mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-01 14:52:32 +00:00
5cd272085b
Towards the goal of having arch/powerpc not build anything over in arch/ppc move math-emu over. Also, killed some references to arch/ppc/ in the arch/powerpc Makefile which should belong in drivers/ when the particular sub-arch's move over to arch/powerpc. Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
689 lines
20 KiB
C
689 lines
20 KiB
C
#define _FP_DECL(wc, X) \
|
|
_FP_I_TYPE X##_c, X##_s, X##_e; \
|
|
_FP_FRAC_DECL_##wc(X)
|
|
|
|
/*
|
|
* Finish truely unpacking a native fp value by classifying the kind
|
|
* of fp value and normalizing both the exponent and the fraction.
|
|
*/
|
|
|
|
#define _FP_UNPACK_CANONICAL(fs, wc, X) \
|
|
do { \
|
|
switch (X##_e) \
|
|
{ \
|
|
default: \
|
|
_FP_FRAC_HIGH_##wc(X) |= _FP_IMPLBIT_##fs; \
|
|
_FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \
|
|
X##_e -= _FP_EXPBIAS_##fs; \
|
|
X##_c = FP_CLS_NORMAL; \
|
|
break; \
|
|
\
|
|
case 0: \
|
|
if (_FP_FRAC_ZEROP_##wc(X)) \
|
|
X##_c = FP_CLS_ZERO; \
|
|
else \
|
|
{ \
|
|
/* a denormalized number */ \
|
|
_FP_I_TYPE _shift; \
|
|
_FP_FRAC_CLZ_##wc(_shift, X); \
|
|
_shift -= _FP_FRACXBITS_##fs; \
|
|
_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \
|
|
X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \
|
|
X##_c = FP_CLS_NORMAL; \
|
|
} \
|
|
break; \
|
|
\
|
|
case _FP_EXPMAX_##fs: \
|
|
if (_FP_FRAC_ZEROP_##wc(X)) \
|
|
X##_c = FP_CLS_INF; \
|
|
else \
|
|
/* we don't differentiate between signaling and quiet nans */ \
|
|
X##_c = FP_CLS_NAN; \
|
|
break; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/*
|
|
* Before packing the bits back into the native fp result, take care
|
|
* of such mundane things as rounding and overflow. Also, for some
|
|
* kinds of fp values, the original parts may not have been fully
|
|
* extracted -- but that is ok, we can regenerate them now.
|
|
*/
|
|
|
|
#define _FP_PACK_CANONICAL(fs, wc, X) \
|
|
({int __ret = 0; \
|
|
switch (X##_c) \
|
|
{ \
|
|
case FP_CLS_NORMAL: \
|
|
X##_e += _FP_EXPBIAS_##fs; \
|
|
if (X##_e > 0) \
|
|
{ \
|
|
__ret |= _FP_ROUND(wc, X); \
|
|
if (_FP_FRAC_OVERP_##wc(fs, X)) \
|
|
{ \
|
|
_FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1)); \
|
|
X##_e++; \
|
|
} \
|
|
else \
|
|
_FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
|
|
if (X##_e >= _FP_EXPMAX_##fs) \
|
|
{ \
|
|
/* overflow to infinity */ \
|
|
X##_e = _FP_EXPMAX_##fs; \
|
|
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
|
|
__ret |= EFLAG_OVERFLOW; \
|
|
} \
|
|
} \
|
|
else \
|
|
{ \
|
|
/* we've got a denormalized number */ \
|
|
X##_e = -X##_e + 1; \
|
|
if (X##_e <= _FP_WFRACBITS_##fs) \
|
|
{ \
|
|
_FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \
|
|
_FP_FRAC_SLL_##wc(X, 1); \
|
|
if (_FP_FRAC_OVERP_##wc(fs, X)) \
|
|
{ \
|
|
X##_e = 1; \
|
|
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
|
|
} \
|
|
else \
|
|
{ \
|
|
X##_e = 0; \
|
|
_FP_FRAC_SRL_##wc(X, _FP_WORKBITS+1); \
|
|
__ret |= EFLAG_UNDERFLOW; \
|
|
} \
|
|
} \
|
|
else \
|
|
{ \
|
|
/* underflow to zero */ \
|
|
X##_e = 0; \
|
|
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
|
|
__ret |= EFLAG_UNDERFLOW; \
|
|
} \
|
|
} \
|
|
break; \
|
|
\
|
|
case FP_CLS_ZERO: \
|
|
X##_e = 0; \
|
|
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
|
|
break; \
|
|
\
|
|
case FP_CLS_INF: \
|
|
X##_e = _FP_EXPMAX_##fs; \
|
|
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
|
|
break; \
|
|
\
|
|
case FP_CLS_NAN: \
|
|
X##_e = _FP_EXPMAX_##fs; \
|
|
if (!_FP_KEEPNANFRACP) \
|
|
{ \
|
|
_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \
|
|
X##_s = 0; \
|
|
} \
|
|
else \
|
|
_FP_FRAC_HIGH_##wc(X) |= _FP_QNANBIT_##fs; \
|
|
break; \
|
|
} \
|
|
__ret; \
|
|
})
|
|
|
|
|
|
/*
|
|
* Main addition routine. The input values should be cooked.
|
|
*/
|
|
|
|
#define _FP_ADD(fs, wc, R, X, Y) \
|
|
do { \
|
|
switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
|
|
{ \
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
|
|
{ \
|
|
/* shift the smaller number so that its exponent matches the larger */ \
|
|
_FP_I_TYPE diff = X##_e - Y##_e; \
|
|
\
|
|
if (diff < 0) \
|
|
{ \
|
|
diff = -diff; \
|
|
if (diff <= _FP_WFRACBITS_##fs) \
|
|
_FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \
|
|
else if (!_FP_FRAC_ZEROP_##wc(X)) \
|
|
_FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
|
|
else \
|
|
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
|
|
R##_e = Y##_e; \
|
|
} \
|
|
else \
|
|
{ \
|
|
if (diff > 0) \
|
|
{ \
|
|
if (diff <= _FP_WFRACBITS_##fs) \
|
|
_FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \
|
|
else if (!_FP_FRAC_ZEROP_##wc(Y)) \
|
|
_FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \
|
|
else \
|
|
_FP_FRAC_SET_##wc(Y, _FP_ZEROFRAC_##wc); \
|
|
} \
|
|
R##_e = X##_e; \
|
|
} \
|
|
\
|
|
R##_c = FP_CLS_NORMAL; \
|
|
\
|
|
if (X##_s == Y##_s) \
|
|
{ \
|
|
R##_s = X##_s; \
|
|
_FP_FRAC_ADD_##wc(R, X, Y); \
|
|
if (_FP_FRAC_OVERP_##wc(fs, R)) \
|
|
{ \
|
|
_FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
|
|
R##_e++; \
|
|
} \
|
|
} \
|
|
else \
|
|
{ \
|
|
R##_s = X##_s; \
|
|
_FP_FRAC_SUB_##wc(R, X, Y); \
|
|
if (_FP_FRAC_ZEROP_##wc(R)) \
|
|
{ \
|
|
/* return an exact zero */ \
|
|
if (FP_ROUNDMODE == FP_RND_MINF) \
|
|
R##_s |= Y##_s; \
|
|
else \
|
|
R##_s &= Y##_s; \
|
|
R##_c = FP_CLS_ZERO; \
|
|
} \
|
|
else \
|
|
{ \
|
|
if (_FP_FRAC_NEGP_##wc(R)) \
|
|
{ \
|
|
_FP_FRAC_SUB_##wc(R, Y, X); \
|
|
R##_s = Y##_s; \
|
|
} \
|
|
\
|
|
/* renormalize after subtraction */ \
|
|
_FP_FRAC_CLZ_##wc(diff, R); \
|
|
diff -= _FP_WFRACXBITS_##fs; \
|
|
if (diff) \
|
|
{ \
|
|
R##_e -= diff; \
|
|
_FP_FRAC_SLL_##wc(R, diff); \
|
|
} \
|
|
} \
|
|
} \
|
|
break; \
|
|
} \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
|
|
_FP_CHOOSENAN(fs, wc, R, X, Y); \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
|
|
R##_e = X##_e; \
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
|
|
_FP_FRAC_COPY_##wc(R, X); \
|
|
R##_s = X##_s; \
|
|
R##_c = X##_c; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
|
|
R##_e = Y##_e; \
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
|
|
_FP_FRAC_COPY_##wc(R, Y); \
|
|
R##_s = Y##_s; \
|
|
R##_c = Y##_c; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
|
|
if (X##_s != Y##_s) \
|
|
{ \
|
|
/* +INF + -INF => NAN */ \
|
|
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
|
|
R##_s = X##_s ^ Y##_s; \
|
|
R##_c = FP_CLS_NAN; \
|
|
break; \
|
|
} \
|
|
/* FALLTHRU */ \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
|
|
R##_s = X##_s; \
|
|
R##_c = FP_CLS_INF; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
|
|
R##_s = Y##_s; \
|
|
R##_c = FP_CLS_INF; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
|
|
/* make sure the sign is correct */ \
|
|
if (FP_ROUNDMODE == FP_RND_MINF) \
|
|
R##_s = X##_s | Y##_s; \
|
|
else \
|
|
R##_s = X##_s & Y##_s; \
|
|
R##_c = FP_CLS_ZERO; \
|
|
break; \
|
|
\
|
|
default: \
|
|
abort(); \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/*
|
|
* Main negation routine. FIXME -- when we care about setting exception
|
|
* bits reliably, this will not do. We should examine all of the fp classes.
|
|
*/
|
|
|
|
#define _FP_NEG(fs, wc, R, X) \
|
|
do { \
|
|
_FP_FRAC_COPY_##wc(R, X); \
|
|
R##_c = X##_c; \
|
|
R##_e = X##_e; \
|
|
R##_s = 1 ^ X##_s; \
|
|
} while (0)
|
|
|
|
|
|
/*
|
|
* Main multiplication routine. The input values should be cooked.
|
|
*/
|
|
|
|
#define _FP_MUL(fs, wc, R, X, Y) \
|
|
do { \
|
|
R##_s = X##_s ^ Y##_s; \
|
|
switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
|
|
{ \
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
|
|
R##_c = FP_CLS_NORMAL; \
|
|
R##_e = X##_e + Y##_e + 1; \
|
|
\
|
|
_FP_MUL_MEAT_##fs(R,X,Y); \
|
|
\
|
|
if (_FP_FRAC_OVERP_##wc(fs, R)) \
|
|
_FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
|
|
else \
|
|
R##_e--; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
|
|
_FP_CHOOSENAN(fs, wc, R, X, Y); \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
|
|
R##_s = X##_s; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
|
|
_FP_FRAC_COPY_##wc(R, X); \
|
|
R##_c = X##_c; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
|
|
R##_s = Y##_s; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
|
|
_FP_FRAC_COPY_##wc(R, Y); \
|
|
R##_c = Y##_c; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
|
|
R##_c = FP_CLS_NAN; \
|
|
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
|
|
break; \
|
|
\
|
|
default: \
|
|
abort(); \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/*
|
|
* Main division routine. The input values should be cooked.
|
|
*/
|
|
|
|
#define _FP_DIV(fs, wc, R, X, Y) \
|
|
do { \
|
|
R##_s = X##_s ^ Y##_s; \
|
|
switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
|
|
{ \
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
|
|
R##_c = FP_CLS_NORMAL; \
|
|
R##_e = X##_e - Y##_e; \
|
|
\
|
|
_FP_DIV_MEAT_##fs(R,X,Y); \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
|
|
_FP_CHOOSENAN(fs, wc, R, X, Y); \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
|
|
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
|
|
R##_s = X##_s; \
|
|
_FP_FRAC_COPY_##wc(R, X); \
|
|
R##_c = X##_c; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
|
|
R##_s = Y##_s; \
|
|
_FP_FRAC_COPY_##wc(R, Y); \
|
|
R##_c = Y##_c; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
|
|
R##_c = FP_CLS_ZERO; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
|
|
R##_c = FP_CLS_INF; \
|
|
break; \
|
|
\
|
|
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
|
|
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
|
|
R##_c = FP_CLS_NAN; \
|
|
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
|
|
break; \
|
|
\
|
|
default: \
|
|
abort(); \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/*
|
|
* Main differential comparison routine. The inputs should be raw not
|
|
* cooked. The return is -1,0,1 for normal values, 2 otherwise.
|
|
*/
|
|
|
|
#define _FP_CMP(fs, wc, ret, X, Y, un) \
|
|
do { \
|
|
/* NANs are unordered */ \
|
|
if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
|
|
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
|
|
{ \
|
|
ret = un; \
|
|
} \
|
|
else \
|
|
{ \
|
|
int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \
|
|
int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \
|
|
\
|
|
if (__x_zero && __y_zero) \
|
|
ret = 0; \
|
|
else if (__x_zero) \
|
|
ret = Y##_s ? 1 : -1; \
|
|
else if (__y_zero) \
|
|
ret = X##_s ? -1 : 1; \
|
|
else if (X##_s != Y##_s) \
|
|
ret = X##_s ? -1 : 1; \
|
|
else if (X##_e > Y##_e) \
|
|
ret = X##_s ? -1 : 1; \
|
|
else if (X##_e < Y##_e) \
|
|
ret = X##_s ? 1 : -1; \
|
|
else if (_FP_FRAC_GT_##wc(X, Y)) \
|
|
ret = X##_s ? -1 : 1; \
|
|
else if (_FP_FRAC_GT_##wc(Y, X)) \
|
|
ret = X##_s ? 1 : -1; \
|
|
else \
|
|
ret = 0; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/* Simplification for strict equality. */
|
|
|
|
#define _FP_CMP_EQ(fs, wc, ret, X, Y) \
|
|
do { \
|
|
/* NANs are unordered */ \
|
|
if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
|
|
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
|
|
{ \
|
|
ret = 1; \
|
|
} \
|
|
else \
|
|
{ \
|
|
ret = !(X##_e == Y##_e \
|
|
&& _FP_FRAC_EQ_##wc(X, Y) \
|
|
&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Main square root routine. The input value should be cooked.
|
|
*/
|
|
|
|
#define _FP_SQRT(fs, wc, R, X) \
|
|
do { \
|
|
_FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \
|
|
_FP_W_TYPE q; \
|
|
switch (X##_c) \
|
|
{ \
|
|
case FP_CLS_NAN: \
|
|
R##_s = 0; \
|
|
R##_c = FP_CLS_NAN; \
|
|
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
|
|
break; \
|
|
case FP_CLS_INF: \
|
|
if (X##_s) \
|
|
{ \
|
|
R##_s = 0; \
|
|
R##_c = FP_CLS_NAN; /* sNAN */ \
|
|
} \
|
|
else \
|
|
{ \
|
|
R##_s = 0; \
|
|
R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
|
|
} \
|
|
break; \
|
|
case FP_CLS_ZERO: \
|
|
R##_s = X##_s; \
|
|
R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
|
|
break; \
|
|
case FP_CLS_NORMAL: \
|
|
R##_s = 0; \
|
|
if (X##_s) \
|
|
{ \
|
|
R##_c = FP_CLS_NAN; /* sNAN */ \
|
|
break; \
|
|
} \
|
|
R##_c = FP_CLS_NORMAL; \
|
|
if (X##_e & 1) \
|
|
_FP_FRAC_SLL_##wc(X, 1); \
|
|
R##_e = X##_e >> 1; \
|
|
_FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \
|
|
_FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \
|
|
q = _FP_OVERFLOW_##fs; \
|
|
_FP_FRAC_SLL_##wc(X, 1); \
|
|
_FP_SQRT_MEAT_##wc(R, S, T, X, q); \
|
|
_FP_FRAC_SRL_##wc(R, 1); \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Convert from FP to integer
|
|
*/
|
|
|
|
/* "When a NaN, infinity, large positive argument >= 2147483648.0, or
|
|
* large negative argument <= -2147483649.0 is converted to an integer,
|
|
* the invalid_current bit...should be set and fp_exception_IEEE_754 should
|
|
* be raised. If the floating point invalid trap is disabled, no trap occurs
|
|
* and a numerical result is generated: if the sign bit of the operand
|
|
* is 0, the result is 2147483647; if the sign bit of the operand is 1,
|
|
* the result is -2147483648."
|
|
* Similarly for conversion to extended ints, except that the boundaries
|
|
* are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and
|
|
* -2^63 for s=1.
|
|
* -- SPARC Architecture Manual V9, Appendix B, which specifies how
|
|
* SPARCs resolve implementation dependencies in the IEEE-754 spec.
|
|
* I don't believe that the code below follows this. I'm not even sure
|
|
* it's right!
|
|
* It doesn't cope with needing to convert to an n bit integer when there
|
|
* is no n bit integer type. Fortunately gcc provides long long so this
|
|
* isn't a problem for sparc32.
|
|
* I have, however, fixed its NaN handling to conform as above.
|
|
* -- PMM 02/1998
|
|
* NB: rsigned is not 'is r declared signed?' but 'should the value stored
|
|
* in r be signed or unsigned?'. r is always(?) declared unsigned.
|
|
* Comments below are mine, BTW -- PMM
|
|
*/
|
|
#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
|
|
do { \
|
|
switch (X##_c) \
|
|
{ \
|
|
case FP_CLS_NORMAL: \
|
|
if (X##_e < 0) \
|
|
{ \
|
|
/* case FP_CLS_NAN: see above! */ \
|
|
case FP_CLS_ZERO: \
|
|
r = 0; \
|
|
} \
|
|
else if (X##_e >= rsize - (rsigned != 0)) \
|
|
{ /* overflow */ \
|
|
case FP_CLS_NAN: \
|
|
case FP_CLS_INF: \
|
|
if (rsigned) \
|
|
{ \
|
|
r = 1; \
|
|
r <<= rsize - 1; \
|
|
r -= 1 - X##_s; \
|
|
} \
|
|
else \
|
|
{ \
|
|
r = 0; \
|
|
if (!X##_s) \
|
|
r = ~r; \
|
|
} \
|
|
} \
|
|
else \
|
|
{ \
|
|
if (_FP_W_TYPE_SIZE*wc < rsize) \
|
|
{ \
|
|
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
|
|
r <<= X##_e - _FP_WFRACBITS_##fs; \
|
|
} \
|
|
else \
|
|
{ \
|
|
if (X##_e >= _FP_WFRACBITS_##fs) \
|
|
_FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\
|
|
else \
|
|
_FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\
|
|
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
|
|
} \
|
|
if (rsigned && X##_s) \
|
|
r = -r; \
|
|
} \
|
|
break; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
|
|
do { \
|
|
if (r) \
|
|
{ \
|
|
X##_c = FP_CLS_NORMAL; \
|
|
\
|
|
if ((X##_s = (r < 0))) \
|
|
r = -r; \
|
|
/* Note that `r' is now considered unsigned, so we don't have \
|
|
to worry about the single signed overflow case. */ \
|
|
\
|
|
if (rsize <= _FP_W_TYPE_SIZE) \
|
|
__FP_CLZ(X##_e, r); \
|
|
else \
|
|
__FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), \
|
|
(_FP_W_TYPE)r); \
|
|
if (rsize < _FP_W_TYPE_SIZE) \
|
|
X##_e -= (_FP_W_TYPE_SIZE - rsize); \
|
|
X##_e = rsize - X##_e - 1; \
|
|
\
|
|
if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \
|
|
__FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize); \
|
|
r &= ~((_FP_W_TYPE)1 << X##_e); \
|
|
_FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize); \
|
|
_FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \
|
|
} \
|
|
else \
|
|
{ \
|
|
X##_c = FP_CLS_ZERO, X##_s = 0; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
#define FP_CONV(dfs,sfs,dwc,swc,D,S) \
|
|
do { \
|
|
_FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \
|
|
D##_e = S##_e; \
|
|
D##_c = S##_c; \
|
|
D##_s = S##_s; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Helper primitives.
|
|
*/
|
|
|
|
/* Count leading zeros in a word. */
|
|
|
|
#ifndef __FP_CLZ
|
|
#if _FP_W_TYPE_SIZE < 64
|
|
/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
|
|
#define __FP_CLZ(r, x) \
|
|
do { \
|
|
_FP_W_TYPE _t = (x); \
|
|
r = _FP_W_TYPE_SIZE - 1; \
|
|
if (_t > 0xffff) r -= 16; \
|
|
if (_t > 0xffff) _t >>= 16; \
|
|
if (_t > 0xff) r -= 8; \
|
|
if (_t > 0xff) _t >>= 8; \
|
|
if (_t & 0xf0) r -= 4; \
|
|
if (_t & 0xf0) _t >>= 4; \
|
|
if (_t & 0xc) r -= 2; \
|
|
if (_t & 0xc) _t >>= 2; \
|
|
if (_t & 0x2) r -= 1; \
|
|
} while (0)
|
|
#else /* not _FP_W_TYPE_SIZE < 64 */
|
|
#define __FP_CLZ(r, x) \
|
|
do { \
|
|
_FP_W_TYPE _t = (x); \
|
|
r = _FP_W_TYPE_SIZE - 1; \
|
|
if (_t > 0xffffffff) r -= 32; \
|
|
if (_t > 0xffffffff) _t >>= 32; \
|
|
if (_t > 0xffff) r -= 16; \
|
|
if (_t > 0xffff) _t >>= 16; \
|
|
if (_t > 0xff) r -= 8; \
|
|
if (_t > 0xff) _t >>= 8; \
|
|
if (_t & 0xf0) r -= 4; \
|
|
if (_t & 0xf0) _t >>= 4; \
|
|
if (_t & 0xc) r -= 2; \
|
|
if (_t & 0xc) _t >>= 2; \
|
|
if (_t & 0x2) r -= 1; \
|
|
} while (0)
|
|
#endif /* not _FP_W_TYPE_SIZE < 64 */
|
|
#endif /* ndef __FP_CLZ */
|
|
|
|
#define _FP_DIV_HELP_imm(q, r, n, d) \
|
|
do { \
|
|
q = n / d, r = n % d; \
|
|
} while (0)
|
|
|