mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-04 08:15:44 +00:00
3dd82a1ea7
The kconfig entry can go away once arch/ppc and references to the config in drivers are removed. Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
501 lines
12 KiB
C
501 lines
12 KiB
C
/*
|
|
* General Purpose functions for the global management of the
|
|
* Communication Processor Module.
|
|
* Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
|
|
*
|
|
* In addition to the individual control of the communication
|
|
* channels, there are a few functions that globally affect the
|
|
* communication processor.
|
|
*
|
|
* Buffer descriptors must be allocated from the dual ported memory
|
|
* space. The allocator for that is here. When the communication
|
|
* process is reset, we reclaim the memory available. There is
|
|
* currently no deallocator for this memory.
|
|
* The amount of space available is platform dependent. On the
|
|
* MBX, the EPPC software loads additional microcode into the
|
|
* communication processor, and uses some of the DP ram for this
|
|
* purpose. Current, the first 512 bytes and the last 256 bytes of
|
|
* memory are used. Right now I am conservative and only use the
|
|
* memory that can never be used for microcode. If there are
|
|
* applications that require more DP ram, we can expand the boundaries
|
|
* but then we have to be careful of any downloaded microcode.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/module.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/8xx_immap.h>
|
|
#include <asm/cpm1.h>
|
|
#include <asm/io.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/rheap.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/cpm.h>
|
|
|
|
#include <asm/fs_pd.h>
|
|
|
|
#define CPM_MAP_SIZE (0x4000)
|
|
|
|
cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
|
|
immap_t __iomem *mpc8xx_immr;
|
|
static cpic8xx_t __iomem *cpic_reg;
|
|
|
|
static struct irq_host *cpm_pic_host;
|
|
|
|
static void cpm_mask_irq(unsigned int irq)
|
|
{
|
|
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
|
|
|
|
clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
|
|
}
|
|
|
|
static void cpm_unmask_irq(unsigned int irq)
|
|
{
|
|
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
|
|
|
|
setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
|
|
}
|
|
|
|
static void cpm_end_irq(unsigned int irq)
|
|
{
|
|
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
|
|
|
|
out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
|
|
}
|
|
|
|
static struct irq_chip cpm_pic = {
|
|
.typename = " CPM PIC ",
|
|
.mask = cpm_mask_irq,
|
|
.unmask = cpm_unmask_irq,
|
|
.eoi = cpm_end_irq,
|
|
};
|
|
|
|
int cpm_get_irq(void)
|
|
{
|
|
int cpm_vec;
|
|
|
|
/* Get the vector by setting the ACK bit and then reading
|
|
* the register.
|
|
*/
|
|
out_be16(&cpic_reg->cpic_civr, 1);
|
|
cpm_vec = in_be16(&cpic_reg->cpic_civr);
|
|
cpm_vec >>= 11;
|
|
|
|
return irq_linear_revmap(cpm_pic_host, cpm_vec);
|
|
}
|
|
|
|
static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
|
|
irq_hw_number_t hw)
|
|
{
|
|
pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
|
|
|
|
get_irq_desc(virq)->status |= IRQ_LEVEL;
|
|
set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
|
|
return 0;
|
|
}
|
|
|
|
/* The CPM can generate the error interrupt when there is a race condition
|
|
* between generating and masking interrupts. All we have to do is ACK it
|
|
* and return. This is a no-op function so we don't need any special
|
|
* tests in the interrupt handler.
|
|
*/
|
|
static irqreturn_t cpm_error_interrupt(int irq, void *dev)
|
|
{
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static struct irqaction cpm_error_irqaction = {
|
|
.handler = cpm_error_interrupt,
|
|
.mask = CPU_MASK_NONE,
|
|
.name = "error",
|
|
};
|
|
|
|
static struct irq_host_ops cpm_pic_host_ops = {
|
|
.map = cpm_pic_host_map,
|
|
};
|
|
|
|
unsigned int cpm_pic_init(void)
|
|
{
|
|
struct device_node *np = NULL;
|
|
struct resource res;
|
|
unsigned int sirq = NO_IRQ, hwirq, eirq;
|
|
int ret;
|
|
|
|
pr_debug("cpm_pic_init\n");
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
|
|
if (np == NULL)
|
|
np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
|
|
if (np == NULL) {
|
|
printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
|
|
return sirq;
|
|
}
|
|
|
|
ret = of_address_to_resource(np, 0, &res);
|
|
if (ret)
|
|
goto end;
|
|
|
|
cpic_reg = ioremap(res.start, res.end - res.start + 1);
|
|
if (cpic_reg == NULL)
|
|
goto end;
|
|
|
|
sirq = irq_of_parse_and_map(np, 0);
|
|
if (sirq == NO_IRQ)
|
|
goto end;
|
|
|
|
/* Initialize the CPM interrupt controller. */
|
|
hwirq = (unsigned int)irq_map[sirq].hwirq;
|
|
out_be32(&cpic_reg->cpic_cicr,
|
|
(CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
|
|
((hwirq/2) << 13) | CICR_HP_MASK);
|
|
|
|
out_be32(&cpic_reg->cpic_cimr, 0);
|
|
|
|
cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR,
|
|
64, &cpm_pic_host_ops, 64);
|
|
if (cpm_pic_host == NULL) {
|
|
printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
|
|
sirq = NO_IRQ;
|
|
goto end;
|
|
}
|
|
|
|
/* Install our own error handler. */
|
|
np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
|
|
if (np == NULL)
|
|
np = of_find_node_by_type(NULL, "cpm");
|
|
if (np == NULL) {
|
|
printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
|
|
goto end;
|
|
}
|
|
|
|
eirq = irq_of_parse_and_map(np, 0);
|
|
if (eirq == NO_IRQ)
|
|
goto end;
|
|
|
|
if (setup_irq(eirq, &cpm_error_irqaction))
|
|
printk(KERN_ERR "Could not allocate CPM error IRQ!");
|
|
|
|
setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
|
|
|
|
end:
|
|
of_node_put(np);
|
|
return sirq;
|
|
}
|
|
|
|
void __init cpm_reset(void)
|
|
{
|
|
sysconf8xx_t __iomem *siu_conf;
|
|
|
|
mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
|
|
if (!mpc8xx_immr) {
|
|
printk(KERN_CRIT "Could not map IMMR\n");
|
|
return;
|
|
}
|
|
|
|
cpmp = &mpc8xx_immr->im_cpm;
|
|
|
|
#ifndef CONFIG_PPC_EARLY_DEBUG_CPM
|
|
/* Perform a reset.
|
|
*/
|
|
out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
|
|
|
|
/* Wait for it.
|
|
*/
|
|
while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
|
|
#endif
|
|
|
|
#ifdef CONFIG_UCODE_PATCH
|
|
cpm_load_patch(cpmp);
|
|
#endif
|
|
|
|
/* Set SDMA Bus Request priority 5.
|
|
* On 860T, this also enables FEC priority 6. I am not sure
|
|
* this is what we realy want for some applications, but the
|
|
* manual recommends it.
|
|
* Bit 25, FAM can also be set to use FEC aggressive mode (860T).
|
|
*/
|
|
siu_conf = immr_map(im_siu_conf);
|
|
out_be32(&siu_conf->sc_sdcr, 1);
|
|
immr_unmap(siu_conf);
|
|
|
|
cpm_muram_init();
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(cmd_lock);
|
|
|
|
#define MAX_CR_CMD_LOOPS 10000
|
|
|
|
int cpm_command(u32 command, u8 opcode)
|
|
{
|
|
int i, ret;
|
|
unsigned long flags;
|
|
|
|
if (command & 0xffffff0f)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&cmd_lock, flags);
|
|
|
|
ret = 0;
|
|
out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
|
|
for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
|
|
if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
|
|
goto out;
|
|
|
|
printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
|
|
ret = -EIO;
|
|
out:
|
|
spin_unlock_irqrestore(&cmd_lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(cpm_command);
|
|
|
|
/* Set a baud rate generator. This needs lots of work. There are
|
|
* four BRGs, any of which can be wired to any channel.
|
|
* The internal baud rate clock is the system clock divided by 16.
|
|
* This assumes the baudrate is 16x oversampled by the uart.
|
|
*/
|
|
#define BRG_INT_CLK (get_brgfreq())
|
|
#define BRG_UART_CLK (BRG_INT_CLK/16)
|
|
#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
|
|
|
|
void
|
|
cpm_setbrg(uint brg, uint rate)
|
|
{
|
|
u32 __iomem *bp;
|
|
|
|
/* This is good enough to get SMCs running.....
|
|
*/
|
|
bp = &cpmp->cp_brgc1;
|
|
bp += brg;
|
|
/* The BRG has a 12-bit counter. For really slow baud rates (or
|
|
* really fast processors), we may have to further divide by 16.
|
|
*/
|
|
if (((BRG_UART_CLK / rate) - 1) < 4096)
|
|
out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
|
|
else
|
|
out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
|
|
CPM_BRG_EN | CPM_BRG_DIV16);
|
|
}
|
|
|
|
struct cpm_ioport16 {
|
|
__be16 dir, par, odr_sor, dat, intr;
|
|
__be16 res[3];
|
|
};
|
|
|
|
struct cpm_ioport32 {
|
|
__be32 dir, par, sor;
|
|
};
|
|
|
|
static void cpm1_set_pin32(int port, int pin, int flags)
|
|
{
|
|
struct cpm_ioport32 __iomem *iop;
|
|
pin = 1 << (31 - pin);
|
|
|
|
if (port == CPM_PORTB)
|
|
iop = (struct cpm_ioport32 __iomem *)
|
|
&mpc8xx_immr->im_cpm.cp_pbdir;
|
|
else
|
|
iop = (struct cpm_ioport32 __iomem *)
|
|
&mpc8xx_immr->im_cpm.cp_pedir;
|
|
|
|
if (flags & CPM_PIN_OUTPUT)
|
|
setbits32(&iop->dir, pin);
|
|
else
|
|
clrbits32(&iop->dir, pin);
|
|
|
|
if (!(flags & CPM_PIN_GPIO))
|
|
setbits32(&iop->par, pin);
|
|
else
|
|
clrbits32(&iop->par, pin);
|
|
|
|
if (port == CPM_PORTB) {
|
|
if (flags & CPM_PIN_OPENDRAIN)
|
|
setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
|
|
else
|
|
clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
|
|
}
|
|
|
|
if (port == CPM_PORTE) {
|
|
if (flags & CPM_PIN_SECONDARY)
|
|
setbits32(&iop->sor, pin);
|
|
else
|
|
clrbits32(&iop->sor, pin);
|
|
|
|
if (flags & CPM_PIN_OPENDRAIN)
|
|
setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
|
|
else
|
|
clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
|
|
}
|
|
}
|
|
|
|
static void cpm1_set_pin16(int port, int pin, int flags)
|
|
{
|
|
struct cpm_ioport16 __iomem *iop =
|
|
(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
|
|
|
|
pin = 1 << (15 - pin);
|
|
|
|
if (port != 0)
|
|
iop += port - 1;
|
|
|
|
if (flags & CPM_PIN_OUTPUT)
|
|
setbits16(&iop->dir, pin);
|
|
else
|
|
clrbits16(&iop->dir, pin);
|
|
|
|
if (!(flags & CPM_PIN_GPIO))
|
|
setbits16(&iop->par, pin);
|
|
else
|
|
clrbits16(&iop->par, pin);
|
|
|
|
if (port == CPM_PORTA) {
|
|
if (flags & CPM_PIN_OPENDRAIN)
|
|
setbits16(&iop->odr_sor, pin);
|
|
else
|
|
clrbits16(&iop->odr_sor, pin);
|
|
}
|
|
if (port == CPM_PORTC) {
|
|
if (flags & CPM_PIN_SECONDARY)
|
|
setbits16(&iop->odr_sor, pin);
|
|
else
|
|
clrbits16(&iop->odr_sor, pin);
|
|
}
|
|
}
|
|
|
|
void cpm1_set_pin(enum cpm_port port, int pin, int flags)
|
|
{
|
|
if (port == CPM_PORTB || port == CPM_PORTE)
|
|
cpm1_set_pin32(port, pin, flags);
|
|
else
|
|
cpm1_set_pin16(port, pin, flags);
|
|
}
|
|
|
|
int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
|
|
{
|
|
int shift;
|
|
int i, bits = 0;
|
|
u32 __iomem *reg;
|
|
u32 mask = 7;
|
|
|
|
u8 clk_map[][3] = {
|
|
{CPM_CLK_SCC1, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC1, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC1, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC1, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC1, CPM_CLK1, 4},
|
|
{CPM_CLK_SCC1, CPM_CLK2, 5},
|
|
{CPM_CLK_SCC1, CPM_CLK3, 6},
|
|
{CPM_CLK_SCC1, CPM_CLK4, 7},
|
|
|
|
{CPM_CLK_SCC2, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC2, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC2, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC2, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC2, CPM_CLK1, 4},
|
|
{CPM_CLK_SCC2, CPM_CLK2, 5},
|
|
{CPM_CLK_SCC2, CPM_CLK3, 6},
|
|
{CPM_CLK_SCC2, CPM_CLK4, 7},
|
|
|
|
{CPM_CLK_SCC3, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC3, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC3, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC3, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC3, CPM_CLK5, 4},
|
|
{CPM_CLK_SCC3, CPM_CLK6, 5},
|
|
{CPM_CLK_SCC3, CPM_CLK7, 6},
|
|
{CPM_CLK_SCC3, CPM_CLK8, 7},
|
|
|
|
{CPM_CLK_SCC4, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC4, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC4, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC4, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC4, CPM_CLK5, 4},
|
|
{CPM_CLK_SCC4, CPM_CLK6, 5},
|
|
{CPM_CLK_SCC4, CPM_CLK7, 6},
|
|
{CPM_CLK_SCC4, CPM_CLK8, 7},
|
|
|
|
{CPM_CLK_SMC1, CPM_BRG1, 0},
|
|
{CPM_CLK_SMC1, CPM_BRG2, 1},
|
|
{CPM_CLK_SMC1, CPM_BRG3, 2},
|
|
{CPM_CLK_SMC1, CPM_BRG4, 3},
|
|
{CPM_CLK_SMC1, CPM_CLK1, 4},
|
|
{CPM_CLK_SMC1, CPM_CLK2, 5},
|
|
{CPM_CLK_SMC1, CPM_CLK3, 6},
|
|
{CPM_CLK_SMC1, CPM_CLK4, 7},
|
|
|
|
{CPM_CLK_SMC2, CPM_BRG1, 0},
|
|
{CPM_CLK_SMC2, CPM_BRG2, 1},
|
|
{CPM_CLK_SMC2, CPM_BRG3, 2},
|
|
{CPM_CLK_SMC2, CPM_BRG4, 3},
|
|
{CPM_CLK_SMC2, CPM_CLK5, 4},
|
|
{CPM_CLK_SMC2, CPM_CLK6, 5},
|
|
{CPM_CLK_SMC2, CPM_CLK7, 6},
|
|
{CPM_CLK_SMC2, CPM_CLK8, 7},
|
|
};
|
|
|
|
switch (target) {
|
|
case CPM_CLK_SCC1:
|
|
reg = &mpc8xx_immr->im_cpm.cp_sicr;
|
|
shift = 0;
|
|
break;
|
|
|
|
case CPM_CLK_SCC2:
|
|
reg = &mpc8xx_immr->im_cpm.cp_sicr;
|
|
shift = 8;
|
|
break;
|
|
|
|
case CPM_CLK_SCC3:
|
|
reg = &mpc8xx_immr->im_cpm.cp_sicr;
|
|
shift = 16;
|
|
break;
|
|
|
|
case CPM_CLK_SCC4:
|
|
reg = &mpc8xx_immr->im_cpm.cp_sicr;
|
|
shift = 24;
|
|
break;
|
|
|
|
case CPM_CLK_SMC1:
|
|
reg = &mpc8xx_immr->im_cpm.cp_simode;
|
|
shift = 12;
|
|
break;
|
|
|
|
case CPM_CLK_SMC2:
|
|
reg = &mpc8xx_immr->im_cpm.cp_simode;
|
|
shift = 28;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX)
|
|
shift += 3;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
|
|
if (clk_map[i][0] == target && clk_map[i][1] == clock) {
|
|
bits = clk_map[i][2];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(clk_map)) {
|
|
printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
bits <<= shift;
|
|
mask <<= shift;
|
|
out_be32(reg, (in_be32(reg) & ~mask) | bits);
|
|
|
|
return 0;
|
|
}
|