mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-04 16:22:09 +00:00
39c7caebc9
This patch adds support for skb mark matching and set action. Signed-off-by: Ansis Atteka <aatteka@nicira.com> Signed-off-by: Jesse Gross <jesse@nicira.com>
1357 lines
35 KiB
C
1357 lines
35 KiB
C
/*
|
|
* Copyright (c) 2007-2011 Nicira, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA
|
|
*/
|
|
|
|
#include "flow.h"
|
|
#include "datapath.h"
|
|
#include <linux/uaccess.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/llc_pdu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/llc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/in.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/icmp.h>
|
|
#include <linux/icmpv6.h>
|
|
#include <linux/rculist.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/ndisc.h>
|
|
|
|
static struct kmem_cache *flow_cache;
|
|
|
|
static int check_header(struct sk_buff *skb, int len)
|
|
{
|
|
if (unlikely(skb->len < len))
|
|
return -EINVAL;
|
|
if (unlikely(!pskb_may_pull(skb, len)))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static bool arphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_network_offset(skb) +
|
|
sizeof(struct arp_eth_header));
|
|
}
|
|
|
|
static int check_iphdr(struct sk_buff *skb)
|
|
{
|
|
unsigned int nh_ofs = skb_network_offset(skb);
|
|
unsigned int ip_len;
|
|
int err;
|
|
|
|
err = check_header(skb, nh_ofs + sizeof(struct iphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
ip_len = ip_hdrlen(skb);
|
|
if (unlikely(ip_len < sizeof(struct iphdr) ||
|
|
skb->len < nh_ofs + ip_len))
|
|
return -EINVAL;
|
|
|
|
skb_set_transport_header(skb, nh_ofs + ip_len);
|
|
return 0;
|
|
}
|
|
|
|
static bool tcphdr_ok(struct sk_buff *skb)
|
|
{
|
|
int th_ofs = skb_transport_offset(skb);
|
|
int tcp_len;
|
|
|
|
if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
|
|
return false;
|
|
|
|
tcp_len = tcp_hdrlen(skb);
|
|
if (unlikely(tcp_len < sizeof(struct tcphdr) ||
|
|
skb->len < th_ofs + tcp_len))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool udphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_transport_offset(skb) +
|
|
sizeof(struct udphdr));
|
|
}
|
|
|
|
static bool icmphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_transport_offset(skb) +
|
|
sizeof(struct icmphdr));
|
|
}
|
|
|
|
u64 ovs_flow_used_time(unsigned long flow_jiffies)
|
|
{
|
|
struct timespec cur_ts;
|
|
u64 cur_ms, idle_ms;
|
|
|
|
ktime_get_ts(&cur_ts);
|
|
idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
|
|
cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
|
|
cur_ts.tv_nsec / NSEC_PER_MSEC;
|
|
|
|
return cur_ms - idle_ms;
|
|
}
|
|
|
|
#define SW_FLOW_KEY_OFFSET(field) \
|
|
(offsetof(struct sw_flow_key, field) + \
|
|
FIELD_SIZEOF(struct sw_flow_key, field))
|
|
|
|
static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
|
|
int *key_lenp)
|
|
{
|
|
unsigned int nh_ofs = skb_network_offset(skb);
|
|
unsigned int nh_len;
|
|
int payload_ofs;
|
|
struct ipv6hdr *nh;
|
|
uint8_t nexthdr;
|
|
__be16 frag_off;
|
|
int err;
|
|
|
|
*key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
|
|
|
|
err = check_header(skb, nh_ofs + sizeof(*nh));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ipv6_hdr(skb);
|
|
nexthdr = nh->nexthdr;
|
|
payload_ofs = (u8 *)(nh + 1) - skb->data;
|
|
|
|
key->ip.proto = NEXTHDR_NONE;
|
|
key->ip.tos = ipv6_get_dsfield(nh);
|
|
key->ip.ttl = nh->hop_limit;
|
|
key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
|
|
key->ipv6.addr.src = nh->saddr;
|
|
key->ipv6.addr.dst = nh->daddr;
|
|
|
|
payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
|
|
if (unlikely(payload_ofs < 0))
|
|
return -EINVAL;
|
|
|
|
if (frag_off) {
|
|
if (frag_off & htons(~0x7))
|
|
key->ip.frag = OVS_FRAG_TYPE_LATER;
|
|
else
|
|
key->ip.frag = OVS_FRAG_TYPE_FIRST;
|
|
}
|
|
|
|
nh_len = payload_ofs - nh_ofs;
|
|
skb_set_transport_header(skb, nh_ofs + nh_len);
|
|
key->ip.proto = nexthdr;
|
|
return nh_len;
|
|
}
|
|
|
|
static bool icmp6hdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_transport_offset(skb) +
|
|
sizeof(struct icmp6hdr));
|
|
}
|
|
|
|
#define TCP_FLAGS_OFFSET 13
|
|
#define TCP_FLAG_MASK 0x3f
|
|
|
|
void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
|
|
{
|
|
u8 tcp_flags = 0;
|
|
|
|
if ((flow->key.eth.type == htons(ETH_P_IP) ||
|
|
flow->key.eth.type == htons(ETH_P_IPV6)) &&
|
|
flow->key.ip.proto == IPPROTO_TCP &&
|
|
likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
|
|
u8 *tcp = (u8 *)tcp_hdr(skb);
|
|
tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
|
|
}
|
|
|
|
spin_lock(&flow->lock);
|
|
flow->used = jiffies;
|
|
flow->packet_count++;
|
|
flow->byte_count += skb->len;
|
|
flow->tcp_flags |= tcp_flags;
|
|
spin_unlock(&flow->lock);
|
|
}
|
|
|
|
struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
|
|
{
|
|
int actions_len = nla_len(actions);
|
|
struct sw_flow_actions *sfa;
|
|
|
|
if (actions_len > MAX_ACTIONS_BUFSIZE)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
|
|
if (!sfa)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sfa->actions_len = actions_len;
|
|
memcpy(sfa->actions, nla_data(actions), actions_len);
|
|
return sfa;
|
|
}
|
|
|
|
struct sw_flow *ovs_flow_alloc(void)
|
|
{
|
|
struct sw_flow *flow;
|
|
|
|
flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
|
|
if (!flow)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
spin_lock_init(&flow->lock);
|
|
flow->sf_acts = NULL;
|
|
|
|
return flow;
|
|
}
|
|
|
|
static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
|
|
{
|
|
hash = jhash_1word(hash, table->hash_seed);
|
|
return flex_array_get(table->buckets,
|
|
(hash & (table->n_buckets - 1)));
|
|
}
|
|
|
|
static struct flex_array *alloc_buckets(unsigned int n_buckets)
|
|
{
|
|
struct flex_array *buckets;
|
|
int i, err;
|
|
|
|
buckets = flex_array_alloc(sizeof(struct hlist_head *),
|
|
n_buckets, GFP_KERNEL);
|
|
if (!buckets)
|
|
return NULL;
|
|
|
|
err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
|
|
if (err) {
|
|
flex_array_free(buckets);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < n_buckets; i++)
|
|
INIT_HLIST_HEAD((struct hlist_head *)
|
|
flex_array_get(buckets, i));
|
|
|
|
return buckets;
|
|
}
|
|
|
|
static void free_buckets(struct flex_array *buckets)
|
|
{
|
|
flex_array_free(buckets);
|
|
}
|
|
|
|
struct flow_table *ovs_flow_tbl_alloc(int new_size)
|
|
{
|
|
struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
|
|
|
|
if (!table)
|
|
return NULL;
|
|
|
|
table->buckets = alloc_buckets(new_size);
|
|
|
|
if (!table->buckets) {
|
|
kfree(table);
|
|
return NULL;
|
|
}
|
|
table->n_buckets = new_size;
|
|
table->count = 0;
|
|
table->node_ver = 0;
|
|
table->keep_flows = false;
|
|
get_random_bytes(&table->hash_seed, sizeof(u32));
|
|
|
|
return table;
|
|
}
|
|
|
|
void ovs_flow_tbl_destroy(struct flow_table *table)
|
|
{
|
|
int i;
|
|
|
|
if (!table)
|
|
return;
|
|
|
|
if (table->keep_flows)
|
|
goto skip_flows;
|
|
|
|
for (i = 0; i < table->n_buckets; i++) {
|
|
struct sw_flow *flow;
|
|
struct hlist_head *head = flex_array_get(table->buckets, i);
|
|
struct hlist_node *node, *n;
|
|
int ver = table->node_ver;
|
|
|
|
hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
|
|
hlist_del_rcu(&flow->hash_node[ver]);
|
|
ovs_flow_free(flow);
|
|
}
|
|
}
|
|
|
|
skip_flows:
|
|
free_buckets(table->buckets);
|
|
kfree(table);
|
|
}
|
|
|
|
static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
|
|
{
|
|
struct flow_table *table = container_of(rcu, struct flow_table, rcu);
|
|
|
|
ovs_flow_tbl_destroy(table);
|
|
}
|
|
|
|
void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
|
|
{
|
|
if (!table)
|
|
return;
|
|
|
|
call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
|
|
}
|
|
|
|
struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
|
|
{
|
|
struct sw_flow *flow;
|
|
struct hlist_head *head;
|
|
struct hlist_node *n;
|
|
int ver;
|
|
int i;
|
|
|
|
ver = table->node_ver;
|
|
while (*bucket < table->n_buckets) {
|
|
i = 0;
|
|
head = flex_array_get(table->buckets, *bucket);
|
|
hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
|
|
if (i < *last) {
|
|
i++;
|
|
continue;
|
|
}
|
|
*last = i + 1;
|
|
return flow;
|
|
}
|
|
(*bucket)++;
|
|
*last = 0;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
|
|
{
|
|
int old_ver;
|
|
int i;
|
|
|
|
old_ver = old->node_ver;
|
|
new->node_ver = !old_ver;
|
|
|
|
/* Insert in new table. */
|
|
for (i = 0; i < old->n_buckets; i++) {
|
|
struct sw_flow *flow;
|
|
struct hlist_head *head;
|
|
struct hlist_node *n;
|
|
|
|
head = flex_array_get(old->buckets, i);
|
|
|
|
hlist_for_each_entry(flow, n, head, hash_node[old_ver])
|
|
ovs_flow_tbl_insert(new, flow);
|
|
}
|
|
old->keep_flows = true;
|
|
}
|
|
|
|
static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
|
|
{
|
|
struct flow_table *new_table;
|
|
|
|
new_table = ovs_flow_tbl_alloc(n_buckets);
|
|
if (!new_table)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
flow_table_copy_flows(table, new_table);
|
|
|
|
return new_table;
|
|
}
|
|
|
|
struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
|
|
{
|
|
return __flow_tbl_rehash(table, table->n_buckets);
|
|
}
|
|
|
|
struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
|
|
{
|
|
return __flow_tbl_rehash(table, table->n_buckets * 2);
|
|
}
|
|
|
|
void ovs_flow_free(struct sw_flow *flow)
|
|
{
|
|
if (unlikely(!flow))
|
|
return;
|
|
|
|
kfree((struct sf_flow_acts __force *)flow->sf_acts);
|
|
kmem_cache_free(flow_cache, flow);
|
|
}
|
|
|
|
/* RCU callback used by ovs_flow_deferred_free. */
|
|
static void rcu_free_flow_callback(struct rcu_head *rcu)
|
|
{
|
|
struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
|
|
|
|
ovs_flow_free(flow);
|
|
}
|
|
|
|
/* Schedules 'flow' to be freed after the next RCU grace period.
|
|
* The caller must hold rcu_read_lock for this to be sensible. */
|
|
void ovs_flow_deferred_free(struct sw_flow *flow)
|
|
{
|
|
call_rcu(&flow->rcu, rcu_free_flow_callback);
|
|
}
|
|
|
|
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
|
|
* The caller must hold rcu_read_lock for this to be sensible. */
|
|
void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
|
|
{
|
|
kfree_rcu(sf_acts, rcu);
|
|
}
|
|
|
|
static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
struct qtag_prefix {
|
|
__be16 eth_type; /* ETH_P_8021Q */
|
|
__be16 tci;
|
|
};
|
|
struct qtag_prefix *qp;
|
|
|
|
if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
|
|
return 0;
|
|
|
|
if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
|
|
sizeof(__be16))))
|
|
return -ENOMEM;
|
|
|
|
qp = (struct qtag_prefix *) skb->data;
|
|
key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
|
|
__skb_pull(skb, sizeof(struct qtag_prefix));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __be16 parse_ethertype(struct sk_buff *skb)
|
|
{
|
|
struct llc_snap_hdr {
|
|
u8 dsap; /* Always 0xAA */
|
|
u8 ssap; /* Always 0xAA */
|
|
u8 ctrl;
|
|
u8 oui[3];
|
|
__be16 ethertype;
|
|
};
|
|
struct llc_snap_hdr *llc;
|
|
__be16 proto;
|
|
|
|
proto = *(__be16 *) skb->data;
|
|
__skb_pull(skb, sizeof(__be16));
|
|
|
|
if (ntohs(proto) >= 1536)
|
|
return proto;
|
|
|
|
if (skb->len < sizeof(struct llc_snap_hdr))
|
|
return htons(ETH_P_802_2);
|
|
|
|
if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
|
|
return htons(0);
|
|
|
|
llc = (struct llc_snap_hdr *) skb->data;
|
|
if (llc->dsap != LLC_SAP_SNAP ||
|
|
llc->ssap != LLC_SAP_SNAP ||
|
|
(llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
|
|
return htons(ETH_P_802_2);
|
|
|
|
__skb_pull(skb, sizeof(struct llc_snap_hdr));
|
|
return llc->ethertype;
|
|
}
|
|
|
|
static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
|
|
int *key_lenp, int nh_len)
|
|
{
|
|
struct icmp6hdr *icmp = icmp6_hdr(skb);
|
|
int error = 0;
|
|
int key_len;
|
|
|
|
/* The ICMPv6 type and code fields use the 16-bit transport port
|
|
* fields, so we need to store them in 16-bit network byte order.
|
|
*/
|
|
key->ipv6.tp.src = htons(icmp->icmp6_type);
|
|
key->ipv6.tp.dst = htons(icmp->icmp6_code);
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
|
|
|
|
if (icmp->icmp6_code == 0 &&
|
|
(icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
|
|
icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
|
|
int icmp_len = skb->len - skb_transport_offset(skb);
|
|
struct nd_msg *nd;
|
|
int offset;
|
|
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
|
|
|
|
/* In order to process neighbor discovery options, we need the
|
|
* entire packet.
|
|
*/
|
|
if (unlikely(icmp_len < sizeof(*nd)))
|
|
goto out;
|
|
if (unlikely(skb_linearize(skb))) {
|
|
error = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
nd = (struct nd_msg *)skb_transport_header(skb);
|
|
key->ipv6.nd.target = nd->target;
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
|
|
|
|
icmp_len -= sizeof(*nd);
|
|
offset = 0;
|
|
while (icmp_len >= 8) {
|
|
struct nd_opt_hdr *nd_opt =
|
|
(struct nd_opt_hdr *)(nd->opt + offset);
|
|
int opt_len = nd_opt->nd_opt_len * 8;
|
|
|
|
if (unlikely(!opt_len || opt_len > icmp_len))
|
|
goto invalid;
|
|
|
|
/* Store the link layer address if the appropriate
|
|
* option is provided. It is considered an error if
|
|
* the same link layer option is specified twice.
|
|
*/
|
|
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
|
|
&& opt_len == 8) {
|
|
if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
|
|
goto invalid;
|
|
memcpy(key->ipv6.nd.sll,
|
|
&nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
|
|
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
|
|
&& opt_len == 8) {
|
|
if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
|
|
goto invalid;
|
|
memcpy(key->ipv6.nd.tll,
|
|
&nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
|
|
}
|
|
|
|
icmp_len -= opt_len;
|
|
offset += opt_len;
|
|
}
|
|
}
|
|
|
|
goto out;
|
|
|
|
invalid:
|
|
memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
|
|
memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
|
|
memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
|
|
|
|
out:
|
|
*key_lenp = key_len;
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* ovs_flow_extract - extracts a flow key from an Ethernet frame.
|
|
* @skb: sk_buff that contains the frame, with skb->data pointing to the
|
|
* Ethernet header
|
|
* @in_port: port number on which @skb was received.
|
|
* @key: output flow key
|
|
* @key_lenp: length of output flow key
|
|
*
|
|
* The caller must ensure that skb->len >= ETH_HLEN.
|
|
*
|
|
* Returns 0 if successful, otherwise a negative errno value.
|
|
*
|
|
* Initializes @skb header pointers as follows:
|
|
*
|
|
* - skb->mac_header: the Ethernet header.
|
|
*
|
|
* - skb->network_header: just past the Ethernet header, or just past the
|
|
* VLAN header, to the first byte of the Ethernet payload.
|
|
*
|
|
* - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
|
|
* on output, then just past the IP header, if one is present and
|
|
* of a correct length, otherwise the same as skb->network_header.
|
|
* For other key->dl_type values it is left untouched.
|
|
*/
|
|
int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
|
|
int *key_lenp)
|
|
{
|
|
int error = 0;
|
|
int key_len = SW_FLOW_KEY_OFFSET(eth);
|
|
struct ethhdr *eth;
|
|
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
key->phy.priority = skb->priority;
|
|
key->phy.in_port = in_port;
|
|
key->phy.skb_mark = skb->mark;
|
|
|
|
skb_reset_mac_header(skb);
|
|
|
|
/* Link layer. We are guaranteed to have at least the 14 byte Ethernet
|
|
* header in the linear data area.
|
|
*/
|
|
eth = eth_hdr(skb);
|
|
memcpy(key->eth.src, eth->h_source, ETH_ALEN);
|
|
memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
|
|
|
|
__skb_pull(skb, 2 * ETH_ALEN);
|
|
|
|
if (vlan_tx_tag_present(skb))
|
|
key->eth.tci = htons(skb->vlan_tci);
|
|
else if (eth->h_proto == htons(ETH_P_8021Q))
|
|
if (unlikely(parse_vlan(skb, key)))
|
|
return -ENOMEM;
|
|
|
|
key->eth.type = parse_ethertype(skb);
|
|
if (unlikely(key->eth.type == htons(0)))
|
|
return -ENOMEM;
|
|
|
|
skb_reset_network_header(skb);
|
|
__skb_push(skb, skb->data - skb_mac_header(skb));
|
|
|
|
/* Network layer. */
|
|
if (key->eth.type == htons(ETH_P_IP)) {
|
|
struct iphdr *nh;
|
|
__be16 offset;
|
|
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
|
|
|
|
error = check_iphdr(skb);
|
|
if (unlikely(error)) {
|
|
if (error == -EINVAL) {
|
|
skb->transport_header = skb->network_header;
|
|
error = 0;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
nh = ip_hdr(skb);
|
|
key->ipv4.addr.src = nh->saddr;
|
|
key->ipv4.addr.dst = nh->daddr;
|
|
|
|
key->ip.proto = nh->protocol;
|
|
key->ip.tos = nh->tos;
|
|
key->ip.ttl = nh->ttl;
|
|
|
|
offset = nh->frag_off & htons(IP_OFFSET);
|
|
if (offset) {
|
|
key->ip.frag = OVS_FRAG_TYPE_LATER;
|
|
goto out;
|
|
}
|
|
if (nh->frag_off & htons(IP_MF) ||
|
|
skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
|
|
key->ip.frag = OVS_FRAG_TYPE_FIRST;
|
|
|
|
/* Transport layer. */
|
|
if (key->ip.proto == IPPROTO_TCP) {
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
|
|
if (tcphdr_ok(skb)) {
|
|
struct tcphdr *tcp = tcp_hdr(skb);
|
|
key->ipv4.tp.src = tcp->source;
|
|
key->ipv4.tp.dst = tcp->dest;
|
|
}
|
|
} else if (key->ip.proto == IPPROTO_UDP) {
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
|
|
if (udphdr_ok(skb)) {
|
|
struct udphdr *udp = udp_hdr(skb);
|
|
key->ipv4.tp.src = udp->source;
|
|
key->ipv4.tp.dst = udp->dest;
|
|
}
|
|
} else if (key->ip.proto == IPPROTO_ICMP) {
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
|
|
if (icmphdr_ok(skb)) {
|
|
struct icmphdr *icmp = icmp_hdr(skb);
|
|
/* The ICMP type and code fields use the 16-bit
|
|
* transport port fields, so we need to store
|
|
* them in 16-bit network byte order. */
|
|
key->ipv4.tp.src = htons(icmp->type);
|
|
key->ipv4.tp.dst = htons(icmp->code);
|
|
}
|
|
}
|
|
|
|
} else if ((key->eth.type == htons(ETH_P_ARP) ||
|
|
key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
|
|
struct arp_eth_header *arp;
|
|
|
|
arp = (struct arp_eth_header *)skb_network_header(skb);
|
|
|
|
if (arp->ar_hrd == htons(ARPHRD_ETHER)
|
|
&& arp->ar_pro == htons(ETH_P_IP)
|
|
&& arp->ar_hln == ETH_ALEN
|
|
&& arp->ar_pln == 4) {
|
|
|
|
/* We only match on the lower 8 bits of the opcode. */
|
|
if (ntohs(arp->ar_op) <= 0xff)
|
|
key->ip.proto = ntohs(arp->ar_op);
|
|
memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
|
|
memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
|
|
memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
|
|
memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
|
|
}
|
|
} else if (key->eth.type == htons(ETH_P_IPV6)) {
|
|
int nh_len; /* IPv6 Header + Extensions */
|
|
|
|
nh_len = parse_ipv6hdr(skb, key, &key_len);
|
|
if (unlikely(nh_len < 0)) {
|
|
if (nh_len == -EINVAL)
|
|
skb->transport_header = skb->network_header;
|
|
else
|
|
error = nh_len;
|
|
goto out;
|
|
}
|
|
|
|
if (key->ip.frag == OVS_FRAG_TYPE_LATER)
|
|
goto out;
|
|
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
|
|
key->ip.frag = OVS_FRAG_TYPE_FIRST;
|
|
|
|
/* Transport layer. */
|
|
if (key->ip.proto == NEXTHDR_TCP) {
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
|
|
if (tcphdr_ok(skb)) {
|
|
struct tcphdr *tcp = tcp_hdr(skb);
|
|
key->ipv6.tp.src = tcp->source;
|
|
key->ipv6.tp.dst = tcp->dest;
|
|
}
|
|
} else if (key->ip.proto == NEXTHDR_UDP) {
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
|
|
if (udphdr_ok(skb)) {
|
|
struct udphdr *udp = udp_hdr(skb);
|
|
key->ipv6.tp.src = udp->source;
|
|
key->ipv6.tp.dst = udp->dest;
|
|
}
|
|
} else if (key->ip.proto == NEXTHDR_ICMP) {
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
|
|
if (icmp6hdr_ok(skb)) {
|
|
error = parse_icmpv6(skb, key, &key_len, nh_len);
|
|
if (error < 0)
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
*key_lenp = key_len;
|
|
return error;
|
|
}
|
|
|
|
u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
|
|
{
|
|
return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
|
|
}
|
|
|
|
struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
|
|
struct sw_flow_key *key, int key_len)
|
|
{
|
|
struct sw_flow *flow;
|
|
struct hlist_node *n;
|
|
struct hlist_head *head;
|
|
u32 hash;
|
|
|
|
hash = ovs_flow_hash(key, key_len);
|
|
|
|
head = find_bucket(table, hash);
|
|
hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
|
|
|
|
if (flow->hash == hash &&
|
|
!memcmp(&flow->key, key, key_len)) {
|
|
return flow;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
|
|
{
|
|
struct hlist_head *head;
|
|
|
|
head = find_bucket(table, flow->hash);
|
|
hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
|
|
table->count++;
|
|
}
|
|
|
|
void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
|
|
{
|
|
hlist_del_rcu(&flow->hash_node[table->node_ver]);
|
|
table->count--;
|
|
BUG_ON(table->count < 0);
|
|
}
|
|
|
|
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
|
|
const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
|
|
[OVS_KEY_ATTR_ENCAP] = -1,
|
|
[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
|
|
[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
|
|
[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
|
|
[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
|
|
[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
|
|
[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
|
|
[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
|
|
[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
|
|
[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
|
|
[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
|
|
[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
|
|
[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
|
|
[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
|
|
[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
|
|
};
|
|
|
|
static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
|
|
const struct nlattr *a[], u32 *attrs)
|
|
{
|
|
const struct ovs_key_icmp *icmp_key;
|
|
const struct ovs_key_tcp *tcp_key;
|
|
const struct ovs_key_udp *udp_key;
|
|
|
|
switch (swkey->ip.proto) {
|
|
case IPPROTO_TCP:
|
|
if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
|
|
return -EINVAL;
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_TCP);
|
|
|
|
*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
|
|
tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
|
|
swkey->ipv4.tp.src = tcp_key->tcp_src;
|
|
swkey->ipv4.tp.dst = tcp_key->tcp_dst;
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
|
|
return -EINVAL;
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_UDP);
|
|
|
|
*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
|
|
udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
|
|
swkey->ipv4.tp.src = udp_key->udp_src;
|
|
swkey->ipv4.tp.dst = udp_key->udp_dst;
|
|
break;
|
|
|
|
case IPPROTO_ICMP:
|
|
if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
|
|
return -EINVAL;
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
|
|
|
|
*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
|
|
icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
|
|
swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
|
|
swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
|
|
const struct nlattr *a[], u32 *attrs)
|
|
{
|
|
const struct ovs_key_icmpv6 *icmpv6_key;
|
|
const struct ovs_key_tcp *tcp_key;
|
|
const struct ovs_key_udp *udp_key;
|
|
|
|
switch (swkey->ip.proto) {
|
|
case IPPROTO_TCP:
|
|
if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
|
|
return -EINVAL;
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_TCP);
|
|
|
|
*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
|
|
tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
|
|
swkey->ipv6.tp.src = tcp_key->tcp_src;
|
|
swkey->ipv6.tp.dst = tcp_key->tcp_dst;
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
|
|
return -EINVAL;
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_UDP);
|
|
|
|
*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
|
|
udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
|
|
swkey->ipv6.tp.src = udp_key->udp_src;
|
|
swkey->ipv6.tp.dst = udp_key->udp_dst;
|
|
break;
|
|
|
|
case IPPROTO_ICMPV6:
|
|
if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
|
|
return -EINVAL;
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
|
|
|
|
*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
|
|
icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
|
|
swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
|
|
swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
|
|
|
|
if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
|
|
swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
|
|
const struct ovs_key_nd *nd_key;
|
|
|
|
if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
|
|
return -EINVAL;
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_ND);
|
|
|
|
*key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
|
|
nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
|
|
memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
|
|
sizeof(swkey->ipv6.nd.target));
|
|
memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
|
|
memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int parse_flow_nlattrs(const struct nlattr *attr,
|
|
const struct nlattr *a[], u32 *attrsp)
|
|
{
|
|
const struct nlattr *nla;
|
|
u32 attrs;
|
|
int rem;
|
|
|
|
attrs = 0;
|
|
nla_for_each_nested(nla, attr, rem) {
|
|
u16 type = nla_type(nla);
|
|
int expected_len;
|
|
|
|
if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
|
|
return -EINVAL;
|
|
|
|
expected_len = ovs_key_lens[type];
|
|
if (nla_len(nla) != expected_len && expected_len != -1)
|
|
return -EINVAL;
|
|
|
|
attrs |= 1 << type;
|
|
a[type] = nla;
|
|
}
|
|
if (rem)
|
|
return -EINVAL;
|
|
|
|
*attrsp = attrs;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
|
|
* @swkey: receives the extracted flow key.
|
|
* @key_lenp: number of bytes used in @swkey.
|
|
* @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
|
|
* sequence.
|
|
*/
|
|
int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
|
|
const struct nlattr *attr)
|
|
{
|
|
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
|
|
const struct ovs_key_ethernet *eth_key;
|
|
int key_len;
|
|
u32 attrs;
|
|
int err;
|
|
|
|
memset(swkey, 0, sizeof(struct sw_flow_key));
|
|
key_len = SW_FLOW_KEY_OFFSET(eth);
|
|
|
|
err = parse_flow_nlattrs(attr, a, &attrs);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Metadata attributes. */
|
|
if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
|
|
swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
|
|
}
|
|
if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
|
|
u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
|
|
if (in_port >= DP_MAX_PORTS)
|
|
return -EINVAL;
|
|
swkey->phy.in_port = in_port;
|
|
attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
|
|
} else {
|
|
swkey->phy.in_port = DP_MAX_PORTS;
|
|
}
|
|
if (attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
|
|
swkey->phy.skb_mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
|
|
}
|
|
|
|
/* Data attributes. */
|
|
if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
|
|
return -EINVAL;
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
|
|
|
|
eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
|
|
memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
|
|
memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
|
|
|
|
if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
|
|
nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
|
|
const struct nlattr *encap;
|
|
__be16 tci;
|
|
|
|
if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
|
|
(1 << OVS_KEY_ATTR_ETHERTYPE) |
|
|
(1 << OVS_KEY_ATTR_ENCAP)))
|
|
return -EINVAL;
|
|
|
|
encap = a[OVS_KEY_ATTR_ENCAP];
|
|
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
|
|
if (tci & htons(VLAN_TAG_PRESENT)) {
|
|
swkey->eth.tci = tci;
|
|
|
|
err = parse_flow_nlattrs(encap, a, &attrs);
|
|
if (err)
|
|
return err;
|
|
} else if (!tci) {
|
|
/* Corner case for truncated 802.1Q header. */
|
|
if (nla_len(encap))
|
|
return -EINVAL;
|
|
|
|
swkey->eth.type = htons(ETH_P_8021Q);
|
|
*key_lenp = key_len;
|
|
return 0;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
|
|
swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
|
|
if (ntohs(swkey->eth.type) < 1536)
|
|
return -EINVAL;
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
|
|
} else {
|
|
swkey->eth.type = htons(ETH_P_802_2);
|
|
}
|
|
|
|
if (swkey->eth.type == htons(ETH_P_IP)) {
|
|
const struct ovs_key_ipv4 *ipv4_key;
|
|
|
|
if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
|
|
return -EINVAL;
|
|
attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
|
|
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
|
|
ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
|
|
if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
|
|
return -EINVAL;
|
|
swkey->ip.proto = ipv4_key->ipv4_proto;
|
|
swkey->ip.tos = ipv4_key->ipv4_tos;
|
|
swkey->ip.ttl = ipv4_key->ipv4_ttl;
|
|
swkey->ip.frag = ipv4_key->ipv4_frag;
|
|
swkey->ipv4.addr.src = ipv4_key->ipv4_src;
|
|
swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
|
|
|
|
if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
|
|
err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
|
|
if (err)
|
|
return err;
|
|
}
|
|
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
|
|
const struct ovs_key_ipv6 *ipv6_key;
|
|
|
|
if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
|
|
return -EINVAL;
|
|
attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
|
|
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
|
|
ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
|
|
if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
|
|
return -EINVAL;
|
|
swkey->ipv6.label = ipv6_key->ipv6_label;
|
|
swkey->ip.proto = ipv6_key->ipv6_proto;
|
|
swkey->ip.tos = ipv6_key->ipv6_tclass;
|
|
swkey->ip.ttl = ipv6_key->ipv6_hlimit;
|
|
swkey->ip.frag = ipv6_key->ipv6_frag;
|
|
memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
|
|
sizeof(swkey->ipv6.addr.src));
|
|
memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
|
|
sizeof(swkey->ipv6.addr.dst));
|
|
|
|
if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
|
|
err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
|
|
if (err)
|
|
return err;
|
|
}
|
|
} else if (swkey->eth.type == htons(ETH_P_ARP) ||
|
|
swkey->eth.type == htons(ETH_P_RARP)) {
|
|
const struct ovs_key_arp *arp_key;
|
|
|
|
if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
|
|
return -EINVAL;
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ARP);
|
|
|
|
key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
|
|
arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
|
|
swkey->ipv4.addr.src = arp_key->arp_sip;
|
|
swkey->ipv4.addr.dst = arp_key->arp_tip;
|
|
if (arp_key->arp_op & htons(0xff00))
|
|
return -EINVAL;
|
|
swkey->ip.proto = ntohs(arp_key->arp_op);
|
|
memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
|
|
memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
|
|
}
|
|
|
|
if (attrs)
|
|
return -EINVAL;
|
|
*key_lenp = key_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
|
|
* @priority: receives the skb priority
|
|
* @mark: receives the skb mark
|
|
* @in_port: receives the extracted input port.
|
|
* @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
|
|
* sequence.
|
|
*
|
|
* This parses a series of Netlink attributes that form a flow key, which must
|
|
* take the same form accepted by flow_from_nlattrs(), but only enough of it to
|
|
* get the metadata, that is, the parts of the flow key that cannot be
|
|
* extracted from the packet itself.
|
|
*/
|
|
int ovs_flow_metadata_from_nlattrs(u32 *priority, u32 *mark, u16 *in_port,
|
|
const struct nlattr *attr)
|
|
{
|
|
const struct nlattr *nla;
|
|
int rem;
|
|
|
|
*in_port = DP_MAX_PORTS;
|
|
*priority = 0;
|
|
*mark = 0;
|
|
|
|
nla_for_each_nested(nla, attr, rem) {
|
|
int type = nla_type(nla);
|
|
|
|
if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
|
|
if (nla_len(nla) != ovs_key_lens[type])
|
|
return -EINVAL;
|
|
|
|
switch (type) {
|
|
case OVS_KEY_ATTR_PRIORITY:
|
|
*priority = nla_get_u32(nla);
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IN_PORT:
|
|
if (nla_get_u32(nla) >= DP_MAX_PORTS)
|
|
return -EINVAL;
|
|
*in_port = nla_get_u32(nla);
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_SKB_MARK:
|
|
*mark = nla_get_u32(nla);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (rem)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
|
|
{
|
|
struct ovs_key_ethernet *eth_key;
|
|
struct nlattr *nla, *encap;
|
|
|
|
if (swkey->phy.priority &&
|
|
nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
|
|
goto nla_put_failure;
|
|
|
|
if (swkey->phy.in_port != DP_MAX_PORTS &&
|
|
nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
|
|
goto nla_put_failure;
|
|
|
|
if (swkey->phy.skb_mark &&
|
|
nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, swkey->phy.skb_mark))
|
|
goto nla_put_failure;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
eth_key = nla_data(nla);
|
|
memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
|
|
memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
|
|
|
|
if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
|
|
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
|
|
nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
|
|
goto nla_put_failure;
|
|
encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
|
|
if (!swkey->eth.tci)
|
|
goto unencap;
|
|
} else {
|
|
encap = NULL;
|
|
}
|
|
|
|
if (swkey->eth.type == htons(ETH_P_802_2))
|
|
goto unencap;
|
|
|
|
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
|
|
goto nla_put_failure;
|
|
|
|
if (swkey->eth.type == htons(ETH_P_IP)) {
|
|
struct ovs_key_ipv4 *ipv4_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
ipv4_key = nla_data(nla);
|
|
ipv4_key->ipv4_src = swkey->ipv4.addr.src;
|
|
ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
|
|
ipv4_key->ipv4_proto = swkey->ip.proto;
|
|
ipv4_key->ipv4_tos = swkey->ip.tos;
|
|
ipv4_key->ipv4_ttl = swkey->ip.ttl;
|
|
ipv4_key->ipv4_frag = swkey->ip.frag;
|
|
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
|
|
struct ovs_key_ipv6 *ipv6_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
ipv6_key = nla_data(nla);
|
|
memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
|
|
sizeof(ipv6_key->ipv6_src));
|
|
memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
|
|
sizeof(ipv6_key->ipv6_dst));
|
|
ipv6_key->ipv6_label = swkey->ipv6.label;
|
|
ipv6_key->ipv6_proto = swkey->ip.proto;
|
|
ipv6_key->ipv6_tclass = swkey->ip.tos;
|
|
ipv6_key->ipv6_hlimit = swkey->ip.ttl;
|
|
ipv6_key->ipv6_frag = swkey->ip.frag;
|
|
} else if (swkey->eth.type == htons(ETH_P_ARP) ||
|
|
swkey->eth.type == htons(ETH_P_RARP)) {
|
|
struct ovs_key_arp *arp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
arp_key = nla_data(nla);
|
|
memset(arp_key, 0, sizeof(struct ovs_key_arp));
|
|
arp_key->arp_sip = swkey->ipv4.addr.src;
|
|
arp_key->arp_tip = swkey->ipv4.addr.dst;
|
|
arp_key->arp_op = htons(swkey->ip.proto);
|
|
memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
|
|
memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
|
|
}
|
|
|
|
if ((swkey->eth.type == htons(ETH_P_IP) ||
|
|
swkey->eth.type == htons(ETH_P_IPV6)) &&
|
|
swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
|
|
|
|
if (swkey->ip.proto == IPPROTO_TCP) {
|
|
struct ovs_key_tcp *tcp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
tcp_key = nla_data(nla);
|
|
if (swkey->eth.type == htons(ETH_P_IP)) {
|
|
tcp_key->tcp_src = swkey->ipv4.tp.src;
|
|
tcp_key->tcp_dst = swkey->ipv4.tp.dst;
|
|
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
|
|
tcp_key->tcp_src = swkey->ipv6.tp.src;
|
|
tcp_key->tcp_dst = swkey->ipv6.tp.dst;
|
|
}
|
|
} else if (swkey->ip.proto == IPPROTO_UDP) {
|
|
struct ovs_key_udp *udp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
udp_key = nla_data(nla);
|
|
if (swkey->eth.type == htons(ETH_P_IP)) {
|
|
udp_key->udp_src = swkey->ipv4.tp.src;
|
|
udp_key->udp_dst = swkey->ipv4.tp.dst;
|
|
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
|
|
udp_key->udp_src = swkey->ipv6.tp.src;
|
|
udp_key->udp_dst = swkey->ipv6.tp.dst;
|
|
}
|
|
} else if (swkey->eth.type == htons(ETH_P_IP) &&
|
|
swkey->ip.proto == IPPROTO_ICMP) {
|
|
struct ovs_key_icmp *icmp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
icmp_key = nla_data(nla);
|
|
icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
|
|
icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
|
|
} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
|
|
swkey->ip.proto == IPPROTO_ICMPV6) {
|
|
struct ovs_key_icmpv6 *icmpv6_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
|
|
sizeof(*icmpv6_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
icmpv6_key = nla_data(nla);
|
|
icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
|
|
icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
|
|
|
|
if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
|
|
icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
|
|
struct ovs_key_nd *nd_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
nd_key = nla_data(nla);
|
|
memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
|
|
sizeof(nd_key->nd_target));
|
|
memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
|
|
memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
|
|
}
|
|
}
|
|
}
|
|
|
|
unencap:
|
|
if (encap)
|
|
nla_nest_end(skb, encap);
|
|
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
/* Initializes the flow module.
|
|
* Returns zero if successful or a negative error code. */
|
|
int ovs_flow_init(void)
|
|
{
|
|
flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
|
|
0, NULL);
|
|
if (flow_cache == NULL)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Uninitializes the flow module. */
|
|
void ovs_flow_exit(void)
|
|
{
|
|
kmem_cache_destroy(flow_cache);
|
|
}
|