mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-15 06:00:41 +00:00
ff04955c2f
The dsa_switch structure contains a dsa_chip_data member called pd. However in the rest of the code, pd is used for dsa_platform_data. This is confusing. Rename it cd, which is already often used in dsa.c and slave.c for this data type. Signed-off-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
1421 lines
36 KiB
C
1421 lines
36 KiB
C
/*
|
|
* Broadcom Starfighter 2 DSA switch driver
|
|
*
|
|
* Copyright (C) 2014, Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/of.h>
|
|
#include <linux/phy.h>
|
|
#include <linux/phy_fixed.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_net.h>
|
|
#include <net/dsa.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/if_bridge.h>
|
|
#include <linux/brcmphy.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <net/switchdev.h>
|
|
|
|
#include "bcm_sf2.h"
|
|
#include "bcm_sf2_regs.h"
|
|
|
|
/* String, offset, and register size in bytes if different from 4 bytes */
|
|
static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
|
|
{ "TxOctets", 0x000, 8 },
|
|
{ "TxDropPkts", 0x020 },
|
|
{ "TxQPKTQ0", 0x030 },
|
|
{ "TxBroadcastPkts", 0x040 },
|
|
{ "TxMulticastPkts", 0x050 },
|
|
{ "TxUnicastPKts", 0x060 },
|
|
{ "TxCollisions", 0x070 },
|
|
{ "TxSingleCollision", 0x080 },
|
|
{ "TxMultipleCollision", 0x090 },
|
|
{ "TxDeferredCollision", 0x0a0 },
|
|
{ "TxLateCollision", 0x0b0 },
|
|
{ "TxExcessiveCollision", 0x0c0 },
|
|
{ "TxFrameInDisc", 0x0d0 },
|
|
{ "TxPausePkts", 0x0e0 },
|
|
{ "TxQPKTQ1", 0x0f0 },
|
|
{ "TxQPKTQ2", 0x100 },
|
|
{ "TxQPKTQ3", 0x110 },
|
|
{ "TxQPKTQ4", 0x120 },
|
|
{ "TxQPKTQ5", 0x130 },
|
|
{ "RxOctets", 0x140, 8 },
|
|
{ "RxUndersizePkts", 0x160 },
|
|
{ "RxPausePkts", 0x170 },
|
|
{ "RxPkts64Octets", 0x180 },
|
|
{ "RxPkts65to127Octets", 0x190 },
|
|
{ "RxPkts128to255Octets", 0x1a0 },
|
|
{ "RxPkts256to511Octets", 0x1b0 },
|
|
{ "RxPkts512to1023Octets", 0x1c0 },
|
|
{ "RxPkts1024toMaxPktsOctets", 0x1d0 },
|
|
{ "RxOversizePkts", 0x1e0 },
|
|
{ "RxJabbers", 0x1f0 },
|
|
{ "RxAlignmentErrors", 0x200 },
|
|
{ "RxFCSErrors", 0x210 },
|
|
{ "RxGoodOctets", 0x220, 8 },
|
|
{ "RxDropPkts", 0x240 },
|
|
{ "RxUnicastPkts", 0x250 },
|
|
{ "RxMulticastPkts", 0x260 },
|
|
{ "RxBroadcastPkts", 0x270 },
|
|
{ "RxSAChanges", 0x280 },
|
|
{ "RxFragments", 0x290 },
|
|
{ "RxJumboPkt", 0x2a0 },
|
|
{ "RxSymblErr", 0x2b0 },
|
|
{ "InRangeErrCount", 0x2c0 },
|
|
{ "OutRangeErrCount", 0x2d0 },
|
|
{ "EEELpiEvent", 0x2e0 },
|
|
{ "EEELpiDuration", 0x2f0 },
|
|
{ "RxDiscard", 0x300, 8 },
|
|
{ "TxQPKTQ6", 0x320 },
|
|
{ "TxQPKTQ7", 0x330 },
|
|
{ "TxPkts64Octets", 0x340 },
|
|
{ "TxPkts65to127Octets", 0x350 },
|
|
{ "TxPkts128to255Octets", 0x360 },
|
|
{ "TxPkts256to511Ocets", 0x370 },
|
|
{ "TxPkts512to1023Ocets", 0x380 },
|
|
{ "TxPkts1024toMaxPktOcets", 0x390 },
|
|
};
|
|
|
|
#define BCM_SF2_STATS_SIZE ARRAY_SIZE(bcm_sf2_mib)
|
|
|
|
static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
|
|
int port, uint8_t *data)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
|
|
memcpy(data + i * ETH_GSTRING_LEN,
|
|
bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
|
|
}
|
|
|
|
static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
|
|
int port, uint64_t *data)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
const struct bcm_sf2_hw_stats *s;
|
|
unsigned int i;
|
|
u64 val = 0;
|
|
u32 offset;
|
|
|
|
mutex_lock(&priv->stats_mutex);
|
|
|
|
/* Now fetch the per-port counters */
|
|
for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
|
|
s = &bcm_sf2_mib[i];
|
|
|
|
/* Do a latched 64-bit read if needed */
|
|
offset = s->reg + CORE_P_MIB_OFFSET(port);
|
|
if (s->sizeof_stat == 8)
|
|
val = core_readq(priv, offset);
|
|
else
|
|
val = core_readl(priv, offset);
|
|
|
|
data[i] = (u64)val;
|
|
}
|
|
|
|
mutex_unlock(&priv->stats_mutex);
|
|
}
|
|
|
|
static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
|
|
{
|
|
return BCM_SF2_STATS_SIZE;
|
|
}
|
|
|
|
static const char *bcm_sf2_sw_drv_probe(struct device *dsa_dev,
|
|
struct device *host_dev, int sw_addr,
|
|
void **_priv)
|
|
{
|
|
struct bcm_sf2_priv *priv;
|
|
|
|
priv = devm_kzalloc(dsa_dev, sizeof(*priv), GFP_KERNEL);
|
|
if (!priv)
|
|
return NULL;
|
|
*_priv = priv;
|
|
|
|
return "Broadcom Starfighter 2";
|
|
}
|
|
|
|
static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
/* Enable the IMP Port to be in the same VLAN as the other ports
|
|
* on a per-port basis such that we only have Port i and IMP in
|
|
* the same VLAN.
|
|
*/
|
|
for (i = 0; i < priv->hw_params.num_ports; i++) {
|
|
if (!((1 << i) & ds->enabled_port_mask))
|
|
continue;
|
|
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
|
|
reg |= (1 << cpu_port);
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
|
|
}
|
|
}
|
|
|
|
static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 reg, val;
|
|
|
|
/* Enable the port memories */
|
|
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
|
|
reg &= ~P_TXQ_PSM_VDD(port);
|
|
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
|
|
|
|
/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
|
|
reg = core_readl(priv, CORE_IMP_CTL);
|
|
reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
|
|
reg &= ~(RX_DIS | TX_DIS);
|
|
core_writel(priv, reg, CORE_IMP_CTL);
|
|
|
|
/* Enable forwarding */
|
|
core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
|
|
|
|
/* Enable IMP port in dumb mode */
|
|
reg = core_readl(priv, CORE_SWITCH_CTRL);
|
|
reg |= MII_DUMB_FWDG_EN;
|
|
core_writel(priv, reg, CORE_SWITCH_CTRL);
|
|
|
|
/* Resolve which bit controls the Broadcom tag */
|
|
switch (port) {
|
|
case 8:
|
|
val = BRCM_HDR_EN_P8;
|
|
break;
|
|
case 7:
|
|
val = BRCM_HDR_EN_P7;
|
|
break;
|
|
case 5:
|
|
val = BRCM_HDR_EN_P5;
|
|
break;
|
|
default:
|
|
val = 0;
|
|
break;
|
|
}
|
|
|
|
/* Enable Broadcom tags for IMP port */
|
|
reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
|
|
reg |= val;
|
|
core_writel(priv, reg, CORE_BRCM_HDR_CTRL);
|
|
|
|
/* Enable reception Broadcom tag for CPU TX (switch RX) to
|
|
* allow us to tag outgoing frames
|
|
*/
|
|
reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);
|
|
|
|
/* Enable transmission of Broadcom tags from the switch (CPU RX) to
|
|
* allow delivering frames to the per-port net_devices
|
|
*/
|
|
reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);
|
|
|
|
/* Force link status for IMP port */
|
|
reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
|
|
reg |= (MII_SW_OR | LINK_STS);
|
|
core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
|
|
}
|
|
|
|
static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_EEE_EN_CTRL);
|
|
if (enable)
|
|
reg |= 1 << port;
|
|
else
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_EEE_EN_CTRL);
|
|
}
|
|
|
|
static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 reg;
|
|
|
|
reg = reg_readl(priv, REG_SPHY_CNTRL);
|
|
if (enable) {
|
|
reg |= PHY_RESET;
|
|
reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
|
|
reg_writel(priv, reg, REG_SPHY_CNTRL);
|
|
udelay(21);
|
|
reg = reg_readl(priv, REG_SPHY_CNTRL);
|
|
reg &= ~PHY_RESET;
|
|
} else {
|
|
reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
|
|
reg_writel(priv, reg, REG_SPHY_CNTRL);
|
|
mdelay(1);
|
|
reg |= CK25_DIS;
|
|
}
|
|
reg_writel(priv, reg, REG_SPHY_CNTRL);
|
|
|
|
/* Use PHY-driven LED signaling */
|
|
if (!enable) {
|
|
reg = reg_readl(priv, REG_LED_CNTRL(0));
|
|
reg |= SPDLNK_SRC_SEL;
|
|
reg_writel(priv, reg, REG_LED_CNTRL(0));
|
|
}
|
|
}
|
|
|
|
static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
|
|
int port)
|
|
{
|
|
unsigned int off;
|
|
|
|
switch (port) {
|
|
case 7:
|
|
off = P7_IRQ_OFF;
|
|
break;
|
|
case 0:
|
|
/* Port 0 interrupts are located on the first bank */
|
|
intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
|
|
return;
|
|
default:
|
|
off = P_IRQ_OFF(port);
|
|
break;
|
|
}
|
|
|
|
intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
|
|
}
|
|
|
|
static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
|
|
int port)
|
|
{
|
|
unsigned int off;
|
|
|
|
switch (port) {
|
|
case 7:
|
|
off = P7_IRQ_OFF;
|
|
break;
|
|
case 0:
|
|
/* Port 0 interrupts are located on the first bank */
|
|
intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
|
|
intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
|
|
return;
|
|
default:
|
|
off = P_IRQ_OFF(port);
|
|
break;
|
|
}
|
|
|
|
intrl2_1_mask_set(priv, P_IRQ_MASK(off));
|
|
intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
|
|
}
|
|
|
|
static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
|
|
struct phy_device *phy)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
s8 cpu_port = ds->dst[ds->index].cpu_port;
|
|
u32 reg;
|
|
|
|
/* Clear the memory power down */
|
|
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
|
|
reg &= ~P_TXQ_PSM_VDD(port);
|
|
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
|
|
|
|
/* Clear the Rx and Tx disable bits and set to no spanning tree */
|
|
core_writel(priv, 0, CORE_G_PCTL_PORT(port));
|
|
|
|
/* Re-enable the GPHY and re-apply workarounds */
|
|
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
|
|
bcm_sf2_gphy_enable_set(ds, true);
|
|
if (phy) {
|
|
/* if phy_stop() has been called before, phy
|
|
* will be in halted state, and phy_start()
|
|
* will call resume.
|
|
*
|
|
* the resume path does not configure back
|
|
* autoneg settings, and since we hard reset
|
|
* the phy manually here, we need to reset the
|
|
* state machine also.
|
|
*/
|
|
phy->state = PHY_READY;
|
|
phy_init_hw(phy);
|
|
}
|
|
}
|
|
|
|
/* Enable MoCA port interrupts to get notified */
|
|
if (port == priv->moca_port)
|
|
bcm_sf2_port_intr_enable(priv, port);
|
|
|
|
/* Set this port, and only this one to be in the default VLAN,
|
|
* if member of a bridge, restore its membership prior to
|
|
* bringing down this port.
|
|
*/
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
|
|
reg &= ~PORT_VLAN_CTRL_MASK;
|
|
reg |= (1 << port);
|
|
reg |= priv->port_sts[port].vlan_ctl_mask;
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
|
|
|
|
bcm_sf2_imp_vlan_setup(ds, cpu_port);
|
|
|
|
/* If EEE was enabled, restore it */
|
|
if (priv->port_sts[port].eee.eee_enabled)
|
|
bcm_sf2_eee_enable_set(ds, port, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
|
|
struct phy_device *phy)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 off, reg;
|
|
|
|
if (priv->wol_ports_mask & (1 << port))
|
|
return;
|
|
|
|
if (port == priv->moca_port)
|
|
bcm_sf2_port_intr_disable(priv, port);
|
|
|
|
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
|
|
bcm_sf2_gphy_enable_set(ds, false);
|
|
|
|
if (dsa_is_cpu_port(ds, port))
|
|
off = CORE_IMP_CTL;
|
|
else
|
|
off = CORE_G_PCTL_PORT(port);
|
|
|
|
reg = core_readl(priv, off);
|
|
reg |= RX_DIS | TX_DIS;
|
|
core_writel(priv, reg, off);
|
|
|
|
/* Power down the port memory */
|
|
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
|
|
reg |= P_TXQ_PSM_VDD(port);
|
|
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
|
|
}
|
|
|
|
/* Returns 0 if EEE was not enabled, or 1 otherwise
|
|
*/
|
|
static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
|
|
struct phy_device *phy)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct ethtool_eee *p = &priv->port_sts[port].eee;
|
|
int ret;
|
|
|
|
p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);
|
|
|
|
ret = phy_init_eee(phy, 0);
|
|
if (ret)
|
|
return 0;
|
|
|
|
bcm_sf2_eee_enable_set(ds, port, true);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
|
|
struct ethtool_eee *e)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct ethtool_eee *p = &priv->port_sts[port].eee;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
|
|
e->eee_enabled = p->eee_enabled;
|
|
e->eee_active = !!(reg & (1 << port));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev,
|
|
struct ethtool_eee *e)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct ethtool_eee *p = &priv->port_sts[port].eee;
|
|
|
|
p->eee_enabled = e->eee_enabled;
|
|
|
|
if (!p->eee_enabled) {
|
|
bcm_sf2_eee_enable_set(ds, port, false);
|
|
} else {
|
|
p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
|
|
if (!p->eee_enabled)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Fast-ageing of ARL entries for a given port, equivalent to an ARL
|
|
* flush for that port.
|
|
*/
|
|
static int bcm_sf2_sw_fast_age_port(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int timeout = 1000;
|
|
u32 reg;
|
|
|
|
core_writel(priv, port, CORE_FAST_AGE_PORT);
|
|
|
|
reg = core_readl(priv, CORE_FAST_AGE_CTRL);
|
|
reg |= EN_AGE_PORT | EN_AGE_DYNAMIC | FAST_AGE_STR_DONE;
|
|
core_writel(priv, reg, CORE_FAST_AGE_CTRL);
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_FAST_AGE_CTRL);
|
|
if (!(reg & FAST_AGE_STR_DONE))
|
|
break;
|
|
|
|
cpu_relax();
|
|
} while (timeout--);
|
|
|
|
if (!timeout)
|
|
return -ETIMEDOUT;
|
|
|
|
core_writel(priv, 0, CORE_FAST_AGE_CTRL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
|
|
struct net_device *bridge)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int i;
|
|
u32 reg, p_ctl;
|
|
|
|
priv->port_sts[port].bridge_dev = bridge;
|
|
p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
|
|
|
|
for (i = 0; i < priv->hw_params.num_ports; i++) {
|
|
if (priv->port_sts[i].bridge_dev != bridge)
|
|
continue;
|
|
|
|
/* Add this local port to the remote port VLAN control
|
|
* membership and update the remote port bitmask
|
|
*/
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
|
|
reg |= 1 << port;
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
|
|
priv->port_sts[i].vlan_ctl_mask = reg;
|
|
|
|
p_ctl |= 1 << i;
|
|
}
|
|
|
|
/* Configure the local port VLAN control membership to include
|
|
* remote ports and update the local port bitmask
|
|
*/
|
|
core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
|
|
priv->port_sts[port].vlan_ctl_mask = p_ctl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct net_device *bridge = priv->port_sts[port].bridge_dev;
|
|
unsigned int i;
|
|
u32 reg, p_ctl;
|
|
|
|
p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
|
|
|
|
for (i = 0; i < priv->hw_params.num_ports; i++) {
|
|
/* Don't touch the remaining ports */
|
|
if (priv->port_sts[i].bridge_dev != bridge)
|
|
continue;
|
|
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
|
|
priv->port_sts[port].vlan_ctl_mask = reg;
|
|
|
|
/* Prevent self removal to preserve isolation */
|
|
if (port != i)
|
|
p_ctl &= ~(1 << i);
|
|
}
|
|
|
|
core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
|
|
priv->port_sts[port].vlan_ctl_mask = p_ctl;
|
|
priv->port_sts[port].bridge_dev = NULL;
|
|
}
|
|
|
|
static void bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
|
|
u8 state)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u8 hw_state, cur_hw_state;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_G_PCTL_PORT(port));
|
|
cur_hw_state = reg & (G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
|
|
|
|
switch (state) {
|
|
case BR_STATE_DISABLED:
|
|
hw_state = G_MISTP_DIS_STATE;
|
|
break;
|
|
case BR_STATE_LISTENING:
|
|
hw_state = G_MISTP_LISTEN_STATE;
|
|
break;
|
|
case BR_STATE_LEARNING:
|
|
hw_state = G_MISTP_LEARN_STATE;
|
|
break;
|
|
case BR_STATE_FORWARDING:
|
|
hw_state = G_MISTP_FWD_STATE;
|
|
break;
|
|
case BR_STATE_BLOCKING:
|
|
hw_state = G_MISTP_BLOCK_STATE;
|
|
break;
|
|
default:
|
|
pr_err("%s: invalid STP state: %d\n", __func__, state);
|
|
return;
|
|
}
|
|
|
|
/* Fast-age ARL entries if we are moving a port from Learning or
|
|
* Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
|
|
* state (hw_state)
|
|
*/
|
|
if (cur_hw_state != hw_state) {
|
|
if (cur_hw_state >= G_MISTP_LEARN_STATE &&
|
|
hw_state <= G_MISTP_LISTEN_STATE) {
|
|
if (bcm_sf2_sw_fast_age_port(ds, port)) {
|
|
pr_err("%s: fast-ageing failed\n", __func__);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
reg = core_readl(priv, CORE_G_PCTL_PORT(port));
|
|
reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
|
|
reg |= hw_state;
|
|
core_writel(priv, reg, CORE_G_PCTL_PORT(port));
|
|
}
|
|
|
|
/* Address Resolution Logic routines */
|
|
static int bcm_sf2_arl_op_wait(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned int timeout = 10;
|
|
u32 reg;
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_ARLA_RWCTL);
|
|
if (!(reg & ARL_STRTDN))
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
} while (timeout--);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int bcm_sf2_arl_rw_op(struct bcm_sf2_priv *priv, unsigned int op)
|
|
{
|
|
u32 cmd;
|
|
|
|
if (op > ARL_RW)
|
|
return -EINVAL;
|
|
|
|
cmd = core_readl(priv, CORE_ARLA_RWCTL);
|
|
cmd &= ~IVL_SVL_SELECT;
|
|
cmd |= ARL_STRTDN;
|
|
if (op)
|
|
cmd |= ARL_RW;
|
|
else
|
|
cmd &= ~ARL_RW;
|
|
core_writel(priv, cmd, CORE_ARLA_RWCTL);
|
|
|
|
return bcm_sf2_arl_op_wait(priv);
|
|
}
|
|
|
|
static int bcm_sf2_arl_read(struct bcm_sf2_priv *priv, u64 mac,
|
|
u16 vid, struct bcm_sf2_arl_entry *ent, u8 *idx,
|
|
bool is_valid)
|
|
{
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
ret = bcm_sf2_arl_op_wait(priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read the 4 bins */
|
|
for (i = 0; i < 4; i++) {
|
|
u64 mac_vid;
|
|
u32 fwd_entry;
|
|
|
|
mac_vid = core_readq(priv, CORE_ARLA_MACVID_ENTRY(i));
|
|
fwd_entry = core_readl(priv, CORE_ARLA_FWD_ENTRY(i));
|
|
bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
|
|
|
|
if (ent->is_valid && is_valid) {
|
|
*idx = i;
|
|
return 0;
|
|
}
|
|
|
|
/* This is the MAC we just deleted */
|
|
if (!is_valid && (mac_vid & mac))
|
|
return 0;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int bcm_sf2_arl_op(struct bcm_sf2_priv *priv, int op, int port,
|
|
const unsigned char *addr, u16 vid, bool is_valid)
|
|
{
|
|
struct bcm_sf2_arl_entry ent;
|
|
u32 fwd_entry;
|
|
u64 mac, mac_vid = 0;
|
|
u8 idx = 0;
|
|
int ret;
|
|
|
|
/* Convert the array into a 64-bit MAC */
|
|
mac = bcm_sf2_mac_to_u64(addr);
|
|
|
|
/* Perform a read for the given MAC and VID */
|
|
core_writeq(priv, mac, CORE_ARLA_MAC);
|
|
core_writel(priv, vid, CORE_ARLA_VID);
|
|
|
|
/* Issue a read operation for this MAC */
|
|
ret = bcm_sf2_arl_rw_op(priv, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
|
|
/* If this is a read, just finish now */
|
|
if (op)
|
|
return ret;
|
|
|
|
/* We could not find a matching MAC, so reset to a new entry */
|
|
if (ret) {
|
|
fwd_entry = 0;
|
|
idx = 0;
|
|
}
|
|
|
|
memset(&ent, 0, sizeof(ent));
|
|
ent.port = port;
|
|
ent.is_valid = is_valid;
|
|
ent.vid = vid;
|
|
ent.is_static = true;
|
|
memcpy(ent.mac, addr, ETH_ALEN);
|
|
bcm_sf2_arl_from_entry(&mac_vid, &fwd_entry, &ent);
|
|
|
|
core_writeq(priv, mac_vid, CORE_ARLA_MACVID_ENTRY(idx));
|
|
core_writel(priv, fwd_entry, CORE_ARLA_FWD_ENTRY(idx));
|
|
|
|
ret = bcm_sf2_arl_rw_op(priv, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Re-read the entry to check */
|
|
return bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_prepare(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
/* We do not need to do anything specific here yet */
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_sw_fdb_add(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
|
|
if (bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, true))
|
|
pr_err("%s: failed to add MAC address\n", __func__);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_del(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
|
|
return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
|
|
}
|
|
|
|
static int bcm_sf2_arl_search_wait(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned timeout = 1000;
|
|
u32 reg;
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_ARLA_SRCH_CTL);
|
|
if (!(reg & ARLA_SRCH_STDN))
|
|
return 0;
|
|
|
|
if (reg & ARLA_SRCH_VLID)
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
} while (timeout--);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static void bcm_sf2_arl_search_rd(struct bcm_sf2_priv *priv, u8 idx,
|
|
struct bcm_sf2_arl_entry *ent)
|
|
{
|
|
u64 mac_vid;
|
|
u32 fwd_entry;
|
|
|
|
mac_vid = core_readq(priv, CORE_ARLA_SRCH_RSLT_MACVID(idx));
|
|
fwd_entry = core_readl(priv, CORE_ARLA_SRCH_RSLT(idx));
|
|
bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_copy(struct net_device *dev, int port,
|
|
const struct bcm_sf2_arl_entry *ent,
|
|
struct switchdev_obj_port_fdb *fdb,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
if (!ent->is_valid)
|
|
return 0;
|
|
|
|
if (port != ent->port)
|
|
return 0;
|
|
|
|
ether_addr_copy(fdb->addr, ent->mac);
|
|
fdb->vid = ent->vid;
|
|
fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;
|
|
|
|
return cb(&fdb->obj);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_dump(struct dsa_switch *ds, int port,
|
|
struct switchdev_obj_port_fdb *fdb,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct net_device *dev = ds->ports[port];
|
|
struct bcm_sf2_arl_entry results[2];
|
|
unsigned int count = 0;
|
|
int ret;
|
|
|
|
/* Start search operation */
|
|
core_writel(priv, ARLA_SRCH_STDN, CORE_ARLA_SRCH_CTL);
|
|
|
|
do {
|
|
ret = bcm_sf2_arl_search_wait(priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read both entries, then return their values back */
|
|
bcm_sf2_arl_search_rd(priv, 0, &results[0]);
|
|
ret = bcm_sf2_sw_fdb_copy(dev, port, &results[0], fdb, cb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bcm_sf2_arl_search_rd(priv, 1, &results[1]);
|
|
ret = bcm_sf2_sw_fdb_copy(dev, port, &results[1], fdb, cb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!results[0].is_valid && !results[1].is_valid)
|
|
break;
|
|
|
|
} while (count++ < CORE_ARLA_NUM_ENTRIES);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev_id;
|
|
|
|
priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
|
|
~priv->irq0_mask;
|
|
intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev_id;
|
|
|
|
priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
|
|
~priv->irq1_mask;
|
|
intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
|
|
|
|
if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
|
|
priv->port_sts[7].link = 1;
|
|
if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
|
|
priv->port_sts[7].link = 0;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned int timeout = 1000;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
|
|
reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
|
|
core_writel(priv, reg, CORE_WATCHDOG_CTRL);
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
|
|
if (!(reg & SOFTWARE_RESET))
|
|
break;
|
|
|
|
usleep_range(1000, 2000);
|
|
} while (timeout-- > 0);
|
|
|
|
if (timeout == 0)
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
|
|
{
|
|
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
|
|
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
|
|
intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
|
|
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
|
|
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
|
|
intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
|
|
}
|
|
|
|
static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
|
|
struct device_node *dn)
|
|
{
|
|
struct device_node *port;
|
|
const char *phy_mode_str;
|
|
int mode;
|
|
unsigned int port_num;
|
|
int ret;
|
|
|
|
priv->moca_port = -1;
|
|
|
|
for_each_available_child_of_node(dn, port) {
|
|
if (of_property_read_u32(port, "reg", &port_num))
|
|
continue;
|
|
|
|
/* Internal PHYs get assigned a specific 'phy-mode' property
|
|
* value: "internal" to help flag them before MDIO probing
|
|
* has completed, since they might be turned off at that
|
|
* time
|
|
*/
|
|
mode = of_get_phy_mode(port);
|
|
if (mode < 0) {
|
|
ret = of_property_read_string(port, "phy-mode",
|
|
&phy_mode_str);
|
|
if (ret < 0)
|
|
continue;
|
|
|
|
if (!strcasecmp(phy_mode_str, "internal"))
|
|
priv->int_phy_mask |= 1 << port_num;
|
|
}
|
|
|
|
if (mode == PHY_INTERFACE_MODE_MOCA)
|
|
priv->moca_port = port_num;
|
|
}
|
|
}
|
|
|
|
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
|
|
{
|
|
const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct device_node *dn;
|
|
void __iomem **base;
|
|
unsigned int port;
|
|
unsigned int i;
|
|
u32 reg, rev;
|
|
int ret;
|
|
|
|
spin_lock_init(&priv->indir_lock);
|
|
mutex_init(&priv->stats_mutex);
|
|
|
|
/* All the interesting properties are at the parent device_node
|
|
* level
|
|
*/
|
|
dn = ds->cd->of_node->parent;
|
|
bcm_sf2_identify_ports(priv, ds->cd->of_node);
|
|
|
|
priv->irq0 = irq_of_parse_and_map(dn, 0);
|
|
priv->irq1 = irq_of_parse_and_map(dn, 1);
|
|
|
|
base = &priv->core;
|
|
for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
|
|
*base = of_iomap(dn, i);
|
|
if (*base == NULL) {
|
|
pr_err("unable to find register: %s\n", reg_names[i]);
|
|
ret = -ENOMEM;
|
|
goto out_unmap;
|
|
}
|
|
base++;
|
|
}
|
|
|
|
ret = bcm_sf2_sw_rst(priv);
|
|
if (ret) {
|
|
pr_err("unable to software reset switch: %d\n", ret);
|
|
goto out_unmap;
|
|
}
|
|
|
|
/* Disable all interrupts and request them */
|
|
bcm_sf2_intr_disable(priv);
|
|
|
|
ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
|
|
"switch_0", priv);
|
|
if (ret < 0) {
|
|
pr_err("failed to request switch_0 IRQ\n");
|
|
goto out_unmap;
|
|
}
|
|
|
|
ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
|
|
"switch_1", priv);
|
|
if (ret < 0) {
|
|
pr_err("failed to request switch_1 IRQ\n");
|
|
goto out_free_irq0;
|
|
}
|
|
|
|
/* Reset the MIB counters */
|
|
reg = core_readl(priv, CORE_GMNCFGCFG);
|
|
reg |= RST_MIB_CNT;
|
|
core_writel(priv, reg, CORE_GMNCFGCFG);
|
|
reg &= ~RST_MIB_CNT;
|
|
core_writel(priv, reg, CORE_GMNCFGCFG);
|
|
|
|
/* Get the maximum number of ports for this switch */
|
|
priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
|
|
if (priv->hw_params.num_ports > DSA_MAX_PORTS)
|
|
priv->hw_params.num_ports = DSA_MAX_PORTS;
|
|
|
|
/* Assume a single GPHY setup if we can't read that property */
|
|
if (of_property_read_u32(dn, "brcm,num-gphy",
|
|
&priv->hw_params.num_gphy))
|
|
priv->hw_params.num_gphy = 1;
|
|
|
|
/* Enable all valid ports and disable those unused */
|
|
for (port = 0; port < priv->hw_params.num_ports; port++) {
|
|
/* IMP port receives special treatment */
|
|
if ((1 << port) & ds->enabled_port_mask)
|
|
bcm_sf2_port_setup(ds, port, NULL);
|
|
else if (dsa_is_cpu_port(ds, port))
|
|
bcm_sf2_imp_setup(ds, port);
|
|
else
|
|
bcm_sf2_port_disable(ds, port, NULL);
|
|
}
|
|
|
|
/* Include the pseudo-PHY address and the broadcast PHY address to
|
|
* divert reads towards our workaround. This is only required for
|
|
* 7445D0, since 7445E0 disconnects the internal switch pseudo-PHY such
|
|
* that we can use the regular SWITCH_MDIO master controller instead.
|
|
*
|
|
* By default, DSA initializes ds->phys_mii_mask to
|
|
* ds->enabled_port_mask to have a 1:1 mapping between Port address
|
|
* and PHY address in order to utilize the slave_mii_bus instance to
|
|
* read from Port PHYs. This is not what we want here, so we
|
|
* initialize phys_mii_mask 0 to always utilize the "master" MDIO
|
|
* bus backed by the "mdio-unimac" driver.
|
|
*/
|
|
if (of_machine_is_compatible("brcm,bcm7445d0"))
|
|
ds->phys_mii_mask |= ((1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0));
|
|
else
|
|
ds->phys_mii_mask = 0;
|
|
|
|
rev = reg_readl(priv, REG_SWITCH_REVISION);
|
|
priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
|
|
SWITCH_TOP_REV_MASK;
|
|
priv->hw_params.core_rev = (rev & SF2_REV_MASK);
|
|
|
|
rev = reg_readl(priv, REG_PHY_REVISION);
|
|
priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
|
|
|
|
pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
|
|
priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
|
|
priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
|
|
priv->core, priv->irq0, priv->irq1);
|
|
|
|
return 0;
|
|
|
|
out_free_irq0:
|
|
free_irq(priv->irq0, priv);
|
|
out_unmap:
|
|
base = &priv->core;
|
|
for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
|
|
if (*base)
|
|
iounmap(*base);
|
|
base++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
|
|
/* The BCM7xxx PHY driver expects to find the integrated PHY revision
|
|
* in bits 15:8 and the patch level in bits 7:0 which is exactly what
|
|
* the REG_PHY_REVISION register layout is.
|
|
*/
|
|
|
|
return priv->hw_params.gphy_rev;
|
|
}
|
|
|
|
static int bcm_sf2_sw_indir_rw(struct dsa_switch *ds, int op, int addr,
|
|
int regnum, u16 val)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
int ret = 0;
|
|
u32 reg;
|
|
|
|
reg = reg_readl(priv, REG_SWITCH_CNTRL);
|
|
reg |= MDIO_MASTER_SEL;
|
|
reg_writel(priv, reg, REG_SWITCH_CNTRL);
|
|
|
|
/* Page << 8 | offset */
|
|
reg = 0x70;
|
|
reg <<= 2;
|
|
core_writel(priv, addr, reg);
|
|
|
|
/* Page << 8 | offset */
|
|
reg = 0x80 << 8 | regnum << 1;
|
|
reg <<= 2;
|
|
|
|
if (op)
|
|
ret = core_readl(priv, reg);
|
|
else
|
|
core_writel(priv, val, reg);
|
|
|
|
reg = reg_readl(priv, REG_SWITCH_CNTRL);
|
|
reg &= ~MDIO_MASTER_SEL;
|
|
reg_writel(priv, reg, REG_SWITCH_CNTRL);
|
|
|
|
return ret & 0xffff;
|
|
}
|
|
|
|
static int bcm_sf2_sw_phy_read(struct dsa_switch *ds, int addr, int regnum)
|
|
{
|
|
/* Intercept reads from the MDIO broadcast address or Broadcom
|
|
* pseudo-PHY address
|
|
*/
|
|
switch (addr) {
|
|
case 0:
|
|
case BRCM_PSEUDO_PHY_ADDR:
|
|
return bcm_sf2_sw_indir_rw(ds, 1, addr, regnum, 0);
|
|
default:
|
|
return 0xffff;
|
|
}
|
|
}
|
|
|
|
static int bcm_sf2_sw_phy_write(struct dsa_switch *ds, int addr, int regnum,
|
|
u16 val)
|
|
{
|
|
/* Intercept writes to the MDIO broadcast address or Broadcom
|
|
* pseudo-PHY address
|
|
*/
|
|
switch (addr) {
|
|
case 0:
|
|
case BRCM_PSEUDO_PHY_ADDR:
|
|
bcm_sf2_sw_indir_rw(ds, 0, addr, regnum, val);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 id_mode_dis = 0, port_mode;
|
|
const char *str = NULL;
|
|
u32 reg;
|
|
|
|
switch (phydev->interface) {
|
|
case PHY_INTERFACE_MODE_RGMII:
|
|
str = "RGMII (no delay)";
|
|
id_mode_dis = 1;
|
|
case PHY_INTERFACE_MODE_RGMII_TXID:
|
|
if (!str)
|
|
str = "RGMII (TX delay)";
|
|
port_mode = EXT_GPHY;
|
|
break;
|
|
case PHY_INTERFACE_MODE_MII:
|
|
str = "MII";
|
|
port_mode = EXT_EPHY;
|
|
break;
|
|
case PHY_INTERFACE_MODE_REVMII:
|
|
str = "Reverse MII";
|
|
port_mode = EXT_REVMII;
|
|
break;
|
|
default:
|
|
/* All other PHYs: internal and MoCA */
|
|
goto force_link;
|
|
}
|
|
|
|
/* If the link is down, just disable the interface to conserve power */
|
|
if (!phydev->link) {
|
|
reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
|
|
reg &= ~RGMII_MODE_EN;
|
|
reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
|
|
goto force_link;
|
|
}
|
|
|
|
/* Clear id_mode_dis bit, and the existing port mode, but
|
|
* make sure we enable the RGMII block for data to pass
|
|
*/
|
|
reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
|
|
reg &= ~ID_MODE_DIS;
|
|
reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
|
|
reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
|
|
|
|
reg |= port_mode | RGMII_MODE_EN;
|
|
if (id_mode_dis)
|
|
reg |= ID_MODE_DIS;
|
|
|
|
if (phydev->pause) {
|
|
if (phydev->asym_pause)
|
|
reg |= TX_PAUSE_EN;
|
|
reg |= RX_PAUSE_EN;
|
|
}
|
|
|
|
reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
|
|
|
|
pr_info("Port %d configured for %s\n", port, str);
|
|
|
|
force_link:
|
|
/* Force link settings detected from the PHY */
|
|
reg = SW_OVERRIDE;
|
|
switch (phydev->speed) {
|
|
case SPEED_1000:
|
|
reg |= SPDSTS_1000 << SPEED_SHIFT;
|
|
break;
|
|
case SPEED_100:
|
|
reg |= SPDSTS_100 << SPEED_SHIFT;
|
|
break;
|
|
}
|
|
|
|
if (phydev->link)
|
|
reg |= LINK_STS;
|
|
if (phydev->duplex == DUPLEX_FULL)
|
|
reg |= DUPLX_MODE;
|
|
|
|
core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
|
}
|
|
|
|
static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
|
|
struct fixed_phy_status *status)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 duplex, pause;
|
|
u32 reg;
|
|
|
|
duplex = core_readl(priv, CORE_DUPSTS);
|
|
pause = core_readl(priv, CORE_PAUSESTS);
|
|
|
|
status->link = 0;
|
|
|
|
/* MoCA port is special as we do not get link status from CORE_LNKSTS,
|
|
* which means that we need to force the link at the port override
|
|
* level to get the data to flow. We do use what the interrupt handler
|
|
* did determine before.
|
|
*
|
|
* For the other ports, we just force the link status, since this is
|
|
* a fixed PHY device.
|
|
*/
|
|
if (port == priv->moca_port) {
|
|
status->link = priv->port_sts[port].link;
|
|
/* For MoCA interfaces, also force a link down notification
|
|
* since some version of the user-space daemon (mocad) use
|
|
* cmd->autoneg to force the link, which messes up the PHY
|
|
* state machine and make it go in PHY_FORCING state instead.
|
|
*/
|
|
if (!status->link)
|
|
netif_carrier_off(ds->ports[port]);
|
|
status->duplex = 1;
|
|
} else {
|
|
status->link = 1;
|
|
status->duplex = !!(duplex & (1 << port));
|
|
}
|
|
|
|
reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
|
reg |= SW_OVERRIDE;
|
|
if (status->link)
|
|
reg |= LINK_STS;
|
|
else
|
|
reg &= ~LINK_STS;
|
|
core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
|
|
|
if ((pause & (1 << port)) &&
|
|
(pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
|
|
status->asym_pause = 1;
|
|
status->pause = 1;
|
|
}
|
|
|
|
if (pause & (1 << port))
|
|
status->pause = 1;
|
|
}
|
|
|
|
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int port;
|
|
|
|
bcm_sf2_intr_disable(priv);
|
|
|
|
/* Disable all ports physically present including the IMP
|
|
* port, the other ones have already been disabled during
|
|
* bcm_sf2_sw_setup
|
|
*/
|
|
for (port = 0; port < DSA_MAX_PORTS; port++) {
|
|
if ((1 << port) & ds->enabled_port_mask ||
|
|
dsa_is_cpu_port(ds, port))
|
|
bcm_sf2_port_disable(ds, port, NULL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_resume(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int port;
|
|
int ret;
|
|
|
|
ret = bcm_sf2_sw_rst(priv);
|
|
if (ret) {
|
|
pr_err("%s: failed to software reset switch\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
if (priv->hw_params.num_gphy == 1)
|
|
bcm_sf2_gphy_enable_set(ds, true);
|
|
|
|
for (port = 0; port < DSA_MAX_PORTS; port++) {
|
|
if ((1 << port) & ds->enabled_port_mask)
|
|
bcm_sf2_port_setup(ds, port, NULL);
|
|
else if (dsa_is_cpu_port(ds, port))
|
|
bcm_sf2_imp_setup(ds, port);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
|
|
struct ethtool_wolinfo *wol)
|
|
{
|
|
struct net_device *p = ds->dst[ds->index].master_netdev;
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct ethtool_wolinfo pwol;
|
|
|
|
/* Get the parent device WoL settings */
|
|
p->ethtool_ops->get_wol(p, &pwol);
|
|
|
|
/* Advertise the parent device supported settings */
|
|
wol->supported = pwol.supported;
|
|
memset(&wol->sopass, 0, sizeof(wol->sopass));
|
|
|
|
if (pwol.wolopts & WAKE_MAGICSECURE)
|
|
memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
|
|
|
|
if (priv->wol_ports_mask & (1 << port))
|
|
wol->wolopts = pwol.wolopts;
|
|
else
|
|
wol->wolopts = 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
|
|
struct ethtool_wolinfo *wol)
|
|
{
|
|
struct net_device *p = ds->dst[ds->index].master_netdev;
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
s8 cpu_port = ds->dst[ds->index].cpu_port;
|
|
struct ethtool_wolinfo pwol;
|
|
|
|
p->ethtool_ops->get_wol(p, &pwol);
|
|
if (wol->wolopts & ~pwol.supported)
|
|
return -EINVAL;
|
|
|
|
if (wol->wolopts)
|
|
priv->wol_ports_mask |= (1 << port);
|
|
else
|
|
priv->wol_ports_mask &= ~(1 << port);
|
|
|
|
/* If we have at least one port enabled, make sure the CPU port
|
|
* is also enabled. If the CPU port is the last one enabled, we disable
|
|
* it since this configuration does not make sense.
|
|
*/
|
|
if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
|
|
priv->wol_ports_mask |= (1 << cpu_port);
|
|
else
|
|
priv->wol_ports_mask &= ~(1 << cpu_port);
|
|
|
|
return p->ethtool_ops->set_wol(p, wol);
|
|
}
|
|
|
|
static struct dsa_switch_driver bcm_sf2_switch_driver = {
|
|
.tag_protocol = DSA_TAG_PROTO_BRCM,
|
|
.probe = bcm_sf2_sw_drv_probe,
|
|
.setup = bcm_sf2_sw_setup,
|
|
.set_addr = bcm_sf2_sw_set_addr,
|
|
.get_phy_flags = bcm_sf2_sw_get_phy_flags,
|
|
.phy_read = bcm_sf2_sw_phy_read,
|
|
.phy_write = bcm_sf2_sw_phy_write,
|
|
.get_strings = bcm_sf2_sw_get_strings,
|
|
.get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats,
|
|
.get_sset_count = bcm_sf2_sw_get_sset_count,
|
|
.adjust_link = bcm_sf2_sw_adjust_link,
|
|
.fixed_link_update = bcm_sf2_sw_fixed_link_update,
|
|
.suspend = bcm_sf2_sw_suspend,
|
|
.resume = bcm_sf2_sw_resume,
|
|
.get_wol = bcm_sf2_sw_get_wol,
|
|
.set_wol = bcm_sf2_sw_set_wol,
|
|
.port_enable = bcm_sf2_port_setup,
|
|
.port_disable = bcm_sf2_port_disable,
|
|
.get_eee = bcm_sf2_sw_get_eee,
|
|
.set_eee = bcm_sf2_sw_set_eee,
|
|
.port_bridge_join = bcm_sf2_sw_br_join,
|
|
.port_bridge_leave = bcm_sf2_sw_br_leave,
|
|
.port_stp_state_set = bcm_sf2_sw_br_set_stp_state,
|
|
.port_fdb_prepare = bcm_sf2_sw_fdb_prepare,
|
|
.port_fdb_add = bcm_sf2_sw_fdb_add,
|
|
.port_fdb_del = bcm_sf2_sw_fdb_del,
|
|
.port_fdb_dump = bcm_sf2_sw_fdb_dump,
|
|
};
|
|
|
|
static int __init bcm_sf2_init(void)
|
|
{
|
|
register_switch_driver(&bcm_sf2_switch_driver);
|
|
|
|
return 0;
|
|
}
|
|
module_init(bcm_sf2_init);
|
|
|
|
static void __exit bcm_sf2_exit(void)
|
|
{
|
|
unregister_switch_driver(&bcm_sf2_switch_driver);
|
|
}
|
|
module_exit(bcm_sf2_exit);
|
|
|
|
MODULE_AUTHOR("Broadcom Corporation");
|
|
MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:brcm-sf2");
|