mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-26 12:47:53 +00:00
dbd6ef29a7
The bottom-half we use for processing the breadcrumb interrupt is a task, which is an RCU protected struct. When accessing this struct, we need to be holding the RCU read lock to prevent it disappearing beneath us. We can use the RCU annotation to mark our irq_seqno_bh pointer as being under RCU guard and then use the RCU accessors to both provide correct ordering of access through the pointer. Most notably, this fixes the access from hard irq context to use the RCU read lock, which both Daniel and Tvrtko complained about. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1470761272-1245-3-git-send-email-chris@chris-wilson.co.uk
581 lines
19 KiB
C
581 lines
19 KiB
C
#ifndef _INTEL_RINGBUFFER_H_
|
|
#define _INTEL_RINGBUFFER_H_
|
|
|
|
#include <linux/hashtable.h>
|
|
#include "i915_gem_batch_pool.h"
|
|
#include "i915_gem_request.h"
|
|
|
|
#define I915_CMD_HASH_ORDER 9
|
|
|
|
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
|
|
* but keeps the logic simple. Indeed, the whole purpose of this macro is just
|
|
* to give some inclination as to some of the magic values used in the various
|
|
* workarounds!
|
|
*/
|
|
#define CACHELINE_BYTES 64
|
|
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
|
|
|
|
/*
|
|
* Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
|
|
* Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
|
|
* Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
|
|
*
|
|
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
|
|
* cacheline, the Head Pointer must not be greater than the Tail
|
|
* Pointer."
|
|
*/
|
|
#define I915_RING_FREE_SPACE 64
|
|
|
|
struct intel_hw_status_page {
|
|
u32 *page_addr;
|
|
unsigned int gfx_addr;
|
|
struct drm_i915_gem_object *obj;
|
|
};
|
|
|
|
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
|
|
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
|
|
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
|
|
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
|
|
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
|
|
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
|
|
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
|
|
|
|
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
|
|
* do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
|
|
*/
|
|
#define gen8_semaphore_seqno_size sizeof(uint64_t)
|
|
#define GEN8_SEMAPHORE_OFFSET(__from, __to) \
|
|
(((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
|
|
#define GEN8_SIGNAL_OFFSET(__ring, to) \
|
|
(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
|
|
GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
|
|
#define GEN8_WAIT_OFFSET(__ring, from) \
|
|
(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
|
|
GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
|
|
|
|
enum intel_engine_hangcheck_action {
|
|
HANGCHECK_IDLE = 0,
|
|
HANGCHECK_WAIT,
|
|
HANGCHECK_ACTIVE,
|
|
HANGCHECK_KICK,
|
|
HANGCHECK_HUNG,
|
|
};
|
|
|
|
#define HANGCHECK_SCORE_RING_HUNG 31
|
|
|
|
struct intel_engine_hangcheck {
|
|
u64 acthd;
|
|
u32 seqno;
|
|
int score;
|
|
enum intel_engine_hangcheck_action action;
|
|
int deadlock;
|
|
u32 instdone[I915_NUM_INSTDONE_REG];
|
|
};
|
|
|
|
struct intel_ring {
|
|
struct drm_i915_gem_object *obj;
|
|
void *vaddr;
|
|
struct i915_vma *vma;
|
|
|
|
struct intel_engine_cs *engine;
|
|
struct list_head link;
|
|
|
|
struct list_head request_list;
|
|
|
|
u32 head;
|
|
u32 tail;
|
|
int space;
|
|
int size;
|
|
int effective_size;
|
|
|
|
/** We track the position of the requests in the ring buffer, and
|
|
* when each is retired we increment last_retired_head as the GPU
|
|
* must have finished processing the request and so we know we
|
|
* can advance the ringbuffer up to that position.
|
|
*
|
|
* last_retired_head is set to -1 after the value is consumed so
|
|
* we can detect new retirements.
|
|
*/
|
|
u32 last_retired_head;
|
|
};
|
|
|
|
struct i915_gem_context;
|
|
struct drm_i915_reg_table;
|
|
|
|
/*
|
|
* we use a single page to load ctx workarounds so all of these
|
|
* values are referred in terms of dwords
|
|
*
|
|
* struct i915_wa_ctx_bb:
|
|
* offset: specifies batch starting position, also helpful in case
|
|
* if we want to have multiple batches at different offsets based on
|
|
* some criteria. It is not a requirement at the moment but provides
|
|
* an option for future use.
|
|
* size: size of the batch in DWORDS
|
|
*/
|
|
struct i915_ctx_workarounds {
|
|
struct i915_wa_ctx_bb {
|
|
u32 offset;
|
|
u32 size;
|
|
} indirect_ctx, per_ctx;
|
|
struct drm_i915_gem_object *obj;
|
|
};
|
|
|
|
struct drm_i915_gem_request;
|
|
|
|
struct intel_engine_cs {
|
|
struct drm_i915_private *i915;
|
|
const char *name;
|
|
enum intel_engine_id {
|
|
RCS = 0,
|
|
BCS,
|
|
VCS,
|
|
VCS2, /* Keep instances of the same type engine together. */
|
|
VECS
|
|
} id;
|
|
#define I915_NUM_ENGINES 5
|
|
#define _VCS(n) (VCS + (n))
|
|
unsigned int exec_id;
|
|
unsigned int hw_id;
|
|
unsigned int guc_id; /* XXX same as hw_id? */
|
|
u64 fence_context;
|
|
u32 mmio_base;
|
|
unsigned int irq_shift;
|
|
struct intel_ring *buffer;
|
|
struct list_head buffers;
|
|
|
|
/* Rather than have every client wait upon all user interrupts,
|
|
* with the herd waking after every interrupt and each doing the
|
|
* heavyweight seqno dance, we delegate the task (of being the
|
|
* bottom-half of the user interrupt) to the first client. After
|
|
* every interrupt, we wake up one client, who does the heavyweight
|
|
* coherent seqno read and either goes back to sleep (if incomplete),
|
|
* or wakes up all the completed clients in parallel, before then
|
|
* transferring the bottom-half status to the next client in the queue.
|
|
*
|
|
* Compared to walking the entire list of waiters in a single dedicated
|
|
* bottom-half, we reduce the latency of the first waiter by avoiding
|
|
* a context switch, but incur additional coherent seqno reads when
|
|
* following the chain of request breadcrumbs. Since it is most likely
|
|
* that we have a single client waiting on each seqno, then reducing
|
|
* the overhead of waking that client is much preferred.
|
|
*/
|
|
struct intel_breadcrumbs {
|
|
struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
|
|
bool irq_posted;
|
|
|
|
spinlock_t lock; /* protects the lists of requests */
|
|
struct rb_root waiters; /* sorted by retirement, priority */
|
|
struct rb_root signals; /* sorted by retirement */
|
|
struct intel_wait *first_wait; /* oldest waiter by retirement */
|
|
struct task_struct *signaler; /* used for fence signalling */
|
|
struct drm_i915_gem_request *first_signal;
|
|
struct timer_list fake_irq; /* used after a missed interrupt */
|
|
struct timer_list hangcheck; /* detect missed interrupts */
|
|
|
|
unsigned long timeout;
|
|
|
|
bool irq_enabled : 1;
|
|
bool rpm_wakelock : 1;
|
|
} breadcrumbs;
|
|
|
|
/*
|
|
* A pool of objects to use as shadow copies of client batch buffers
|
|
* when the command parser is enabled. Prevents the client from
|
|
* modifying the batch contents after software parsing.
|
|
*/
|
|
struct i915_gem_batch_pool batch_pool;
|
|
|
|
struct intel_hw_status_page status_page;
|
|
struct i915_ctx_workarounds wa_ctx;
|
|
|
|
u32 irq_keep_mask; /* always keep these interrupts */
|
|
u32 irq_enable_mask; /* bitmask to enable ring interrupt */
|
|
void (*irq_enable)(struct intel_engine_cs *engine);
|
|
void (*irq_disable)(struct intel_engine_cs *engine);
|
|
|
|
int (*init_hw)(struct intel_engine_cs *engine);
|
|
|
|
int (*init_context)(struct drm_i915_gem_request *req);
|
|
|
|
int (*emit_flush)(struct drm_i915_gem_request *request,
|
|
u32 mode);
|
|
#define EMIT_INVALIDATE BIT(0)
|
|
#define EMIT_FLUSH BIT(1)
|
|
#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
|
|
int (*emit_bb_start)(struct drm_i915_gem_request *req,
|
|
u64 offset, u32 length,
|
|
unsigned int dispatch_flags);
|
|
#define I915_DISPATCH_SECURE BIT(0)
|
|
#define I915_DISPATCH_PINNED BIT(1)
|
|
#define I915_DISPATCH_RS BIT(2)
|
|
int (*emit_request)(struct drm_i915_gem_request *req);
|
|
void (*submit_request)(struct drm_i915_gem_request *req);
|
|
/* Some chipsets are not quite as coherent as advertised and need
|
|
* an expensive kick to force a true read of the up-to-date seqno.
|
|
* However, the up-to-date seqno is not always required and the last
|
|
* seen value is good enough. Note that the seqno will always be
|
|
* monotonic, even if not coherent.
|
|
*/
|
|
void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
|
|
void (*cleanup)(struct intel_engine_cs *engine);
|
|
|
|
/* GEN8 signal/wait table - never trust comments!
|
|
* signal to signal to signal to signal to signal to
|
|
* RCS VCS BCS VECS VCS2
|
|
* --------------------------------------------------------------------
|
|
* RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
|
|
* |-------------------------------------------------------------------
|
|
* VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
|
|
* |-------------------------------------------------------------------
|
|
* BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
|
|
* |-------------------------------------------------------------------
|
|
* VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
|
|
* |-------------------------------------------------------------------
|
|
* VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
|
|
* |-------------------------------------------------------------------
|
|
*
|
|
* Generalization:
|
|
* f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
|
|
* ie. transpose of g(x, y)
|
|
*
|
|
* sync from sync from sync from sync from sync from
|
|
* RCS VCS BCS VECS VCS2
|
|
* --------------------------------------------------------------------
|
|
* RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
|
|
* |-------------------------------------------------------------------
|
|
* VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
|
|
* |-------------------------------------------------------------------
|
|
* BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
|
|
* |-------------------------------------------------------------------
|
|
* VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
|
|
* |-------------------------------------------------------------------
|
|
* VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
|
|
* |-------------------------------------------------------------------
|
|
*
|
|
* Generalization:
|
|
* g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
|
|
* ie. transpose of f(x, y)
|
|
*/
|
|
struct {
|
|
u32 sync_seqno[I915_NUM_ENGINES-1];
|
|
|
|
union {
|
|
struct {
|
|
/* our mbox written by others */
|
|
u32 wait[I915_NUM_ENGINES];
|
|
/* mboxes this ring signals to */
|
|
i915_reg_t signal[I915_NUM_ENGINES];
|
|
} mbox;
|
|
u64 signal_ggtt[I915_NUM_ENGINES];
|
|
};
|
|
|
|
/* AKA wait() */
|
|
int (*sync_to)(struct drm_i915_gem_request *req,
|
|
struct drm_i915_gem_request *signal);
|
|
int (*signal)(struct drm_i915_gem_request *req);
|
|
} semaphore;
|
|
|
|
/* Execlists */
|
|
struct tasklet_struct irq_tasklet;
|
|
spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
|
|
struct list_head execlist_queue;
|
|
unsigned int fw_domains;
|
|
unsigned int next_context_status_buffer;
|
|
unsigned int idle_lite_restore_wa;
|
|
bool disable_lite_restore_wa;
|
|
u32 ctx_desc_template;
|
|
|
|
/**
|
|
* List of breadcrumbs associated with GPU requests currently
|
|
* outstanding.
|
|
*/
|
|
struct list_head request_list;
|
|
|
|
/**
|
|
* Seqno of request most recently submitted to request_list.
|
|
* Used exclusively by hang checker to avoid grabbing lock while
|
|
* inspecting request list.
|
|
*/
|
|
u32 last_submitted_seqno;
|
|
|
|
/* An RCU guarded pointer to the last request. No reference is
|
|
* held to the request, users must carefully acquire a reference to
|
|
* the request using i915_gem_active_get_rcu(), or hold the
|
|
* struct_mutex.
|
|
*/
|
|
struct i915_gem_active last_request;
|
|
|
|
struct i915_gem_context *last_context;
|
|
|
|
struct intel_engine_hangcheck hangcheck;
|
|
|
|
struct {
|
|
struct drm_i915_gem_object *obj;
|
|
u32 gtt_offset;
|
|
} scratch;
|
|
|
|
bool needs_cmd_parser;
|
|
|
|
/*
|
|
* Table of commands the command parser needs to know about
|
|
* for this engine.
|
|
*/
|
|
DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
|
|
|
|
/*
|
|
* Table of registers allowed in commands that read/write registers.
|
|
*/
|
|
const struct drm_i915_reg_table *reg_tables;
|
|
int reg_table_count;
|
|
|
|
/*
|
|
* Returns the bitmask for the length field of the specified command.
|
|
* Return 0 for an unrecognized/invalid command.
|
|
*
|
|
* If the command parser finds an entry for a command in the engine's
|
|
* cmd_tables, it gets the command's length based on the table entry.
|
|
* If not, it calls this function to determine the per-engine length
|
|
* field encoding for the command (i.e. different opcode ranges use
|
|
* certain bits to encode the command length in the header).
|
|
*/
|
|
u32 (*get_cmd_length_mask)(u32 cmd_header);
|
|
};
|
|
|
|
static inline bool
|
|
intel_engine_initialized(const struct intel_engine_cs *engine)
|
|
{
|
|
return engine->i915 != NULL;
|
|
}
|
|
|
|
static inline unsigned
|
|
intel_engine_flag(const struct intel_engine_cs *engine)
|
|
{
|
|
return 1 << engine->id;
|
|
}
|
|
|
|
static inline u32
|
|
intel_engine_sync_index(struct intel_engine_cs *engine,
|
|
struct intel_engine_cs *other)
|
|
{
|
|
int idx;
|
|
|
|
/*
|
|
* rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
|
|
* vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
|
|
* bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
|
|
* vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
|
|
* vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
|
|
*/
|
|
|
|
idx = (other - engine) - 1;
|
|
if (idx < 0)
|
|
idx += I915_NUM_ENGINES;
|
|
|
|
return idx;
|
|
}
|
|
|
|
static inline void
|
|
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
|
|
{
|
|
mb();
|
|
clflush(&engine->status_page.page_addr[reg]);
|
|
mb();
|
|
}
|
|
|
|
static inline u32
|
|
intel_read_status_page(struct intel_engine_cs *engine, int reg)
|
|
{
|
|
/* Ensure that the compiler doesn't optimize away the load. */
|
|
return READ_ONCE(engine->status_page.page_addr[reg]);
|
|
}
|
|
|
|
static inline void
|
|
intel_write_status_page(struct intel_engine_cs *engine,
|
|
int reg, u32 value)
|
|
{
|
|
engine->status_page.page_addr[reg] = value;
|
|
}
|
|
|
|
/*
|
|
* Reads a dword out of the status page, which is written to from the command
|
|
* queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
|
|
* MI_STORE_DATA_IMM.
|
|
*
|
|
* The following dwords have a reserved meaning:
|
|
* 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
|
|
* 0x04: ring 0 head pointer
|
|
* 0x05: ring 1 head pointer (915-class)
|
|
* 0x06: ring 2 head pointer (915-class)
|
|
* 0x10-0x1b: Context status DWords (GM45)
|
|
* 0x1f: Last written status offset. (GM45)
|
|
* 0x20-0x2f: Reserved (Gen6+)
|
|
*
|
|
* The area from dword 0x30 to 0x3ff is available for driver usage.
|
|
*/
|
|
#define I915_GEM_HWS_INDEX 0x30
|
|
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
|
|
#define I915_GEM_HWS_SCRATCH_INDEX 0x40
|
|
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
|
|
|
|
struct intel_ring *
|
|
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
|
|
int intel_ring_pin(struct intel_ring *ring);
|
|
void intel_ring_unpin(struct intel_ring *ring);
|
|
void intel_ring_free(struct intel_ring *ring);
|
|
|
|
void intel_engine_stop(struct intel_engine_cs *engine);
|
|
void intel_engine_cleanup(struct intel_engine_cs *engine);
|
|
|
|
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
|
|
|
|
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
|
|
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
|
|
|
|
static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
|
|
{
|
|
*(uint32_t *)(ring->vaddr + ring->tail) = data;
|
|
ring->tail += 4;
|
|
}
|
|
|
|
static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
|
|
{
|
|
intel_ring_emit(ring, i915_mmio_reg_offset(reg));
|
|
}
|
|
|
|
static inline void intel_ring_advance(struct intel_ring *ring)
|
|
{
|
|
/* Dummy function.
|
|
*
|
|
* This serves as a placeholder in the code so that the reader
|
|
* can compare against the preceding intel_ring_begin() and
|
|
* check that the number of dwords emitted matches the space
|
|
* reserved for the command packet (i.e. the value passed to
|
|
* intel_ring_begin()).
|
|
*/
|
|
}
|
|
|
|
static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
|
|
{
|
|
/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
|
|
return value & (ring->size - 1);
|
|
}
|
|
|
|
int __intel_ring_space(int head, int tail, int size);
|
|
void intel_ring_update_space(struct intel_ring *ring);
|
|
|
|
void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
|
|
|
|
int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
|
|
void intel_fini_pipe_control(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_setup_common(struct intel_engine_cs *engine);
|
|
int intel_engine_init_common(struct intel_engine_cs *engine);
|
|
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
|
|
|
|
static inline int intel_engine_idle(struct intel_engine_cs *engine,
|
|
bool interruptible)
|
|
{
|
|
/* Wait upon the last request to be completed */
|
|
return i915_gem_active_wait_unlocked(&engine->last_request,
|
|
interruptible, NULL, NULL);
|
|
}
|
|
|
|
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
|
|
|
|
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
|
|
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
|
|
{
|
|
return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
|
|
}
|
|
|
|
int init_workarounds_ring(struct intel_engine_cs *engine);
|
|
|
|
/*
|
|
* Arbitrary size for largest possible 'add request' sequence. The code paths
|
|
* are complex and variable. Empirical measurement shows that the worst case
|
|
* is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
|
|
* we need to allocate double the largest single packet within that emission
|
|
* to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
|
|
*/
|
|
#define MIN_SPACE_FOR_ADD_REQUEST 336
|
|
|
|
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
|
|
{
|
|
return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
|
|
}
|
|
|
|
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
|
|
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
|
|
|
|
static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
|
|
{
|
|
wait->tsk = current;
|
|
wait->seqno = seqno;
|
|
}
|
|
|
|
static inline bool intel_wait_complete(const struct intel_wait *wait)
|
|
{
|
|
return RB_EMPTY_NODE(&wait->node);
|
|
}
|
|
|
|
bool intel_engine_add_wait(struct intel_engine_cs *engine,
|
|
struct intel_wait *wait);
|
|
void intel_engine_remove_wait(struct intel_engine_cs *engine,
|
|
struct intel_wait *wait);
|
|
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
|
|
|
|
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
|
|
{
|
|
return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
|
|
}
|
|
|
|
static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
|
|
{
|
|
bool wakeup = false;
|
|
|
|
/* Note that for this not to dangerously chase a dangling pointer,
|
|
* we must hold the rcu_read_lock here.
|
|
*
|
|
* Also note that tsk is likely to be in !TASK_RUNNING state so an
|
|
* early test for tsk->state != TASK_RUNNING before wake_up_process()
|
|
* is unlikely to be beneficial.
|
|
*/
|
|
if (intel_engine_has_waiter(engine)) {
|
|
struct task_struct *tsk;
|
|
|
|
rcu_read_lock();
|
|
tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
|
|
if (tsk)
|
|
wakeup = wake_up_process(tsk);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
return wakeup;
|
|
}
|
|
|
|
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
|
|
unsigned int intel_kick_waiters(struct drm_i915_private *i915);
|
|
unsigned int intel_kick_signalers(struct drm_i915_private *i915);
|
|
|
|
static inline bool intel_engine_is_active(struct intel_engine_cs *engine)
|
|
{
|
|
return i915_gem_active_isset(&engine->last_request);
|
|
}
|
|
|
|
#endif /* _INTEL_RINGBUFFER_H_ */
|