mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-05 08:48:53 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
582 lines
13 KiB
C
582 lines
13 KiB
C
/*
|
|
* PPC64 (POWER4) Huge TLB Page Support for Kernel.
|
|
*
|
|
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
|
*
|
|
* Based on the IA-32 version:
|
|
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#define PAGE_SHIFT_64K 16
|
|
#define PAGE_SHIFT_16M 24
|
|
#define PAGE_SHIFT_16G 34
|
|
|
|
#define MAX_NUMBER_GPAGES 1024
|
|
|
|
/* Tracks the 16G pages after the device tree is scanned and before the
|
|
* huge_boot_pages list is ready. */
|
|
static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
|
|
static unsigned nr_gpages;
|
|
|
|
/* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
|
|
* will choke on pointers to hugepte tables, which is handy for
|
|
* catching screwups early. */
|
|
|
|
static inline int shift_to_mmu_psize(unsigned int shift)
|
|
{
|
|
int psize;
|
|
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
|
|
if (mmu_psize_defs[psize].shift == shift)
|
|
return psize;
|
|
return -1;
|
|
}
|
|
|
|
static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
|
|
{
|
|
if (mmu_psize_defs[mmu_psize].shift)
|
|
return mmu_psize_defs[mmu_psize].shift;
|
|
BUG();
|
|
}
|
|
|
|
#define hugepd_none(hpd) ((hpd).pd == 0)
|
|
|
|
static inline pte_t *hugepd_page(hugepd_t hpd)
|
|
{
|
|
BUG_ON(!hugepd_ok(hpd));
|
|
return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
|
|
}
|
|
|
|
static inline unsigned int hugepd_shift(hugepd_t hpd)
|
|
{
|
|
return hpd.pd & HUGEPD_SHIFT_MASK;
|
|
}
|
|
|
|
static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
|
|
{
|
|
unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
|
|
pte_t *dir = hugepd_page(*hpdp);
|
|
|
|
return dir + idx;
|
|
}
|
|
|
|
pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
|
|
{
|
|
pgd_t *pg;
|
|
pud_t *pu;
|
|
pmd_t *pm;
|
|
hugepd_t *hpdp = NULL;
|
|
unsigned pdshift = PGDIR_SHIFT;
|
|
|
|
if (shift)
|
|
*shift = 0;
|
|
|
|
pg = pgdir + pgd_index(ea);
|
|
if (is_hugepd(pg)) {
|
|
hpdp = (hugepd_t *)pg;
|
|
} else if (!pgd_none(*pg)) {
|
|
pdshift = PUD_SHIFT;
|
|
pu = pud_offset(pg, ea);
|
|
if (is_hugepd(pu))
|
|
hpdp = (hugepd_t *)pu;
|
|
else if (!pud_none(*pu)) {
|
|
pdshift = PMD_SHIFT;
|
|
pm = pmd_offset(pu, ea);
|
|
if (is_hugepd(pm))
|
|
hpdp = (hugepd_t *)pm;
|
|
else if (!pmd_none(*pm)) {
|
|
return pte_offset_map(pm, ea);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!hpdp)
|
|
return NULL;
|
|
|
|
if (shift)
|
|
*shift = hugepd_shift(*hpdp);
|
|
return hugepte_offset(hpdp, ea, pdshift);
|
|
}
|
|
|
|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
|
|
}
|
|
|
|
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
|
|
unsigned long address, unsigned pdshift, unsigned pshift)
|
|
{
|
|
pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
|
|
GFP_KERNEL|__GFP_REPEAT);
|
|
|
|
BUG_ON(pshift > HUGEPD_SHIFT_MASK);
|
|
BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
|
|
|
|
if (! new)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
if (!hugepd_none(*hpdp))
|
|
kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
|
|
else
|
|
hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
|
|
spin_unlock(&mm->page_table_lock);
|
|
return 0;
|
|
}
|
|
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pg;
|
|
pud_t *pu;
|
|
pmd_t *pm;
|
|
hugepd_t *hpdp = NULL;
|
|
unsigned pshift = __ffs(sz);
|
|
unsigned pdshift = PGDIR_SHIFT;
|
|
|
|
addr &= ~(sz-1);
|
|
|
|
pg = pgd_offset(mm, addr);
|
|
if (pshift >= PUD_SHIFT) {
|
|
hpdp = (hugepd_t *)pg;
|
|
} else {
|
|
pdshift = PUD_SHIFT;
|
|
pu = pud_alloc(mm, pg, addr);
|
|
if (pshift >= PMD_SHIFT) {
|
|
hpdp = (hugepd_t *)pu;
|
|
} else {
|
|
pdshift = PMD_SHIFT;
|
|
pm = pmd_alloc(mm, pu, addr);
|
|
hpdp = (hugepd_t *)pm;
|
|
}
|
|
}
|
|
|
|
if (!hpdp)
|
|
return NULL;
|
|
|
|
BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
|
|
|
|
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
|
|
return NULL;
|
|
|
|
return hugepte_offset(hpdp, addr, pdshift);
|
|
}
|
|
|
|
/* Build list of addresses of gigantic pages. This function is used in early
|
|
* boot before the buddy or bootmem allocator is setup.
|
|
*/
|
|
void add_gpage(unsigned long addr, unsigned long page_size,
|
|
unsigned long number_of_pages)
|
|
{
|
|
if (!addr)
|
|
return;
|
|
while (number_of_pages > 0) {
|
|
gpage_freearray[nr_gpages] = addr;
|
|
nr_gpages++;
|
|
number_of_pages--;
|
|
addr += page_size;
|
|
}
|
|
}
|
|
|
|
/* Moves the gigantic page addresses from the temporary list to the
|
|
* huge_boot_pages list.
|
|
*/
|
|
int alloc_bootmem_huge_page(struct hstate *hstate)
|
|
{
|
|
struct huge_bootmem_page *m;
|
|
if (nr_gpages == 0)
|
|
return 0;
|
|
m = phys_to_virt(gpage_freearray[--nr_gpages]);
|
|
gpage_freearray[nr_gpages] = 0;
|
|
list_add(&m->list, &huge_boot_pages);
|
|
m->hstate = hstate;
|
|
return 1;
|
|
}
|
|
|
|
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pte_t *hugepte = hugepd_page(*hpdp);
|
|
unsigned shift = hugepd_shift(*hpdp);
|
|
unsigned long pdmask = ~((1UL << pdshift) - 1);
|
|
|
|
start &= pdmask;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= pdmask;
|
|
if (! ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
hpdp->pd = 0;
|
|
tlb->need_flush = 1;
|
|
pgtable_free_tlb(tlb, hugepte, pdshift - shift);
|
|
}
|
|
|
|
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none(*pmd))
|
|
continue;
|
|
free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
start &= PUD_MASK;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= PUD_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, start);
|
|
pud_clear(pud);
|
|
pmd_free_tlb(tlb, pmd, start);
|
|
}
|
|
|
|
static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
pud = pud_offset(pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (!is_hugepd(pud)) {
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
|
|
ceiling);
|
|
} else {
|
|
free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
}
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
start &= PGDIR_MASK;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= PGDIR_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
pud = pud_offset(pgd, start);
|
|
pgd_clear(pgd);
|
|
pud_free_tlb(tlb, pud, start);
|
|
}
|
|
|
|
/*
|
|
* This function frees user-level page tables of a process.
|
|
*
|
|
* Must be called with pagetable lock held.
|
|
*/
|
|
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
|
|
/*
|
|
* Because there are a number of different possible pagetable
|
|
* layouts for hugepage ranges, we limit knowledge of how
|
|
* things should be laid out to the allocation path
|
|
* (huge_pte_alloc(), above). Everything else works out the
|
|
* structure as it goes from information in the hugepd
|
|
* pointers. That means that we can't here use the
|
|
* optimization used in the normal page free_pgd_range(), of
|
|
* checking whether we're actually covering a large enough
|
|
* range to have to do anything at the top level of the walk
|
|
* instead of at the bottom.
|
|
*
|
|
* To make sense of this, you should probably go read the big
|
|
* block comment at the top of the normal free_pgd_range(),
|
|
* too.
|
|
*/
|
|
|
|
pgd = pgd_offset(tlb->mm, addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (!is_hugepd(pgd)) {
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
|
|
} else {
|
|
free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
}
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
|
|
{
|
|
pte_t *ptep;
|
|
struct page *page;
|
|
unsigned shift;
|
|
unsigned long mask;
|
|
|
|
ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
|
|
|
|
/* Verify it is a huge page else bail. */
|
|
if (!ptep || !shift)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
mask = (1UL << shift) - 1;
|
|
page = pte_page(*ptep);
|
|
if (page)
|
|
page += (address & mask) / PAGE_SIZE;
|
|
|
|
return page;
|
|
}
|
|
|
|
int pmd_huge(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int pud_huge(pud_t pud)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
|
|
pmd_t *pmd, int write)
|
|
{
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
unsigned long mask;
|
|
unsigned long pte_end;
|
|
struct page *head, *page;
|
|
pte_t pte;
|
|
int refs;
|
|
|
|
pte_end = (addr + sz) & ~(sz-1);
|
|
if (pte_end < end)
|
|
end = pte_end;
|
|
|
|
pte = *ptep;
|
|
mask = _PAGE_PRESENT | _PAGE_USER;
|
|
if (write)
|
|
mask |= _PAGE_RW;
|
|
|
|
if ((pte_val(pte) & mask) != mask)
|
|
return 0;
|
|
|
|
/* hugepages are never "special" */
|
|
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
|
|
refs = 0;
|
|
head = pte_page(pte);
|
|
|
|
page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
|
|
do {
|
|
VM_BUG_ON(compound_head(page) != head);
|
|
pages[*nr] = page;
|
|
(*nr)++;
|
|
page++;
|
|
refs++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
|
|
if (!page_cache_add_speculative(head, refs)) {
|
|
*nr -= refs;
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
|
|
/* Could be optimized better */
|
|
while (*nr) {
|
|
put_page(page);
|
|
(*nr)--;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
|
|
unsigned long sz)
|
|
{
|
|
unsigned long __boundary = (addr + sz) & ~(sz-1);
|
|
return (__boundary - 1 < end - 1) ? __boundary : end;
|
|
}
|
|
|
|
int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
|
|
unsigned long addr, unsigned long end,
|
|
int write, struct page **pages, int *nr)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long sz = 1UL << hugepd_shift(*hugepd);
|
|
unsigned long next;
|
|
|
|
ptep = hugepte_offset(hugepd, addr, pdshift);
|
|
do {
|
|
next = hugepte_addr_end(addr, end, sz);
|
|
if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
|
|
return 0;
|
|
} while (ptep++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
struct hstate *hstate = hstate_file(file);
|
|
int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
|
|
|
|
return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
|
|
}
|
|
|
|
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
|
|
{
|
|
unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
|
|
|
|
return 1UL << mmu_psize_to_shift(psize);
|
|
}
|
|
|
|
static int __init add_huge_page_size(unsigned long long size)
|
|
{
|
|
int shift = __ffs(size);
|
|
int mmu_psize;
|
|
|
|
/* Check that it is a page size supported by the hardware and
|
|
* that it fits within pagetable and slice limits. */
|
|
if (!is_power_of_2(size)
|
|
|| (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
|
|
return -EINVAL;
|
|
|
|
if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
|
|
return -EINVAL;
|
|
|
|
#ifdef CONFIG_SPU_FS_64K_LS
|
|
/* Disable support for 64K huge pages when 64K SPU local store
|
|
* support is enabled as the current implementation conflicts.
|
|
*/
|
|
if (shift == PAGE_SHIFT_64K)
|
|
return -EINVAL;
|
|
#endif /* CONFIG_SPU_FS_64K_LS */
|
|
|
|
BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
|
|
|
|
/* Return if huge page size has already been setup */
|
|
if (size_to_hstate(size))
|
|
return 0;
|
|
|
|
hugetlb_add_hstate(shift - PAGE_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init hugepage_setup_sz(char *str)
|
|
{
|
|
unsigned long long size;
|
|
|
|
size = memparse(str, &str);
|
|
|
|
if (add_huge_page_size(size) != 0)
|
|
printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
|
|
|
|
return 1;
|
|
}
|
|
__setup("hugepagesz=", hugepage_setup_sz);
|
|
|
|
static int __init hugetlbpage_init(void)
|
|
{
|
|
int psize;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_16M_PAGE))
|
|
return -ENODEV;
|
|
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
|
unsigned shift;
|
|
unsigned pdshift;
|
|
|
|
if (!mmu_psize_defs[psize].shift)
|
|
continue;
|
|
|
|
shift = mmu_psize_to_shift(psize);
|
|
|
|
if (add_huge_page_size(1ULL << shift) < 0)
|
|
continue;
|
|
|
|
if (shift < PMD_SHIFT)
|
|
pdshift = PMD_SHIFT;
|
|
else if (shift < PUD_SHIFT)
|
|
pdshift = PUD_SHIFT;
|
|
else
|
|
pdshift = PGDIR_SHIFT;
|
|
|
|
pgtable_cache_add(pdshift - shift, NULL);
|
|
if (!PGT_CACHE(pdshift - shift))
|
|
panic("hugetlbpage_init(): could not create "
|
|
"pgtable cache for %d bit pagesize\n", shift);
|
|
}
|
|
|
|
/* Set default large page size. Currently, we pick 16M or 1M
|
|
* depending on what is available
|
|
*/
|
|
if (mmu_psize_defs[MMU_PAGE_16M].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
|
|
else if (mmu_psize_defs[MMU_PAGE_1M].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(hugetlbpage_init);
|
|
|
|
void flush_dcache_icache_hugepage(struct page *page)
|
|
{
|
|
int i;
|
|
|
|
BUG_ON(!PageCompound(page));
|
|
|
|
for (i = 0; i < (1UL << compound_order(page)); i++)
|
|
__flush_dcache_icache(page_address(page+i));
|
|
}
|