130/100=91      test_pkt_access:PASS:ipv6:4855/100=48
  test_xdp:PASS:ipv4:240198/100=2401         test_xdp:PASS:ipv4:138912/100=1389
  test_xdp:PASS:ipv6:137326/100=1373         test_xdp:PASS:ipv6:68542/100=685
  test_l4lb:PASS:ipv4:61100/100=611          test_l4lb:PASS:ipv4:37302/100=373
  test_l4lb:PASS:ipv6:101000/100=1010        test_l4lb:PASS:ipv6:55030/100=550

c:jit_enable=1 and jit_harden=2
  test_pkt_access:PASS:ipv4:10558/100=105
  test_pkt_access:PASS:ipv6:5092/100=50
  test_xdp:PASS:ipv4:131902/100=1319
  test_xdp:PASS:ipv6:77932/100=779
  test_l4lb:PASS:ipv4:38924/100=389
  test_l4lb:PASS:ipv6:57520/100=575

The numbers show we get 30%~50% improvement.

See Documentation/networking/filter.txt for more information.

Changelog:

 Changes v5-v6:
 1:Add do {} while (0) to RETPOLINE_RAX_BPF_JIT for
   consistence reason.
 2:Clean up non-standard comments, reported by Daniel Borkmann.
 3:Fix a memory leak issue, repoted by Daniel Borkmann.

 Changes v4-v5:
 1:Delete is_on_stack, BPF_REG_AX is the only one
   on real hardware registers, so just check with
   it.
 2:Apply commit 1612a981b7 ("bpf, x64: fix JIT emission
   for dead code"), suggested by Daniel Borkmann.

 Changes v3-v4:
 1:Fix changelog in commit.
   I install llvm-6.0, then test_progs willn't report errors.
   I submit another patch:
   "bpf: fix misaligned access for BPF_PROG_TYPE_PERF_EVENT program type on x86_32 platform"
   to fix another problem, after that patch, test_verifier willn't report errors too.
 2:Fix clear r0[1] twice unnecessarily in *BPF_IND|BPF_ABS* simulation.

 Changes v2-v3:
 1:Move BPF_REG_AX to real hardware registers for performance reason.
 3:Using bpf_load_pointer instead of bpf_jit32.S, suggested by Daniel Borkmann.
 4:Delete partial codes in 1c2a088a66, suggested by Daniel Borkmann.
 5:Some bug fixes and comments improvement.

 Changes v1-v2:
 1:Fix bug in emit_ia32_neg64.
 2:Fix bug in emit_ia32_arsh_r64.
 3:Delete filename in top level comment, suggested by Thomas Gleixner.
 4:Delete unnecessary boiler plate text, suggested by Thomas Gleixner.
 5:Rewrite some words in changelog.
 6:CodingSytle improvement and a little more comments.

Signed-off-by: Wang YanQing <udknight@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-03 18:15:25 +02:00
..
00-INDEX
abi.txt
fs.txt
kernel.txt
net.txt
README
sunrpc.txt
user.txt
vm.txt

Documentation for /proc/sys/		kernel version 2.2.10
	(c) 1998, 1999,  Rik van Riel <riel@nl.linux.org>

'Why', I hear you ask, 'would anyone even _want_ documentation
for them sysctl files? If anybody really needs it, it's all in
the source...'

Well, this documentation is written because some people either
don't know they need to tweak something, or because they don't
have the time or knowledge to read the source code.

Furthermore, the programmers who built sysctl have built it to
be actually used, not just for the fun of programming it :-)

==============================================================

Legal blurb:

As usual, there are two main things to consider:
1. you get what you pay for
2. it's free

The consequences are that I won't guarantee the correctness of
this document, and if you come to me complaining about how you
screwed up your system because of wrong documentation, I won't
feel sorry for you. I might even laugh at you...

But of course, if you _do_ manage to screw up your system using
only the sysctl options used in this file, I'd like to hear of
it. Not only to have a great laugh, but also to make sure that
you're the last RTFMing person to screw up.

In short, e-mail your suggestions, corrections and / or horror
stories to: <riel@nl.linux.org>

Rik van Riel.

==============================================================

Introduction:

Sysctl is a means of configuring certain aspects of the kernel
at run-time, and the /proc/sys/ directory is there so that you
don't even need special tools to do it!
In fact, there are only four things needed to use these config
facilities:
- a running Linux system
- root access
- common sense (this is especially hard to come by these days)
- knowledge of what all those values mean

As a quick 'ls /proc/sys' will show, the directory consists of
several (arch-dependent?) subdirs. Each subdir is mainly about
one part of the kernel, so you can do configuration on a piece
by piece basis, or just some 'thematic frobbing'.

The subdirs are about:
abi/		execution domains & personalities
debug/		<empty>
dev/		device specific information (eg dev/cdrom/info)
fs/		specific filesystems
		filehandle, inode, dentry and quota tuning
		binfmt_misc <Documentation/admin-guide/binfmt-misc.rst>
kernel/		global kernel info / tuning
		miscellaneous stuff
net/		networking stuff, for documentation look in:
		<Documentation/networking/>
proc/		<empty>
sunrpc/		SUN Remote Procedure Call (NFS)
vm/		memory management tuning
		buffer and cache management
user/		Per user per user namespace limits

These are the subdirs I have on my system. There might be more
or other subdirs in another setup. If you see another dir, I'd
really like to hear about it :-)