mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 01:51:42 +00:00
c1221321b7
It is currently not possible for various wait_on_bit functions to implement a timeout. While the "action" function that is called to do the waiting could certainly use schedule_timeout(), there is no way to carry forward the remaining timeout after a false wake-up. As false-wakeups a clearly possible at least due to possible hash collisions in bit_waitqueue(), this is a real problem. The 'action' function is currently passed a pointer to the word containing the bit being waited on. No current action functions use this pointer. So changing it to something else will be a little noisy but will have no immediate effect. This patch changes the 'action' function to take a pointer to the "struct wait_bit_key", which contains a pointer to the word containing the bit so nothing is really lost. It also adds a 'private' field to "struct wait_bit_key", which is initialized to zero. An action function can now implement a timeout with something like static int timed_out_waiter(struct wait_bit_key *key) { unsigned long waited; if (key->private == 0) { key->private = jiffies; if (key->private == 0) key->private -= 1; } waited = jiffies - key->private; if (waited > 10 * HZ) return -EAGAIN; schedule_timeout(waited - 10 * HZ); return 0; } If any other need for context in a waiter were found it would be easy to use ->private for some other purpose, or even extend "struct wait_bit_key". My particular need is to support timeouts in nfs_release_page() to avoid deadlocks with loopback mounted NFS. While wait_on_bit_timeout() would be a cleaner interface, it will not meet my need. I need the timeout to be sensitive to the state of the connection with the server, which could change. So I need to use an 'action' interface. Signed-off-by: NeilBrown <neilb@suse.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steve French <sfrench@samba.org> Cc: David Howells <dhowells@redhat.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20140707051604.28027.41257.stgit@notabene.brown Signed-off-by: Ingo Molnar <mingo@kernel.org>
523 lines
15 KiB
C
523 lines
15 KiB
C
/*
|
|
* Generic waiting primitives.
|
|
*
|
|
* (C) 2004 Nadia Yvette Chambers, Oracle
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/hash.h>
|
|
|
|
void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
|
|
{
|
|
spin_lock_init(&q->lock);
|
|
lockdep_set_class_and_name(&q->lock, key, name);
|
|
INIT_LIST_HEAD(&q->task_list);
|
|
}
|
|
|
|
EXPORT_SYMBOL(__init_waitqueue_head);
|
|
|
|
void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
|
|
{
|
|
unsigned long flags;
|
|
|
|
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
__add_wait_queue(q, wait);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(add_wait_queue);
|
|
|
|
void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
|
|
{
|
|
unsigned long flags;
|
|
|
|
wait->flags |= WQ_FLAG_EXCLUSIVE;
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
__add_wait_queue_tail(q, wait);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(add_wait_queue_exclusive);
|
|
|
|
void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
__remove_wait_queue(q, wait);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(remove_wait_queue);
|
|
|
|
|
|
/*
|
|
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
|
|
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
|
|
* number) then we wake all the non-exclusive tasks and one exclusive task.
|
|
*
|
|
* There are circumstances in which we can try to wake a task which has already
|
|
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
|
|
* zero in this (rare) case, and we handle it by continuing to scan the queue.
|
|
*/
|
|
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
|
|
int nr_exclusive, int wake_flags, void *key)
|
|
{
|
|
wait_queue_t *curr, *next;
|
|
|
|
list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
|
|
unsigned flags = curr->flags;
|
|
|
|
if (curr->func(curr, mode, wake_flags, key) &&
|
|
(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __wake_up - wake up threads blocked on a waitqueue.
|
|
* @q: the waitqueue
|
|
* @mode: which threads
|
|
* @nr_exclusive: how many wake-one or wake-many threads to wake up
|
|
* @key: is directly passed to the wakeup function
|
|
*
|
|
* It may be assumed that this function implies a write memory barrier before
|
|
* changing the task state if and only if any tasks are woken up.
|
|
*/
|
|
void __wake_up(wait_queue_head_t *q, unsigned int mode,
|
|
int nr_exclusive, void *key)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
__wake_up_common(q, mode, nr_exclusive, 0, key);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(__wake_up);
|
|
|
|
/*
|
|
* Same as __wake_up but called with the spinlock in wait_queue_head_t held.
|
|
*/
|
|
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
|
|
{
|
|
__wake_up_common(q, mode, nr, 0, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__wake_up_locked);
|
|
|
|
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
|
|
{
|
|
__wake_up_common(q, mode, 1, 0, key);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
|
|
|
|
/**
|
|
* __wake_up_sync_key - wake up threads blocked on a waitqueue.
|
|
* @q: the waitqueue
|
|
* @mode: which threads
|
|
* @nr_exclusive: how many wake-one or wake-many threads to wake up
|
|
* @key: opaque value to be passed to wakeup targets
|
|
*
|
|
* The sync wakeup differs that the waker knows that it will schedule
|
|
* away soon, so while the target thread will be woken up, it will not
|
|
* be migrated to another CPU - ie. the two threads are 'synchronized'
|
|
* with each other. This can prevent needless bouncing between CPUs.
|
|
*
|
|
* On UP it can prevent extra preemption.
|
|
*
|
|
* It may be assumed that this function implies a write memory barrier before
|
|
* changing the task state if and only if any tasks are woken up.
|
|
*/
|
|
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
|
|
int nr_exclusive, void *key)
|
|
{
|
|
unsigned long flags;
|
|
int wake_flags = 1; /* XXX WF_SYNC */
|
|
|
|
if (unlikely(!q))
|
|
return;
|
|
|
|
if (unlikely(nr_exclusive != 1))
|
|
wake_flags = 0;
|
|
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__wake_up_sync_key);
|
|
|
|
/*
|
|
* __wake_up_sync - see __wake_up_sync_key()
|
|
*/
|
|
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
|
|
{
|
|
__wake_up_sync_key(q, mode, nr_exclusive, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
|
|
|
|
/*
|
|
* Note: we use "set_current_state()" _after_ the wait-queue add,
|
|
* because we need a memory barrier there on SMP, so that any
|
|
* wake-function that tests for the wait-queue being active
|
|
* will be guaranteed to see waitqueue addition _or_ subsequent
|
|
* tests in this thread will see the wakeup having taken place.
|
|
*
|
|
* The spin_unlock() itself is semi-permeable and only protects
|
|
* one way (it only protects stuff inside the critical region and
|
|
* stops them from bleeding out - it would still allow subsequent
|
|
* loads to move into the critical region).
|
|
*/
|
|
void
|
|
prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
|
|
{
|
|
unsigned long flags;
|
|
|
|
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
if (list_empty(&wait->task_list))
|
|
__add_wait_queue(q, wait);
|
|
set_current_state(state);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(prepare_to_wait);
|
|
|
|
void
|
|
prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
|
|
{
|
|
unsigned long flags;
|
|
|
|
wait->flags |= WQ_FLAG_EXCLUSIVE;
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
if (list_empty(&wait->task_list))
|
|
__add_wait_queue_tail(q, wait);
|
|
set_current_state(state);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(prepare_to_wait_exclusive);
|
|
|
|
long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (signal_pending_state(state, current))
|
|
return -ERESTARTSYS;
|
|
|
|
wait->private = current;
|
|
wait->func = autoremove_wake_function;
|
|
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
if (list_empty(&wait->task_list)) {
|
|
if (wait->flags & WQ_FLAG_EXCLUSIVE)
|
|
__add_wait_queue_tail(q, wait);
|
|
else
|
|
__add_wait_queue(q, wait);
|
|
}
|
|
set_current_state(state);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(prepare_to_wait_event);
|
|
|
|
/**
|
|
* finish_wait - clean up after waiting in a queue
|
|
* @q: waitqueue waited on
|
|
* @wait: wait descriptor
|
|
*
|
|
* Sets current thread back to running state and removes
|
|
* the wait descriptor from the given waitqueue if still
|
|
* queued.
|
|
*/
|
|
void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
|
|
{
|
|
unsigned long flags;
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
/*
|
|
* We can check for list emptiness outside the lock
|
|
* IFF:
|
|
* - we use the "careful" check that verifies both
|
|
* the next and prev pointers, so that there cannot
|
|
* be any half-pending updates in progress on other
|
|
* CPU's that we haven't seen yet (and that might
|
|
* still change the stack area.
|
|
* and
|
|
* - all other users take the lock (ie we can only
|
|
* have _one_ other CPU that looks at or modifies
|
|
* the list).
|
|
*/
|
|
if (!list_empty_careful(&wait->task_list)) {
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
list_del_init(&wait->task_list);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(finish_wait);
|
|
|
|
/**
|
|
* abort_exclusive_wait - abort exclusive waiting in a queue
|
|
* @q: waitqueue waited on
|
|
* @wait: wait descriptor
|
|
* @mode: runstate of the waiter to be woken
|
|
* @key: key to identify a wait bit queue or %NULL
|
|
*
|
|
* Sets current thread back to running state and removes
|
|
* the wait descriptor from the given waitqueue if still
|
|
* queued.
|
|
*
|
|
* Wakes up the next waiter if the caller is concurrently
|
|
* woken up through the queue.
|
|
*
|
|
* This prevents waiter starvation where an exclusive waiter
|
|
* aborts and is woken up concurrently and no one wakes up
|
|
* the next waiter.
|
|
*/
|
|
void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
|
|
unsigned int mode, void *key)
|
|
{
|
|
unsigned long flags;
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
if (!list_empty(&wait->task_list))
|
|
list_del_init(&wait->task_list);
|
|
else if (waitqueue_active(q))
|
|
__wake_up_locked_key(q, mode, key);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(abort_exclusive_wait);
|
|
|
|
int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
|
|
{
|
|
int ret = default_wake_function(wait, mode, sync, key);
|
|
|
|
if (ret)
|
|
list_del_init(&wait->task_list);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(autoremove_wake_function);
|
|
|
|
int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
|
|
{
|
|
struct wait_bit_key *key = arg;
|
|
struct wait_bit_queue *wait_bit
|
|
= container_of(wait, struct wait_bit_queue, wait);
|
|
|
|
if (wait_bit->key.flags != key->flags ||
|
|
wait_bit->key.bit_nr != key->bit_nr ||
|
|
test_bit(key->bit_nr, key->flags))
|
|
return 0;
|
|
else
|
|
return autoremove_wake_function(wait, mode, sync, key);
|
|
}
|
|
EXPORT_SYMBOL(wake_bit_function);
|
|
|
|
/*
|
|
* To allow interruptible waiting and asynchronous (i.e. nonblocking)
|
|
* waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
|
|
* permitted return codes. Nonzero return codes halt waiting and return.
|
|
*/
|
|
int __sched
|
|
__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
|
|
wait_bit_action_f *action, unsigned mode)
|
|
{
|
|
int ret = 0;
|
|
|
|
do {
|
|
prepare_to_wait(wq, &q->wait, mode);
|
|
if (test_bit(q->key.bit_nr, q->key.flags))
|
|
ret = (*action)(&q->key);
|
|
} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
|
|
finish_wait(wq, &q->wait);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__wait_on_bit);
|
|
|
|
int __sched out_of_line_wait_on_bit(void *word, int bit,
|
|
wait_bit_action_f *action, unsigned mode)
|
|
{
|
|
wait_queue_head_t *wq = bit_waitqueue(word, bit);
|
|
DEFINE_WAIT_BIT(wait, word, bit);
|
|
|
|
return __wait_on_bit(wq, &wait, action, mode);
|
|
}
|
|
EXPORT_SYMBOL(out_of_line_wait_on_bit);
|
|
|
|
int __sched
|
|
__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
|
|
wait_bit_action_f *action, unsigned mode)
|
|
{
|
|
do {
|
|
int ret;
|
|
|
|
prepare_to_wait_exclusive(wq, &q->wait, mode);
|
|
if (!test_bit(q->key.bit_nr, q->key.flags))
|
|
continue;
|
|
ret = action(&q->key);
|
|
if (!ret)
|
|
continue;
|
|
abort_exclusive_wait(wq, &q->wait, mode, &q->key);
|
|
return ret;
|
|
} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
|
|
finish_wait(wq, &q->wait);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(__wait_on_bit_lock);
|
|
|
|
int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
|
|
wait_bit_action_f *action, unsigned mode)
|
|
{
|
|
wait_queue_head_t *wq = bit_waitqueue(word, bit);
|
|
DEFINE_WAIT_BIT(wait, word, bit);
|
|
|
|
return __wait_on_bit_lock(wq, &wait, action, mode);
|
|
}
|
|
EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
|
|
|
|
void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
|
|
{
|
|
struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
|
|
if (waitqueue_active(wq))
|
|
__wake_up(wq, TASK_NORMAL, 1, &key);
|
|
}
|
|
EXPORT_SYMBOL(__wake_up_bit);
|
|
|
|
/**
|
|
* wake_up_bit - wake up a waiter on a bit
|
|
* @word: the word being waited on, a kernel virtual address
|
|
* @bit: the bit of the word being waited on
|
|
*
|
|
* There is a standard hashed waitqueue table for generic use. This
|
|
* is the part of the hashtable's accessor API that wakes up waiters
|
|
* on a bit. For instance, if one were to have waiters on a bitflag,
|
|
* one would call wake_up_bit() after clearing the bit.
|
|
*
|
|
* In order for this to function properly, as it uses waitqueue_active()
|
|
* internally, some kind of memory barrier must be done prior to calling
|
|
* this. Typically, this will be smp_mb__after_atomic(), but in some
|
|
* cases where bitflags are manipulated non-atomically under a lock, one
|
|
* may need to use a less regular barrier, such fs/inode.c's smp_mb(),
|
|
* because spin_unlock() does not guarantee a memory barrier.
|
|
*/
|
|
void wake_up_bit(void *word, int bit)
|
|
{
|
|
__wake_up_bit(bit_waitqueue(word, bit), word, bit);
|
|
}
|
|
EXPORT_SYMBOL(wake_up_bit);
|
|
|
|
wait_queue_head_t *bit_waitqueue(void *word, int bit)
|
|
{
|
|
const int shift = BITS_PER_LONG == 32 ? 5 : 6;
|
|
const struct zone *zone = page_zone(virt_to_page(word));
|
|
unsigned long val = (unsigned long)word << shift | bit;
|
|
|
|
return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
|
|
}
|
|
EXPORT_SYMBOL(bit_waitqueue);
|
|
|
|
/*
|
|
* Manipulate the atomic_t address to produce a better bit waitqueue table hash
|
|
* index (we're keying off bit -1, but that would produce a horrible hash
|
|
* value).
|
|
*/
|
|
static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
|
|
{
|
|
if (BITS_PER_LONG == 64) {
|
|
unsigned long q = (unsigned long)p;
|
|
return bit_waitqueue((void *)(q & ~1), q & 1);
|
|
}
|
|
return bit_waitqueue(p, 0);
|
|
}
|
|
|
|
static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
|
|
void *arg)
|
|
{
|
|
struct wait_bit_key *key = arg;
|
|
struct wait_bit_queue *wait_bit
|
|
= container_of(wait, struct wait_bit_queue, wait);
|
|
atomic_t *val = key->flags;
|
|
|
|
if (wait_bit->key.flags != key->flags ||
|
|
wait_bit->key.bit_nr != key->bit_nr ||
|
|
atomic_read(val) != 0)
|
|
return 0;
|
|
return autoremove_wake_function(wait, mode, sync, key);
|
|
}
|
|
|
|
/*
|
|
* To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
|
|
* the actions of __wait_on_atomic_t() are permitted return codes. Nonzero
|
|
* return codes halt waiting and return.
|
|
*/
|
|
static __sched
|
|
int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
|
|
int (*action)(atomic_t *), unsigned mode)
|
|
{
|
|
atomic_t *val;
|
|
int ret = 0;
|
|
|
|
do {
|
|
prepare_to_wait(wq, &q->wait, mode);
|
|
val = q->key.flags;
|
|
if (atomic_read(val) == 0)
|
|
break;
|
|
ret = (*action)(val);
|
|
} while (!ret && atomic_read(val) != 0);
|
|
finish_wait(wq, &q->wait);
|
|
return ret;
|
|
}
|
|
|
|
#define DEFINE_WAIT_ATOMIC_T(name, p) \
|
|
struct wait_bit_queue name = { \
|
|
.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \
|
|
.wait = { \
|
|
.private = current, \
|
|
.func = wake_atomic_t_function, \
|
|
.task_list = \
|
|
LIST_HEAD_INIT((name).wait.task_list), \
|
|
}, \
|
|
}
|
|
|
|
__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
|
|
unsigned mode)
|
|
{
|
|
wait_queue_head_t *wq = atomic_t_waitqueue(p);
|
|
DEFINE_WAIT_ATOMIC_T(wait, p);
|
|
|
|
return __wait_on_atomic_t(wq, &wait, action, mode);
|
|
}
|
|
EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
|
|
|
|
/**
|
|
* wake_up_atomic_t - Wake up a waiter on a atomic_t
|
|
* @p: The atomic_t being waited on, a kernel virtual address
|
|
*
|
|
* Wake up anyone waiting for the atomic_t to go to zero.
|
|
*
|
|
* Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
|
|
* check is done by the waiter's wake function, not the by the waker itself).
|
|
*/
|
|
void wake_up_atomic_t(atomic_t *p)
|
|
{
|
|
__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
|
|
}
|
|
EXPORT_SYMBOL(wake_up_atomic_t);
|
|
|
|
__sched int bit_wait(struct wait_bit_key *word)
|
|
{
|
|
if (signal_pending_state(current->state, current))
|
|
return 1;
|
|
schedule();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(bit_wait);
|
|
|
|
__sched int bit_wait_io(struct wait_bit_key *word)
|
|
{
|
|
if (signal_pending_state(current->state, current))
|
|
return 1;
|
|
io_schedule();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(bit_wait_io);
|