mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-22 09:22:37 +00:00
68db065c84
Make KERNEL_PGD_PTRS common, as previously it was only being defined for 32-bit. There are a couple of follow-on changes from this: - KERNEL_PGD_PTRS was being defined in terms of USER_PGD_PTRS. The definition of USER_PGD_PTRS doesn't really make much sense on x86-64, since it can have two different user address-space configurations. I renamed USER_PGD_PTRS to KERNEL_PGD_BOUNDARY, which is meaningful for all of 32/32, 32/64 and 64/64 process configurations. - USER_PTRS_PER_PGD was also defined and was being used for similar purposes. Converting its users to KERNEL_PGD_BOUNDARY left it completely unused, and so I removed it. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Andi Kleen <ak@suse.de> Cc: Zach Amsden <zach@vmware.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
1015 lines
30 KiB
C
1015 lines
30 KiB
C
/*
|
|
* VMI specific paravirt-ops implementation
|
|
*
|
|
* Copyright (C) 2005, VMware, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* Send feedback to zach@vmware.com
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched.h>
|
|
#include <asm/vmi.h>
|
|
#include <asm/io.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/apicdef.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/timer.h>
|
|
#include <asm/vmi_time.h>
|
|
#include <asm/kmap_types.h>
|
|
|
|
/* Convenient for calling VMI functions indirectly in the ROM */
|
|
typedef u32 __attribute__((regparm(1))) (VROMFUNC)(void);
|
|
typedef u64 __attribute__((regparm(2))) (VROMLONGFUNC)(int);
|
|
|
|
#define call_vrom_func(rom,func) \
|
|
(((VROMFUNC *)(rom->func))())
|
|
|
|
#define call_vrom_long_func(rom,func,arg) \
|
|
(((VROMLONGFUNC *)(rom->func)) (arg))
|
|
|
|
static struct vrom_header *vmi_rom;
|
|
static int disable_pge;
|
|
static int disable_pse;
|
|
static int disable_sep;
|
|
static int disable_tsc;
|
|
static int disable_mtrr;
|
|
static int disable_noidle;
|
|
static int disable_vmi_timer;
|
|
|
|
/* Cached VMI operations */
|
|
static struct {
|
|
void (*cpuid)(void /* non-c */);
|
|
void (*_set_ldt)(u32 selector);
|
|
void (*set_tr)(u32 selector);
|
|
void (*write_idt_entry)(struct desc_struct *, int, u32, u32);
|
|
void (*write_gdt_entry)(struct desc_struct *, int, u32, u32);
|
|
void (*write_ldt_entry)(struct desc_struct *, int, u32, u32);
|
|
void (*set_kernel_stack)(u32 selector, u32 sp0);
|
|
void (*allocate_page)(u32, u32, u32, u32, u32);
|
|
void (*release_page)(u32, u32);
|
|
void (*set_pte)(pte_t, pte_t *, unsigned);
|
|
void (*update_pte)(pte_t *, unsigned);
|
|
void (*set_linear_mapping)(int, void *, u32, u32);
|
|
void (*_flush_tlb)(int);
|
|
void (*set_initial_ap_state)(int, int);
|
|
void (*halt)(void);
|
|
void (*set_lazy_mode)(int mode);
|
|
} vmi_ops;
|
|
|
|
/* Cached VMI operations */
|
|
struct vmi_timer_ops vmi_timer_ops;
|
|
|
|
/*
|
|
* VMI patching routines.
|
|
*/
|
|
#define MNEM_CALL 0xe8
|
|
#define MNEM_JMP 0xe9
|
|
#define MNEM_RET 0xc3
|
|
|
|
#define IRQ_PATCH_INT_MASK 0
|
|
#define IRQ_PATCH_DISABLE 5
|
|
|
|
static inline void patch_offset(void *insnbuf,
|
|
unsigned long ip, unsigned long dest)
|
|
{
|
|
*(unsigned long *)(insnbuf+1) = dest-ip-5;
|
|
}
|
|
|
|
static unsigned patch_internal(int call, unsigned len, void *insnbuf,
|
|
unsigned long ip)
|
|
{
|
|
u64 reloc;
|
|
struct vmi_relocation_info *const rel = (struct vmi_relocation_info *)&reloc;
|
|
reloc = call_vrom_long_func(vmi_rom, get_reloc, call);
|
|
switch(rel->type) {
|
|
case VMI_RELOCATION_CALL_REL:
|
|
BUG_ON(len < 5);
|
|
*(char *)insnbuf = MNEM_CALL;
|
|
patch_offset(insnbuf, ip, (unsigned long)rel->eip);
|
|
return 5;
|
|
|
|
case VMI_RELOCATION_JUMP_REL:
|
|
BUG_ON(len < 5);
|
|
*(char *)insnbuf = MNEM_JMP;
|
|
patch_offset(insnbuf, ip, (unsigned long)rel->eip);
|
|
return 5;
|
|
|
|
case VMI_RELOCATION_NOP:
|
|
/* obliterate the whole thing */
|
|
return 0;
|
|
|
|
case VMI_RELOCATION_NONE:
|
|
/* leave native code in place */
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Apply patch if appropriate, return length of new instruction
|
|
* sequence. The callee does nop padding for us.
|
|
*/
|
|
static unsigned vmi_patch(u8 type, u16 clobbers, void *insns,
|
|
unsigned long ip, unsigned len)
|
|
{
|
|
switch (type) {
|
|
case PARAVIRT_PATCH(pv_irq_ops.irq_disable):
|
|
return patch_internal(VMI_CALL_DisableInterrupts, len,
|
|
insns, ip);
|
|
case PARAVIRT_PATCH(pv_irq_ops.irq_enable):
|
|
return patch_internal(VMI_CALL_EnableInterrupts, len,
|
|
insns, ip);
|
|
case PARAVIRT_PATCH(pv_irq_ops.restore_fl):
|
|
return patch_internal(VMI_CALL_SetInterruptMask, len,
|
|
insns, ip);
|
|
case PARAVIRT_PATCH(pv_irq_ops.save_fl):
|
|
return patch_internal(VMI_CALL_GetInterruptMask, len,
|
|
insns, ip);
|
|
case PARAVIRT_PATCH(pv_cpu_ops.iret):
|
|
return patch_internal(VMI_CALL_IRET, len, insns, ip);
|
|
case PARAVIRT_PATCH(pv_cpu_ops.irq_enable_syscall_ret):
|
|
return patch_internal(VMI_CALL_SYSEXIT, len, insns, ip);
|
|
default:
|
|
break;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/* CPUID has non-C semantics, and paravirt-ops API doesn't match hardware ISA */
|
|
static void vmi_cpuid(unsigned int *ax, unsigned int *bx,
|
|
unsigned int *cx, unsigned int *dx)
|
|
{
|
|
int override = 0;
|
|
if (*ax == 1)
|
|
override = 1;
|
|
asm volatile ("call *%6"
|
|
: "=a" (*ax),
|
|
"=b" (*bx),
|
|
"=c" (*cx),
|
|
"=d" (*dx)
|
|
: "0" (*ax), "2" (*cx), "r" (vmi_ops.cpuid));
|
|
if (override) {
|
|
if (disable_pse)
|
|
*dx &= ~X86_FEATURE_PSE;
|
|
if (disable_pge)
|
|
*dx &= ~X86_FEATURE_PGE;
|
|
if (disable_sep)
|
|
*dx &= ~X86_FEATURE_SEP;
|
|
if (disable_tsc)
|
|
*dx &= ~X86_FEATURE_TSC;
|
|
if (disable_mtrr)
|
|
*dx &= ~X86_FEATURE_MTRR;
|
|
}
|
|
}
|
|
|
|
static inline void vmi_maybe_load_tls(struct desc_struct *gdt, int nr, struct desc_struct *new)
|
|
{
|
|
if (gdt[nr].a != new->a || gdt[nr].b != new->b)
|
|
write_gdt_entry(gdt, nr, new, 0);
|
|
}
|
|
|
|
static void vmi_load_tls(struct thread_struct *t, unsigned int cpu)
|
|
{
|
|
struct desc_struct *gdt = get_cpu_gdt_table(cpu);
|
|
vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 0, &t->tls_array[0]);
|
|
vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 1, &t->tls_array[1]);
|
|
vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 2, &t->tls_array[2]);
|
|
}
|
|
|
|
static void vmi_set_ldt(const void *addr, unsigned entries)
|
|
{
|
|
unsigned cpu = smp_processor_id();
|
|
struct desc_struct desc;
|
|
|
|
pack_descriptor(&desc, (unsigned long)addr,
|
|
entries * sizeof(struct desc_struct) - 1,
|
|
DESC_LDT, 0);
|
|
write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_LDT, &desc, DESC_LDT);
|
|
vmi_ops._set_ldt(entries ? GDT_ENTRY_LDT*sizeof(struct desc_struct) : 0);
|
|
}
|
|
|
|
static void vmi_set_tr(void)
|
|
{
|
|
vmi_ops.set_tr(GDT_ENTRY_TSS*sizeof(struct desc_struct));
|
|
}
|
|
|
|
static void vmi_write_idt_entry(gate_desc *dt, int entry, const gate_desc *g)
|
|
{
|
|
u32 *idt_entry = (u32 *)g;
|
|
vmi_ops.write_idt_entry(dt, entry, idt_entry[0], idt_entry[1]);
|
|
}
|
|
|
|
static void vmi_write_gdt_entry(struct desc_struct *dt, int entry,
|
|
const void *desc, int type)
|
|
{
|
|
u32 *gdt_entry = (u32 *)desc;
|
|
vmi_ops.write_gdt_entry(dt, entry, gdt_entry[0], gdt_entry[1]);
|
|
}
|
|
|
|
static void vmi_write_ldt_entry(struct desc_struct *dt, int entry,
|
|
const void *desc)
|
|
{
|
|
u32 *ldt_entry = (u32 *)desc;
|
|
vmi_ops.write_idt_entry(dt, entry, ldt_entry[0], ldt_entry[1]);
|
|
}
|
|
|
|
static void vmi_load_sp0(struct tss_struct *tss,
|
|
struct thread_struct *thread)
|
|
{
|
|
tss->x86_tss.sp0 = thread->sp0;
|
|
|
|
/* This can only happen when SEP is enabled, no need to test "SEP"arately */
|
|
if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
|
|
tss->x86_tss.ss1 = thread->sysenter_cs;
|
|
wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
|
|
}
|
|
vmi_ops.set_kernel_stack(__KERNEL_DS, tss->x86_tss.sp0);
|
|
}
|
|
|
|
static void vmi_flush_tlb_user(void)
|
|
{
|
|
vmi_ops._flush_tlb(VMI_FLUSH_TLB);
|
|
}
|
|
|
|
static void vmi_flush_tlb_kernel(void)
|
|
{
|
|
vmi_ops._flush_tlb(VMI_FLUSH_TLB | VMI_FLUSH_GLOBAL);
|
|
}
|
|
|
|
/* Stub to do nothing at all; used for delays and unimplemented calls */
|
|
static void vmi_nop(void)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_PAGE_TYPE
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
#define MAX_BOOT_PTS (2048+4+1)
|
|
#else
|
|
#define MAX_BOOT_PTS (1024+1)
|
|
#endif
|
|
|
|
/*
|
|
* During boot, mem_map is not yet available in paging_init, so stash
|
|
* all the boot page allocations here.
|
|
*/
|
|
static struct {
|
|
u32 pfn;
|
|
int type;
|
|
} boot_page_allocations[MAX_BOOT_PTS];
|
|
static int num_boot_page_allocations;
|
|
static int boot_allocations_applied;
|
|
|
|
void vmi_apply_boot_page_allocations(void)
|
|
{
|
|
int i;
|
|
BUG_ON(!mem_map);
|
|
for (i = 0; i < num_boot_page_allocations; i++) {
|
|
struct page *page = pfn_to_page(boot_page_allocations[i].pfn);
|
|
page->type = boot_page_allocations[i].type;
|
|
page->type = boot_page_allocations[i].type &
|
|
~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
|
|
}
|
|
boot_allocations_applied = 1;
|
|
}
|
|
|
|
static void record_page_type(u32 pfn, int type)
|
|
{
|
|
BUG_ON(num_boot_page_allocations >= MAX_BOOT_PTS);
|
|
boot_page_allocations[num_boot_page_allocations].pfn = pfn;
|
|
boot_page_allocations[num_boot_page_allocations].type = type;
|
|
num_boot_page_allocations++;
|
|
}
|
|
|
|
static void check_zeroed_page(u32 pfn, int type, struct page *page)
|
|
{
|
|
u32 *ptr;
|
|
int i;
|
|
int limit = PAGE_SIZE / sizeof(int);
|
|
|
|
if (page_address(page))
|
|
ptr = (u32 *)page_address(page);
|
|
else
|
|
ptr = (u32 *)__va(pfn << PAGE_SHIFT);
|
|
/*
|
|
* When cloning the root in non-PAE mode, only the userspace
|
|
* pdes need to be zeroed.
|
|
*/
|
|
if (type & VMI_PAGE_CLONE)
|
|
limit = KERNEL_PGD_BOUNDARY;
|
|
for (i = 0; i < limit; i++)
|
|
BUG_ON(ptr[i]);
|
|
}
|
|
|
|
/*
|
|
* We stash the page type into struct page so we can verify the page
|
|
* types are used properly.
|
|
*/
|
|
static void vmi_set_page_type(u32 pfn, int type)
|
|
{
|
|
/* PAE can have multiple roots per page - don't track */
|
|
if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP))
|
|
return;
|
|
|
|
if (boot_allocations_applied) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
if (type != VMI_PAGE_NORMAL)
|
|
BUG_ON(page->type);
|
|
else
|
|
BUG_ON(page->type == VMI_PAGE_NORMAL);
|
|
page->type = type & ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
|
|
if (type & VMI_PAGE_ZEROED)
|
|
check_zeroed_page(pfn, type, page);
|
|
} else {
|
|
record_page_type(pfn, type);
|
|
}
|
|
}
|
|
|
|
static void vmi_check_page_type(u32 pfn, int type)
|
|
{
|
|
/* PAE can have multiple roots per page - skip checks */
|
|
if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP))
|
|
return;
|
|
|
|
type &= ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
|
|
if (boot_allocations_applied) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
BUG_ON((page->type ^ type) & VMI_PAGE_PAE);
|
|
BUG_ON(type == VMI_PAGE_NORMAL && page->type);
|
|
BUG_ON((type & page->type) == 0);
|
|
}
|
|
}
|
|
#else
|
|
#define vmi_set_page_type(p,t) do { } while (0)
|
|
#define vmi_check_page_type(p,t) do { } while (0)
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
static void *vmi_kmap_atomic_pte(struct page *page, enum km_type type)
|
|
{
|
|
void *va = kmap_atomic(page, type);
|
|
|
|
/*
|
|
* Internally, the VMI ROM must map virtual addresses to physical
|
|
* addresses for processing MMU updates. By the time MMU updates
|
|
* are issued, this information is typically already lost.
|
|
* Fortunately, the VMI provides a cache of mapping slots for active
|
|
* page tables.
|
|
*
|
|
* We use slot zero for the linear mapping of physical memory, and
|
|
* in HIGHPTE kernels, slot 1 and 2 for KM_PTE0 and KM_PTE1.
|
|
*
|
|
* args: SLOT VA COUNT PFN
|
|
*/
|
|
BUG_ON(type != KM_PTE0 && type != KM_PTE1);
|
|
vmi_ops.set_linear_mapping((type - KM_PTE0)+1, va, 1, page_to_pfn(page));
|
|
|
|
return va;
|
|
}
|
|
#endif
|
|
|
|
static void vmi_allocate_pte(struct mm_struct *mm, u32 pfn)
|
|
{
|
|
vmi_set_page_type(pfn, VMI_PAGE_L1);
|
|
vmi_ops.allocate_page(pfn, VMI_PAGE_L1, 0, 0, 0);
|
|
}
|
|
|
|
static void vmi_allocate_pmd(struct mm_struct *mm, u32 pfn)
|
|
{
|
|
/*
|
|
* This call comes in very early, before mem_map is setup.
|
|
* It is called only for swapper_pg_dir, which already has
|
|
* data on it.
|
|
*/
|
|
vmi_set_page_type(pfn, VMI_PAGE_L2);
|
|
vmi_ops.allocate_page(pfn, VMI_PAGE_L2, 0, 0, 0);
|
|
}
|
|
|
|
static void vmi_allocate_pmd_clone(u32 pfn, u32 clonepfn, u32 start, u32 count)
|
|
{
|
|
vmi_set_page_type(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE);
|
|
vmi_check_page_type(clonepfn, VMI_PAGE_L2);
|
|
vmi_ops.allocate_page(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE, clonepfn, start, count);
|
|
}
|
|
|
|
static void vmi_release_pte(u32 pfn)
|
|
{
|
|
vmi_ops.release_page(pfn, VMI_PAGE_L1);
|
|
vmi_set_page_type(pfn, VMI_PAGE_NORMAL);
|
|
}
|
|
|
|
static void vmi_release_pmd(u32 pfn)
|
|
{
|
|
vmi_ops.release_page(pfn, VMI_PAGE_L2);
|
|
vmi_set_page_type(pfn, VMI_PAGE_NORMAL);
|
|
}
|
|
|
|
/*
|
|
* Helper macros for MMU update flags. We can defer updates until a flush
|
|
* or page invalidation only if the update is to the current address space
|
|
* (otherwise, there is no flush). We must check against init_mm, since
|
|
* this could be a kernel update, which usually passes init_mm, although
|
|
* sometimes this check can be skipped if we know the particular function
|
|
* is only called on user mode PTEs. We could change the kernel to pass
|
|
* current->active_mm here, but in particular, I was unsure if changing
|
|
* mm/highmem.c to do this would still be correct on other architectures.
|
|
*/
|
|
#define is_current_as(mm, mustbeuser) ((mm) == current->active_mm || \
|
|
(!mustbeuser && (mm) == &init_mm))
|
|
#define vmi_flags_addr(mm, addr, level, user) \
|
|
((level) | (is_current_as(mm, user) ? \
|
|
(VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
|
|
#define vmi_flags_addr_defer(mm, addr, level, user) \
|
|
((level) | (is_current_as(mm, user) ? \
|
|
(VMI_PAGE_DEFER | VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
|
|
|
|
static void vmi_update_pte(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
|
|
{
|
|
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
|
|
vmi_ops.update_pte(ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
|
|
}
|
|
|
|
static void vmi_update_pte_defer(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
|
|
{
|
|
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
|
|
vmi_ops.update_pte(ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 0));
|
|
}
|
|
|
|
static void vmi_set_pte(pte_t *ptep, pte_t pte)
|
|
{
|
|
/* XXX because of set_pmd_pte, this can be called on PT or PD layers */
|
|
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE | VMI_PAGE_PD);
|
|
vmi_ops.set_pte(pte, ptep, VMI_PAGE_PT);
|
|
}
|
|
|
|
static void vmi_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
|
|
{
|
|
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
|
|
vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
|
|
}
|
|
|
|
static void vmi_set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
|
{
|
|
#ifdef CONFIG_X86_PAE
|
|
const pte_t pte = { .pte = pmdval.pmd };
|
|
vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PMD);
|
|
#else
|
|
const pte_t pte = { pmdval.pud.pgd.pgd };
|
|
vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PGD);
|
|
#endif
|
|
vmi_ops.set_pte(pte, (pte_t *)pmdp, VMI_PAGE_PD);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
static void vmi_set_pte_atomic(pte_t *ptep, pte_t pteval)
|
|
{
|
|
/*
|
|
* XXX This is called from set_pmd_pte, but at both PT
|
|
* and PD layers so the VMI_PAGE_PT flag is wrong. But
|
|
* it is only called for large page mapping changes,
|
|
* the Xen backend, doesn't support large pages, and the
|
|
* ESX backend doesn't depend on the flag.
|
|
*/
|
|
set_64bit((unsigned long long *)ptep,pte_val(pteval));
|
|
vmi_ops.update_pte(ptep, VMI_PAGE_PT);
|
|
}
|
|
|
|
static void vmi_set_pte_present(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
|
|
{
|
|
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
|
|
vmi_ops.set_pte(pte, ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 1));
|
|
}
|
|
|
|
static void vmi_set_pud(pud_t *pudp, pud_t pudval)
|
|
{
|
|
/* Um, eww */
|
|
const pte_t pte = { .pte = pudval.pgd.pgd };
|
|
vmi_check_page_type(__pa(pudp) >> PAGE_SHIFT, VMI_PAGE_PGD);
|
|
vmi_ops.set_pte(pte, (pte_t *)pudp, VMI_PAGE_PDP);
|
|
}
|
|
|
|
static void vmi_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
|
|
{
|
|
const pte_t pte = { .pte = 0 };
|
|
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
|
|
vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
|
|
}
|
|
|
|
static void vmi_pmd_clear(pmd_t *pmd)
|
|
{
|
|
const pte_t pte = { .pte = 0 };
|
|
vmi_check_page_type(__pa(pmd) >> PAGE_SHIFT, VMI_PAGE_PMD);
|
|
vmi_ops.set_pte(pte, (pte_t *)pmd, VMI_PAGE_PD);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void __devinit
|
|
vmi_startup_ipi_hook(int phys_apicid, unsigned long start_eip,
|
|
unsigned long start_esp)
|
|
{
|
|
struct vmi_ap_state ap;
|
|
|
|
/* Default everything to zero. This is fine for most GPRs. */
|
|
memset(&ap, 0, sizeof(struct vmi_ap_state));
|
|
|
|
ap.gdtr_limit = GDT_SIZE - 1;
|
|
ap.gdtr_base = (unsigned long) get_cpu_gdt_table(phys_apicid);
|
|
|
|
ap.idtr_limit = IDT_ENTRIES * 8 - 1;
|
|
ap.idtr_base = (unsigned long) idt_table;
|
|
|
|
ap.ldtr = 0;
|
|
|
|
ap.cs = __KERNEL_CS;
|
|
ap.eip = (unsigned long) start_eip;
|
|
ap.ss = __KERNEL_DS;
|
|
ap.esp = (unsigned long) start_esp;
|
|
|
|
ap.ds = __USER_DS;
|
|
ap.es = __USER_DS;
|
|
ap.fs = __KERNEL_PERCPU;
|
|
ap.gs = 0;
|
|
|
|
ap.eflags = 0;
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
/* efer should match BSP efer. */
|
|
if (cpu_has_nx) {
|
|
unsigned l, h;
|
|
rdmsr(MSR_EFER, l, h);
|
|
ap.efer = (unsigned long long) h << 32 | l;
|
|
}
|
|
#endif
|
|
|
|
ap.cr3 = __pa(swapper_pg_dir);
|
|
/* Protected mode, paging, AM, WP, NE, MP. */
|
|
ap.cr0 = 0x80050023;
|
|
ap.cr4 = mmu_cr4_features;
|
|
vmi_ops.set_initial_ap_state((u32)&ap, phys_apicid);
|
|
}
|
|
#endif
|
|
|
|
static void vmi_enter_lazy_cpu(void)
|
|
{
|
|
paravirt_enter_lazy_cpu();
|
|
vmi_ops.set_lazy_mode(2);
|
|
}
|
|
|
|
static void vmi_enter_lazy_mmu(void)
|
|
{
|
|
paravirt_enter_lazy_mmu();
|
|
vmi_ops.set_lazy_mode(1);
|
|
}
|
|
|
|
static void vmi_leave_lazy(void)
|
|
{
|
|
paravirt_leave_lazy(paravirt_get_lazy_mode());
|
|
vmi_ops.set_lazy_mode(0);
|
|
}
|
|
|
|
static inline int __init check_vmi_rom(struct vrom_header *rom)
|
|
{
|
|
struct pci_header *pci;
|
|
struct pnp_header *pnp;
|
|
const char *manufacturer = "UNKNOWN";
|
|
const char *product = "UNKNOWN";
|
|
const char *license = "unspecified";
|
|
|
|
if (rom->rom_signature != 0xaa55)
|
|
return 0;
|
|
if (rom->vrom_signature != VMI_SIGNATURE)
|
|
return 0;
|
|
if (rom->api_version_maj != VMI_API_REV_MAJOR ||
|
|
rom->api_version_min+1 < VMI_API_REV_MINOR+1) {
|
|
printk(KERN_WARNING "VMI: Found mismatched rom version %d.%d\n",
|
|
rom->api_version_maj,
|
|
rom->api_version_min);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Relying on the VMI_SIGNATURE field is not 100% safe, so check
|
|
* the PCI header and device type to make sure this is really a
|
|
* VMI device.
|
|
*/
|
|
if (!rom->pci_header_offs) {
|
|
printk(KERN_WARNING "VMI: ROM does not contain PCI header.\n");
|
|
return 0;
|
|
}
|
|
|
|
pci = (struct pci_header *)((char *)rom+rom->pci_header_offs);
|
|
if (pci->vendorID != PCI_VENDOR_ID_VMWARE ||
|
|
pci->deviceID != PCI_DEVICE_ID_VMWARE_VMI) {
|
|
/* Allow it to run... anyways, but warn */
|
|
printk(KERN_WARNING "VMI: ROM from unknown manufacturer\n");
|
|
}
|
|
|
|
if (rom->pnp_header_offs) {
|
|
pnp = (struct pnp_header *)((char *)rom+rom->pnp_header_offs);
|
|
if (pnp->manufacturer_offset)
|
|
manufacturer = (const char *)rom+pnp->manufacturer_offset;
|
|
if (pnp->product_offset)
|
|
product = (const char *)rom+pnp->product_offset;
|
|
}
|
|
|
|
if (rom->license_offs)
|
|
license = (char *)rom+rom->license_offs;
|
|
|
|
printk(KERN_INFO "VMI: Found %s %s, API version %d.%d, ROM version %d.%d\n",
|
|
manufacturer, product,
|
|
rom->api_version_maj, rom->api_version_min,
|
|
pci->rom_version_maj, pci->rom_version_min);
|
|
|
|
/* Don't allow BSD/MIT here for now because we don't want to end up
|
|
with any binary only shim layers */
|
|
if (strcmp(license, "GPL") && strcmp(license, "GPL v2")) {
|
|
printk(KERN_WARNING "VMI: Non GPL license `%s' found for ROM. Not used.\n",
|
|
license);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Probe for the VMI option ROM
|
|
*/
|
|
static inline int __init probe_vmi_rom(void)
|
|
{
|
|
unsigned long base;
|
|
|
|
/* VMI ROM is in option ROM area, check signature */
|
|
for (base = 0xC0000; base < 0xE0000; base += 2048) {
|
|
struct vrom_header *romstart;
|
|
romstart = (struct vrom_header *)isa_bus_to_virt(base);
|
|
if (check_vmi_rom(romstart)) {
|
|
vmi_rom = romstart;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* VMI setup common to all processors
|
|
*/
|
|
void vmi_bringup(void)
|
|
{
|
|
/* We must establish the lowmem mapping for MMU ops to work */
|
|
if (vmi_ops.set_linear_mapping)
|
|
vmi_ops.set_linear_mapping(0, (void *)__PAGE_OFFSET, max_low_pfn, 0);
|
|
}
|
|
|
|
/*
|
|
* Return a pointer to a VMI function or NULL if unimplemented
|
|
*/
|
|
static void *vmi_get_function(int vmicall)
|
|
{
|
|
u64 reloc;
|
|
const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc;
|
|
reloc = call_vrom_long_func(vmi_rom, get_reloc, vmicall);
|
|
BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL);
|
|
if (rel->type == VMI_RELOCATION_CALL_REL)
|
|
return (void *)rel->eip;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Helper macro for making the VMI paravirt-ops fill code readable.
|
|
* For unimplemented operations, fall back to default, unless nop
|
|
* is returned by the ROM.
|
|
*/
|
|
#define para_fill(opname, vmicall) \
|
|
do { \
|
|
reloc = call_vrom_long_func(vmi_rom, get_reloc, \
|
|
VMI_CALL_##vmicall); \
|
|
if (rel->type == VMI_RELOCATION_CALL_REL) \
|
|
opname = (void *)rel->eip; \
|
|
else if (rel->type == VMI_RELOCATION_NOP) \
|
|
opname = (void *)vmi_nop; \
|
|
else if (rel->type != VMI_RELOCATION_NONE) \
|
|
printk(KERN_WARNING "VMI: Unknown relocation " \
|
|
"type %d for " #vmicall"\n",\
|
|
rel->type); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Helper macro for making the VMI paravirt-ops fill code readable.
|
|
* For cached operations which do not match the VMI ROM ABI and must
|
|
* go through a tranlation stub. Ignore NOPs, since it is not clear
|
|
* a NOP * VMI function corresponds to a NOP paravirt-op when the
|
|
* functions are not in 1-1 correspondence.
|
|
*/
|
|
#define para_wrap(opname, wrapper, cache, vmicall) \
|
|
do { \
|
|
reloc = call_vrom_long_func(vmi_rom, get_reloc, \
|
|
VMI_CALL_##vmicall); \
|
|
BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL); \
|
|
if (rel->type == VMI_RELOCATION_CALL_REL) { \
|
|
opname = wrapper; \
|
|
vmi_ops.cache = (void *)rel->eip; \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Activate the VMI interface and switch into paravirtualized mode
|
|
*/
|
|
static inline int __init activate_vmi(void)
|
|
{
|
|
short kernel_cs;
|
|
u64 reloc;
|
|
const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc;
|
|
|
|
if (call_vrom_func(vmi_rom, vmi_init) != 0) {
|
|
printk(KERN_ERR "VMI ROM failed to initialize!");
|
|
return 0;
|
|
}
|
|
savesegment(cs, kernel_cs);
|
|
|
|
pv_info.paravirt_enabled = 1;
|
|
pv_info.kernel_rpl = kernel_cs & SEGMENT_RPL_MASK;
|
|
pv_info.name = "vmi";
|
|
|
|
pv_init_ops.patch = vmi_patch;
|
|
|
|
/*
|
|
* Many of these operations are ABI compatible with VMI.
|
|
* This means we can fill in the paravirt-ops with direct
|
|
* pointers into the VMI ROM. If the calling convention for
|
|
* these operations changes, this code needs to be updated.
|
|
*
|
|
* Exceptions
|
|
* CPUID paravirt-op uses pointers, not the native ISA
|
|
* halt has no VMI equivalent; all VMI halts are "safe"
|
|
* no MSR support yet - just trap and emulate. VMI uses the
|
|
* same ABI as the native ISA, but Linux wants exceptions
|
|
* from bogus MSR read / write handled
|
|
* rdpmc is not yet used in Linux
|
|
*/
|
|
|
|
/* CPUID is special, so very special it gets wrapped like a present */
|
|
para_wrap(pv_cpu_ops.cpuid, vmi_cpuid, cpuid, CPUID);
|
|
|
|
para_fill(pv_cpu_ops.clts, CLTS);
|
|
para_fill(pv_cpu_ops.get_debugreg, GetDR);
|
|
para_fill(pv_cpu_ops.set_debugreg, SetDR);
|
|
para_fill(pv_cpu_ops.read_cr0, GetCR0);
|
|
para_fill(pv_mmu_ops.read_cr2, GetCR2);
|
|
para_fill(pv_mmu_ops.read_cr3, GetCR3);
|
|
para_fill(pv_cpu_ops.read_cr4, GetCR4);
|
|
para_fill(pv_cpu_ops.write_cr0, SetCR0);
|
|
para_fill(pv_mmu_ops.write_cr2, SetCR2);
|
|
para_fill(pv_mmu_ops.write_cr3, SetCR3);
|
|
para_fill(pv_cpu_ops.write_cr4, SetCR4);
|
|
para_fill(pv_irq_ops.save_fl, GetInterruptMask);
|
|
para_fill(pv_irq_ops.restore_fl, SetInterruptMask);
|
|
para_fill(pv_irq_ops.irq_disable, DisableInterrupts);
|
|
para_fill(pv_irq_ops.irq_enable, EnableInterrupts);
|
|
|
|
para_fill(pv_cpu_ops.wbinvd, WBINVD);
|
|
para_fill(pv_cpu_ops.read_tsc, RDTSC);
|
|
|
|
/* The following we emulate with trap and emulate for now */
|
|
/* paravirt_ops.read_msr = vmi_rdmsr */
|
|
/* paravirt_ops.write_msr = vmi_wrmsr */
|
|
/* paravirt_ops.rdpmc = vmi_rdpmc */
|
|
|
|
/* TR interface doesn't pass TR value, wrap */
|
|
para_wrap(pv_cpu_ops.load_tr_desc, vmi_set_tr, set_tr, SetTR);
|
|
|
|
/* LDT is special, too */
|
|
para_wrap(pv_cpu_ops.set_ldt, vmi_set_ldt, _set_ldt, SetLDT);
|
|
|
|
para_fill(pv_cpu_ops.load_gdt, SetGDT);
|
|
para_fill(pv_cpu_ops.load_idt, SetIDT);
|
|
para_fill(pv_cpu_ops.store_gdt, GetGDT);
|
|
para_fill(pv_cpu_ops.store_idt, GetIDT);
|
|
para_fill(pv_cpu_ops.store_tr, GetTR);
|
|
pv_cpu_ops.load_tls = vmi_load_tls;
|
|
para_wrap(pv_cpu_ops.write_ldt_entry, vmi_write_ldt_entry,
|
|
write_ldt_entry, WriteLDTEntry);
|
|
para_wrap(pv_cpu_ops.write_gdt_entry, vmi_write_gdt_entry,
|
|
write_gdt_entry, WriteGDTEntry);
|
|
para_wrap(pv_cpu_ops.write_idt_entry, vmi_write_idt_entry,
|
|
write_idt_entry, WriteIDTEntry);
|
|
para_wrap(pv_cpu_ops.load_sp0, vmi_load_sp0, set_kernel_stack, UpdateKernelStack);
|
|
para_fill(pv_cpu_ops.set_iopl_mask, SetIOPLMask);
|
|
para_fill(pv_cpu_ops.io_delay, IODelay);
|
|
|
|
para_wrap(pv_cpu_ops.lazy_mode.enter, vmi_enter_lazy_cpu,
|
|
set_lazy_mode, SetLazyMode);
|
|
para_wrap(pv_cpu_ops.lazy_mode.leave, vmi_leave_lazy,
|
|
set_lazy_mode, SetLazyMode);
|
|
|
|
para_wrap(pv_mmu_ops.lazy_mode.enter, vmi_enter_lazy_mmu,
|
|
set_lazy_mode, SetLazyMode);
|
|
para_wrap(pv_mmu_ops.lazy_mode.leave, vmi_leave_lazy,
|
|
set_lazy_mode, SetLazyMode);
|
|
|
|
/* user and kernel flush are just handled with different flags to FlushTLB */
|
|
para_wrap(pv_mmu_ops.flush_tlb_user, vmi_flush_tlb_user, _flush_tlb, FlushTLB);
|
|
para_wrap(pv_mmu_ops.flush_tlb_kernel, vmi_flush_tlb_kernel, _flush_tlb, FlushTLB);
|
|
para_fill(pv_mmu_ops.flush_tlb_single, InvalPage);
|
|
|
|
/*
|
|
* Until a standard flag format can be agreed on, we need to
|
|
* implement these as wrappers in Linux. Get the VMI ROM
|
|
* function pointers for the two backend calls.
|
|
*/
|
|
#ifdef CONFIG_X86_PAE
|
|
vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxELong);
|
|
vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxELong);
|
|
#else
|
|
vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxE);
|
|
vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxE);
|
|
#endif
|
|
|
|
if (vmi_ops.set_pte) {
|
|
pv_mmu_ops.set_pte = vmi_set_pte;
|
|
pv_mmu_ops.set_pte_at = vmi_set_pte_at;
|
|
pv_mmu_ops.set_pmd = vmi_set_pmd;
|
|
#ifdef CONFIG_X86_PAE
|
|
pv_mmu_ops.set_pte_atomic = vmi_set_pte_atomic;
|
|
pv_mmu_ops.set_pte_present = vmi_set_pte_present;
|
|
pv_mmu_ops.set_pud = vmi_set_pud;
|
|
pv_mmu_ops.pte_clear = vmi_pte_clear;
|
|
pv_mmu_ops.pmd_clear = vmi_pmd_clear;
|
|
#endif
|
|
}
|
|
|
|
if (vmi_ops.update_pte) {
|
|
pv_mmu_ops.pte_update = vmi_update_pte;
|
|
pv_mmu_ops.pte_update_defer = vmi_update_pte_defer;
|
|
}
|
|
|
|
vmi_ops.allocate_page = vmi_get_function(VMI_CALL_AllocatePage);
|
|
if (vmi_ops.allocate_page) {
|
|
pv_mmu_ops.alloc_pte = vmi_allocate_pte;
|
|
pv_mmu_ops.alloc_pmd = vmi_allocate_pmd;
|
|
pv_mmu_ops.alloc_pmd_clone = vmi_allocate_pmd_clone;
|
|
}
|
|
|
|
vmi_ops.release_page = vmi_get_function(VMI_CALL_ReleasePage);
|
|
if (vmi_ops.release_page) {
|
|
pv_mmu_ops.release_pte = vmi_release_pte;
|
|
pv_mmu_ops.release_pmd = vmi_release_pmd;
|
|
}
|
|
|
|
/* Set linear is needed in all cases */
|
|
vmi_ops.set_linear_mapping = vmi_get_function(VMI_CALL_SetLinearMapping);
|
|
#ifdef CONFIG_HIGHPTE
|
|
if (vmi_ops.set_linear_mapping)
|
|
pv_mmu_ops.kmap_atomic_pte = vmi_kmap_atomic_pte;
|
|
#endif
|
|
|
|
/*
|
|
* These MUST always be patched. Don't support indirect jumps
|
|
* through these operations, as the VMI interface may use either
|
|
* a jump or a call to get to these operations, depending on
|
|
* the backend. They are performance critical anyway, so requiring
|
|
* a patch is not a big problem.
|
|
*/
|
|
pv_cpu_ops.irq_enable_syscall_ret = (void *)0xfeedbab0;
|
|
pv_cpu_ops.iret = (void *)0xbadbab0;
|
|
|
|
#ifdef CONFIG_SMP
|
|
para_wrap(pv_apic_ops.startup_ipi_hook, vmi_startup_ipi_hook, set_initial_ap_state, SetInitialAPState);
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
para_fill(pv_apic_ops.apic_read, APICRead);
|
|
para_fill(pv_apic_ops.apic_write, APICWrite);
|
|
para_fill(pv_apic_ops.apic_write_atomic, APICWrite);
|
|
#endif
|
|
|
|
/*
|
|
* Check for VMI timer functionality by probing for a cycle frequency method
|
|
*/
|
|
reloc = call_vrom_long_func(vmi_rom, get_reloc, VMI_CALL_GetCycleFrequency);
|
|
if (!disable_vmi_timer && rel->type != VMI_RELOCATION_NONE) {
|
|
vmi_timer_ops.get_cycle_frequency = (void *)rel->eip;
|
|
vmi_timer_ops.get_cycle_counter =
|
|
vmi_get_function(VMI_CALL_GetCycleCounter);
|
|
vmi_timer_ops.get_wallclock =
|
|
vmi_get_function(VMI_CALL_GetWallclockTime);
|
|
vmi_timer_ops.wallclock_updated =
|
|
vmi_get_function(VMI_CALL_WallclockUpdated);
|
|
vmi_timer_ops.set_alarm = vmi_get_function(VMI_CALL_SetAlarm);
|
|
vmi_timer_ops.cancel_alarm =
|
|
vmi_get_function(VMI_CALL_CancelAlarm);
|
|
pv_time_ops.time_init = vmi_time_init;
|
|
pv_time_ops.get_wallclock = vmi_get_wallclock;
|
|
pv_time_ops.set_wallclock = vmi_set_wallclock;
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
pv_apic_ops.setup_boot_clock = vmi_time_bsp_init;
|
|
pv_apic_ops.setup_secondary_clock = vmi_time_ap_init;
|
|
#endif
|
|
pv_time_ops.sched_clock = vmi_sched_clock;
|
|
pv_time_ops.get_cpu_khz = vmi_cpu_khz;
|
|
|
|
/* We have true wallclock functions; disable CMOS clock sync */
|
|
no_sync_cmos_clock = 1;
|
|
} else {
|
|
disable_noidle = 1;
|
|
disable_vmi_timer = 1;
|
|
}
|
|
|
|
para_fill(pv_irq_ops.safe_halt, Halt);
|
|
|
|
/*
|
|
* Alternative instruction rewriting doesn't happen soon enough
|
|
* to convert VMI_IRET to a call instead of a jump; so we have
|
|
* to do this before IRQs get reenabled. Fortunately, it is
|
|
* idempotent.
|
|
*/
|
|
apply_paravirt(__parainstructions, __parainstructions_end);
|
|
|
|
vmi_bringup();
|
|
|
|
return 1;
|
|
}
|
|
|
|
#undef para_fill
|
|
|
|
void __init vmi_init(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!vmi_rom)
|
|
probe_vmi_rom();
|
|
else
|
|
check_vmi_rom(vmi_rom);
|
|
|
|
/* In case probing for or validating the ROM failed, basil */
|
|
if (!vmi_rom)
|
|
return;
|
|
|
|
reserve_top_address(-vmi_rom->virtual_top);
|
|
|
|
local_irq_save(flags);
|
|
activate_vmi();
|
|
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
/* This is virtual hardware; timer routing is wired correctly */
|
|
no_timer_check = 1;
|
|
#endif
|
|
local_irq_restore(flags & X86_EFLAGS_IF);
|
|
}
|
|
|
|
static int __init parse_vmi(char *arg)
|
|
{
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
if (!strcmp(arg, "disable_pge")) {
|
|
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
|
|
disable_pge = 1;
|
|
} else if (!strcmp(arg, "disable_pse")) {
|
|
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PSE);
|
|
disable_pse = 1;
|
|
} else if (!strcmp(arg, "disable_sep")) {
|
|
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_SEP);
|
|
disable_sep = 1;
|
|
} else if (!strcmp(arg, "disable_tsc")) {
|
|
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_TSC);
|
|
disable_tsc = 1;
|
|
} else if (!strcmp(arg, "disable_mtrr")) {
|
|
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_MTRR);
|
|
disable_mtrr = 1;
|
|
} else if (!strcmp(arg, "disable_timer")) {
|
|
disable_vmi_timer = 1;
|
|
disable_noidle = 1;
|
|
} else if (!strcmp(arg, "disable_noidle"))
|
|
disable_noidle = 1;
|
|
return 0;
|
|
}
|
|
|
|
early_param("vmi", parse_vmi);
|