mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-01 06:42:31 +00:00
c34cc2487d
Use common clk api to get spi clock. Signed-off-by: Scott Jiang <scott.jiang.linux@gmail.com> Signed-off-by: Mark Brown <broonie@linaro.org>
987 lines
25 KiB
C
987 lines
25 KiB
C
/*
|
|
* Analog Devices SPI3 controller driver
|
|
*
|
|
* Copyright (c) 2014 Analog Devices Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/adi_spi3.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/dma.h>
|
|
#include <asm/portmux.h>
|
|
|
|
enum adi_spi_state {
|
|
START_STATE,
|
|
RUNNING_STATE,
|
|
DONE_STATE,
|
|
ERROR_STATE
|
|
};
|
|
|
|
struct adi_spi_master;
|
|
|
|
struct adi_spi_transfer_ops {
|
|
void (*write) (struct adi_spi_master *);
|
|
void (*read) (struct adi_spi_master *);
|
|
void (*duplex) (struct adi_spi_master *);
|
|
};
|
|
|
|
/* runtime info for spi master */
|
|
struct adi_spi_master {
|
|
/* SPI framework hookup */
|
|
struct spi_master *master;
|
|
|
|
/* Regs base of SPI controller */
|
|
struct adi_spi_regs __iomem *regs;
|
|
|
|
/* Pin request list */
|
|
u16 *pin_req;
|
|
|
|
/* Message Transfer pump */
|
|
struct tasklet_struct pump_transfers;
|
|
|
|
/* Current message transfer state info */
|
|
struct spi_message *cur_msg;
|
|
struct spi_transfer *cur_transfer;
|
|
struct adi_spi_device *cur_chip;
|
|
unsigned transfer_len;
|
|
|
|
/* transfer buffer */
|
|
void *tx;
|
|
void *tx_end;
|
|
void *rx;
|
|
void *rx_end;
|
|
|
|
/* dma info */
|
|
unsigned int tx_dma;
|
|
unsigned int rx_dma;
|
|
dma_addr_t tx_dma_addr;
|
|
dma_addr_t rx_dma_addr;
|
|
unsigned long dummy_buffer; /* used in unidirectional transfer */
|
|
unsigned long tx_dma_size;
|
|
unsigned long rx_dma_size;
|
|
int tx_num;
|
|
int rx_num;
|
|
|
|
/* store register value for suspend/resume */
|
|
u32 control;
|
|
u32 ssel;
|
|
|
|
unsigned long sclk;
|
|
enum adi_spi_state state;
|
|
|
|
const struct adi_spi_transfer_ops *ops;
|
|
};
|
|
|
|
struct adi_spi_device {
|
|
u32 control;
|
|
u32 clock;
|
|
u32 ssel;
|
|
|
|
u8 cs;
|
|
u16 cs_chg_udelay; /* Some devices require > 255usec delay */
|
|
u32 cs_gpio;
|
|
u32 tx_dummy_val; /* tx value for rx only transfer */
|
|
bool enable_dma;
|
|
const struct adi_spi_transfer_ops *ops;
|
|
};
|
|
|
|
static void adi_spi_enable(struct adi_spi_master *drv_data)
|
|
{
|
|
u32 ctl;
|
|
|
|
ctl = ioread32(&drv_data->regs->control);
|
|
ctl |= SPI_CTL_EN;
|
|
iowrite32(ctl, &drv_data->regs->control);
|
|
}
|
|
|
|
static void adi_spi_disable(struct adi_spi_master *drv_data)
|
|
{
|
|
u32 ctl;
|
|
|
|
ctl = ioread32(&drv_data->regs->control);
|
|
ctl &= ~SPI_CTL_EN;
|
|
iowrite32(ctl, &drv_data->regs->control);
|
|
}
|
|
|
|
/* Caculate the SPI_CLOCK register value based on input HZ */
|
|
static u32 hz_to_spi_clock(u32 sclk, u32 speed_hz)
|
|
{
|
|
u32 spi_clock = sclk / speed_hz;
|
|
|
|
if (spi_clock)
|
|
spi_clock--;
|
|
return spi_clock;
|
|
}
|
|
|
|
static int adi_spi_flush(struct adi_spi_master *drv_data)
|
|
{
|
|
unsigned long limit = loops_per_jiffy << 1;
|
|
|
|
/* wait for stop and clear stat */
|
|
while (!(ioread32(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit)
|
|
cpu_relax();
|
|
|
|
iowrite32(0xFFFFFFFF, &drv_data->regs->status);
|
|
|
|
return limit;
|
|
}
|
|
|
|
/* Chip select operation functions for cs_change flag */
|
|
static void adi_spi_cs_active(struct adi_spi_master *drv_data, struct adi_spi_device *chip)
|
|
{
|
|
if (likely(chip->cs < MAX_CTRL_CS)) {
|
|
u32 reg;
|
|
reg = ioread32(&drv_data->regs->ssel);
|
|
reg &= ~chip->ssel;
|
|
iowrite32(reg, &drv_data->regs->ssel);
|
|
} else {
|
|
gpio_set_value(chip->cs_gpio, 0);
|
|
}
|
|
}
|
|
|
|
static void adi_spi_cs_deactive(struct adi_spi_master *drv_data,
|
|
struct adi_spi_device *chip)
|
|
{
|
|
if (likely(chip->cs < MAX_CTRL_CS)) {
|
|
u32 reg;
|
|
reg = ioread32(&drv_data->regs->ssel);
|
|
reg |= chip->ssel;
|
|
iowrite32(reg, &drv_data->regs->ssel);
|
|
} else {
|
|
gpio_set_value(chip->cs_gpio, 1);
|
|
}
|
|
|
|
/* Move delay here for consistency */
|
|
if (chip->cs_chg_udelay)
|
|
udelay(chip->cs_chg_udelay);
|
|
}
|
|
|
|
/* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
|
|
static inline void adi_spi_cs_enable(struct adi_spi_master *drv_data,
|
|
struct adi_spi_device *chip)
|
|
{
|
|
if (chip->cs < MAX_CTRL_CS) {
|
|
u32 reg;
|
|
reg = ioread32(&drv_data->regs->ssel);
|
|
reg |= chip->ssel >> 8;
|
|
iowrite32(reg, &drv_data->regs->ssel);
|
|
}
|
|
}
|
|
|
|
static inline void adi_spi_cs_disable(struct adi_spi_master *drv_data,
|
|
struct adi_spi_device *chip)
|
|
{
|
|
if (chip->cs < MAX_CTRL_CS) {
|
|
u32 reg;
|
|
reg = ioread32(&drv_data->regs->ssel);
|
|
reg &= ~(chip->ssel >> 8);
|
|
iowrite32(reg, &drv_data->regs->ssel);
|
|
}
|
|
}
|
|
|
|
/* stop controller and re-config current chip*/
|
|
static void adi_spi_restore_state(struct adi_spi_master *drv_data)
|
|
{
|
|
struct adi_spi_device *chip = drv_data->cur_chip;
|
|
|
|
/* Clear status and disable clock */
|
|
iowrite32(0xFFFFFFFF, &drv_data->regs->status);
|
|
iowrite32(0x0, &drv_data->regs->rx_control);
|
|
iowrite32(0x0, &drv_data->regs->tx_control);
|
|
adi_spi_disable(drv_data);
|
|
|
|
/* Load the registers */
|
|
iowrite32(chip->control, &drv_data->regs->control);
|
|
iowrite32(chip->clock, &drv_data->regs->clock);
|
|
|
|
adi_spi_enable(drv_data);
|
|
drv_data->tx_num = drv_data->rx_num = 0;
|
|
/* we always choose tx transfer initiate */
|
|
iowrite32(SPI_RXCTL_REN, &drv_data->regs->rx_control);
|
|
iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &drv_data->regs->tx_control);
|
|
adi_spi_cs_active(drv_data, chip);
|
|
}
|
|
|
|
/* discard invalid rx data and empty rfifo */
|
|
static inline void dummy_read(struct adi_spi_master *drv_data)
|
|
{
|
|
while (!(ioread32(&drv_data->regs->status) & SPI_STAT_RFE))
|
|
ioread32(&drv_data->regs->rfifo);
|
|
}
|
|
|
|
static void adi_spi_u8_write(struct adi_spi_master *drv_data)
|
|
{
|
|
dummy_read(drv_data);
|
|
while (drv_data->tx < drv_data->tx_end) {
|
|
iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
|
|
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
|
|
cpu_relax();
|
|
ioread32(&drv_data->regs->rfifo);
|
|
}
|
|
}
|
|
|
|
static void adi_spi_u8_read(struct adi_spi_master *drv_data)
|
|
{
|
|
u32 tx_val = drv_data->cur_chip->tx_dummy_val;
|
|
|
|
dummy_read(drv_data);
|
|
while (drv_data->rx < drv_data->rx_end) {
|
|
iowrite32(tx_val, &drv_data->regs->tfifo);
|
|
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
|
|
cpu_relax();
|
|
*(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
|
|
}
|
|
}
|
|
|
|
static void adi_spi_u8_duplex(struct adi_spi_master *drv_data)
|
|
{
|
|
dummy_read(drv_data);
|
|
while (drv_data->rx < drv_data->rx_end) {
|
|
iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
|
|
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
|
|
cpu_relax();
|
|
*(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
|
|
}
|
|
}
|
|
|
|
static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u8 = {
|
|
.write = adi_spi_u8_write,
|
|
.read = adi_spi_u8_read,
|
|
.duplex = adi_spi_u8_duplex,
|
|
};
|
|
|
|
static void adi_spi_u16_write(struct adi_spi_master *drv_data)
|
|
{
|
|
dummy_read(drv_data);
|
|
while (drv_data->tx < drv_data->tx_end) {
|
|
iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
|
|
drv_data->tx += 2;
|
|
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
|
|
cpu_relax();
|
|
ioread32(&drv_data->regs->rfifo);
|
|
}
|
|
}
|
|
|
|
static void adi_spi_u16_read(struct adi_spi_master *drv_data)
|
|
{
|
|
u32 tx_val = drv_data->cur_chip->tx_dummy_val;
|
|
|
|
dummy_read(drv_data);
|
|
while (drv_data->rx < drv_data->rx_end) {
|
|
iowrite32(tx_val, &drv_data->regs->tfifo);
|
|
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
|
|
cpu_relax();
|
|
*(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
|
|
drv_data->rx += 2;
|
|
}
|
|
}
|
|
|
|
static void adi_spi_u16_duplex(struct adi_spi_master *drv_data)
|
|
{
|
|
dummy_read(drv_data);
|
|
while (drv_data->rx < drv_data->rx_end) {
|
|
iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
|
|
drv_data->tx += 2;
|
|
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
|
|
cpu_relax();
|
|
*(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
|
|
drv_data->rx += 2;
|
|
}
|
|
}
|
|
|
|
static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u16 = {
|
|
.write = adi_spi_u16_write,
|
|
.read = adi_spi_u16_read,
|
|
.duplex = adi_spi_u16_duplex,
|
|
};
|
|
|
|
static void adi_spi_u32_write(struct adi_spi_master *drv_data)
|
|
{
|
|
dummy_read(drv_data);
|
|
while (drv_data->tx < drv_data->tx_end) {
|
|
iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
|
|
drv_data->tx += 4;
|
|
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
|
|
cpu_relax();
|
|
ioread32(&drv_data->regs->rfifo);
|
|
}
|
|
}
|
|
|
|
static void adi_spi_u32_read(struct adi_spi_master *drv_data)
|
|
{
|
|
u32 tx_val = drv_data->cur_chip->tx_dummy_val;
|
|
|
|
dummy_read(drv_data);
|
|
while (drv_data->rx < drv_data->rx_end) {
|
|
iowrite32(tx_val, &drv_data->regs->tfifo);
|
|
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
|
|
cpu_relax();
|
|
*(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
|
|
drv_data->rx += 4;
|
|
}
|
|
}
|
|
|
|
static void adi_spi_u32_duplex(struct adi_spi_master *drv_data)
|
|
{
|
|
dummy_read(drv_data);
|
|
while (drv_data->rx < drv_data->rx_end) {
|
|
iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
|
|
drv_data->tx += 4;
|
|
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
|
|
cpu_relax();
|
|
*(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
|
|
drv_data->rx += 4;
|
|
}
|
|
}
|
|
|
|
static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u32 = {
|
|
.write = adi_spi_u32_write,
|
|
.read = adi_spi_u32_read,
|
|
.duplex = adi_spi_u32_duplex,
|
|
};
|
|
|
|
|
|
/* test if there is more transfer to be done */
|
|
static void adi_spi_next_transfer(struct adi_spi_master *drv)
|
|
{
|
|
struct spi_message *msg = drv->cur_msg;
|
|
struct spi_transfer *t = drv->cur_transfer;
|
|
|
|
/* Move to next transfer */
|
|
if (t->transfer_list.next != &msg->transfers) {
|
|
drv->cur_transfer = list_entry(t->transfer_list.next,
|
|
struct spi_transfer, transfer_list);
|
|
drv->state = RUNNING_STATE;
|
|
} else {
|
|
drv->state = DONE_STATE;
|
|
drv->cur_transfer = NULL;
|
|
}
|
|
}
|
|
|
|
static void adi_spi_giveback(struct adi_spi_master *drv_data)
|
|
{
|
|
struct adi_spi_device *chip = drv_data->cur_chip;
|
|
|
|
adi_spi_cs_deactive(drv_data, chip);
|
|
spi_finalize_current_message(drv_data->master);
|
|
}
|
|
|
|
static int adi_spi_setup_transfer(struct adi_spi_master *drv)
|
|
{
|
|
struct spi_transfer *t = drv->cur_transfer;
|
|
u32 cr, cr_width;
|
|
|
|
if (t->tx_buf) {
|
|
drv->tx = (void *)t->tx_buf;
|
|
drv->tx_end = drv->tx + t->len;
|
|
} else {
|
|
drv->tx = NULL;
|
|
}
|
|
|
|
if (t->rx_buf) {
|
|
drv->rx = t->rx_buf;
|
|
drv->rx_end = drv->rx + t->len;
|
|
} else {
|
|
drv->rx = NULL;
|
|
}
|
|
|
|
drv->transfer_len = t->len;
|
|
|
|
/* bits per word setup */
|
|
switch (t->bits_per_word) {
|
|
case 8:
|
|
cr_width = SPI_CTL_SIZE08;
|
|
drv->ops = &adi_spi_transfer_ops_u8;
|
|
break;
|
|
case 16:
|
|
cr_width = SPI_CTL_SIZE16;
|
|
drv->ops = &adi_spi_transfer_ops_u16;
|
|
break;
|
|
case 32:
|
|
cr_width = SPI_CTL_SIZE32;
|
|
drv->ops = &adi_spi_transfer_ops_u32;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
cr = ioread32(&drv->regs->control) & ~SPI_CTL_SIZE;
|
|
cr |= cr_width;
|
|
iowrite32(cr, &drv->regs->control);
|
|
|
|
/* speed setup */
|
|
iowrite32(hz_to_spi_clock(drv->sclk, t->speed_hz), &drv->regs->clock);
|
|
return 0;
|
|
}
|
|
|
|
static int adi_spi_dma_xfer(struct adi_spi_master *drv_data)
|
|
{
|
|
struct spi_transfer *t = drv_data->cur_transfer;
|
|
struct spi_message *msg = drv_data->cur_msg;
|
|
struct adi_spi_device *chip = drv_data->cur_chip;
|
|
u32 dma_config;
|
|
unsigned long word_count, word_size;
|
|
void *tx_buf, *rx_buf;
|
|
|
|
switch (t->bits_per_word) {
|
|
case 8:
|
|
dma_config = WDSIZE_8 | PSIZE_8;
|
|
word_count = drv_data->transfer_len;
|
|
word_size = 1;
|
|
break;
|
|
case 16:
|
|
dma_config = WDSIZE_16 | PSIZE_16;
|
|
word_count = drv_data->transfer_len / 2;
|
|
word_size = 2;
|
|
break;
|
|
default:
|
|
dma_config = WDSIZE_32 | PSIZE_32;
|
|
word_count = drv_data->transfer_len / 4;
|
|
word_size = 4;
|
|
break;
|
|
}
|
|
|
|
if (!drv_data->rx) {
|
|
tx_buf = drv_data->tx;
|
|
rx_buf = &drv_data->dummy_buffer;
|
|
drv_data->tx_dma_size = drv_data->transfer_len;
|
|
drv_data->rx_dma_size = sizeof(drv_data->dummy_buffer);
|
|
set_dma_x_modify(drv_data->tx_dma, word_size);
|
|
set_dma_x_modify(drv_data->rx_dma, 0);
|
|
} else if (!drv_data->tx) {
|
|
drv_data->dummy_buffer = chip->tx_dummy_val;
|
|
tx_buf = &drv_data->dummy_buffer;
|
|
rx_buf = drv_data->rx;
|
|
drv_data->tx_dma_size = sizeof(drv_data->dummy_buffer);
|
|
drv_data->rx_dma_size = drv_data->transfer_len;
|
|
set_dma_x_modify(drv_data->tx_dma, 0);
|
|
set_dma_x_modify(drv_data->rx_dma, word_size);
|
|
} else {
|
|
tx_buf = drv_data->tx;
|
|
rx_buf = drv_data->rx;
|
|
drv_data->tx_dma_size = drv_data->rx_dma_size
|
|
= drv_data->transfer_len;
|
|
set_dma_x_modify(drv_data->tx_dma, word_size);
|
|
set_dma_x_modify(drv_data->rx_dma, word_size);
|
|
}
|
|
|
|
drv_data->tx_dma_addr = dma_map_single(&msg->spi->dev,
|
|
(void *)tx_buf,
|
|
drv_data->tx_dma_size,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(&msg->spi->dev,
|
|
drv_data->tx_dma_addr))
|
|
return -ENOMEM;
|
|
|
|
drv_data->rx_dma_addr = dma_map_single(&msg->spi->dev,
|
|
(void *)rx_buf,
|
|
drv_data->rx_dma_size,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(&msg->spi->dev,
|
|
drv_data->rx_dma_addr)) {
|
|
dma_unmap_single(&msg->spi->dev,
|
|
drv_data->tx_dma_addr,
|
|
drv_data->tx_dma_size,
|
|
DMA_TO_DEVICE);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dummy_read(drv_data);
|
|
set_dma_x_count(drv_data->tx_dma, word_count);
|
|
set_dma_x_count(drv_data->rx_dma, word_count);
|
|
set_dma_start_addr(drv_data->tx_dma, drv_data->tx_dma_addr);
|
|
set_dma_start_addr(drv_data->rx_dma, drv_data->rx_dma_addr);
|
|
dma_config |= DMAFLOW_STOP | RESTART | DI_EN;
|
|
set_dma_config(drv_data->tx_dma, dma_config);
|
|
set_dma_config(drv_data->rx_dma, dma_config | WNR);
|
|
enable_dma(drv_data->tx_dma);
|
|
enable_dma(drv_data->rx_dma);
|
|
|
|
iowrite32(SPI_RXCTL_REN | SPI_RXCTL_RDR_NE,
|
|
&drv_data->regs->rx_control);
|
|
iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF,
|
|
&drv_data->regs->tx_control);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int adi_spi_pio_xfer(struct adi_spi_master *drv_data)
|
|
{
|
|
struct spi_message *msg = drv_data->cur_msg;
|
|
|
|
if (!drv_data->rx) {
|
|
/* write only half duplex */
|
|
drv_data->ops->write(drv_data);
|
|
if (drv_data->tx != drv_data->tx_end)
|
|
return -EIO;
|
|
} else if (!drv_data->tx) {
|
|
/* read only half duplex */
|
|
drv_data->ops->read(drv_data);
|
|
if (drv_data->rx != drv_data->rx_end)
|
|
return -EIO;
|
|
} else {
|
|
/* full duplex mode */
|
|
drv_data->ops->duplex(drv_data);
|
|
if (drv_data->tx != drv_data->tx_end)
|
|
return -EIO;
|
|
}
|
|
|
|
if (!adi_spi_flush(drv_data))
|
|
return -EIO;
|
|
msg->actual_length += drv_data->transfer_len;
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
return 0;
|
|
}
|
|
|
|
static void adi_spi_pump_transfers(unsigned long data)
|
|
{
|
|
struct adi_spi_master *drv_data = (struct adi_spi_master *)data;
|
|
struct spi_message *msg = NULL;
|
|
struct spi_transfer *t = NULL;
|
|
struct adi_spi_device *chip = NULL;
|
|
int ret;
|
|
|
|
/* Get current state information */
|
|
msg = drv_data->cur_msg;
|
|
t = drv_data->cur_transfer;
|
|
chip = drv_data->cur_chip;
|
|
|
|
/* Handle for abort */
|
|
if (drv_data->state == ERROR_STATE) {
|
|
msg->status = -EIO;
|
|
adi_spi_giveback(drv_data);
|
|
return;
|
|
}
|
|
|
|
if (drv_data->state == RUNNING_STATE) {
|
|
if (t->delay_usecs)
|
|
udelay(t->delay_usecs);
|
|
if (t->cs_change)
|
|
adi_spi_cs_deactive(drv_data, chip);
|
|
adi_spi_next_transfer(drv_data);
|
|
t = drv_data->cur_transfer;
|
|
}
|
|
/* Handle end of message */
|
|
if (drv_data->state == DONE_STATE) {
|
|
msg->status = 0;
|
|
adi_spi_giveback(drv_data);
|
|
return;
|
|
}
|
|
|
|
if ((t->len == 0) || (t->tx_buf == NULL && t->rx_buf == NULL)) {
|
|
/* Schedule next transfer tasklet */
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
return;
|
|
}
|
|
|
|
ret = adi_spi_setup_transfer(drv_data);
|
|
if (ret) {
|
|
msg->status = ret;
|
|
adi_spi_giveback(drv_data);
|
|
}
|
|
|
|
iowrite32(0xFFFFFFFF, &drv_data->regs->status);
|
|
adi_spi_cs_active(drv_data, chip);
|
|
drv_data->state = RUNNING_STATE;
|
|
|
|
if (chip->enable_dma)
|
|
ret = adi_spi_dma_xfer(drv_data);
|
|
else
|
|
ret = adi_spi_pio_xfer(drv_data);
|
|
if (ret) {
|
|
msg->status = ret;
|
|
adi_spi_giveback(drv_data);
|
|
}
|
|
}
|
|
|
|
static int adi_spi_transfer_one_message(struct spi_master *master,
|
|
struct spi_message *m)
|
|
{
|
|
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
|
|
|
|
drv_data->cur_msg = m;
|
|
drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
|
|
adi_spi_restore_state(drv_data);
|
|
|
|
drv_data->state = START_STATE;
|
|
drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
|
|
struct spi_transfer, transfer_list);
|
|
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
return 0;
|
|
}
|
|
|
|
#define MAX_SPI_SSEL 7
|
|
|
|
static const u16 ssel[][MAX_SPI_SSEL] = {
|
|
{P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
|
|
P_SPI0_SSEL4, P_SPI0_SSEL5,
|
|
P_SPI0_SSEL6, P_SPI0_SSEL7},
|
|
|
|
{P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
|
|
P_SPI1_SSEL4, P_SPI1_SSEL5,
|
|
P_SPI1_SSEL6, P_SPI1_SSEL7},
|
|
|
|
{P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
|
|
P_SPI2_SSEL4, P_SPI2_SSEL5,
|
|
P_SPI2_SSEL6, P_SPI2_SSEL7},
|
|
};
|
|
|
|
static int adi_spi_setup(struct spi_device *spi)
|
|
{
|
|
struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
|
|
struct adi_spi_device *chip = spi_get_ctldata(spi);
|
|
u32 ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE;
|
|
int ret = -EINVAL;
|
|
|
|
if (!chip) {
|
|
struct adi_spi3_chip *chip_info = spi->controller_data;
|
|
|
|
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
|
|
if (!chip) {
|
|
dev_err(&spi->dev, "can not allocate chip data\n");
|
|
return -ENOMEM;
|
|
}
|
|
if (chip_info) {
|
|
if (chip_info->control & ~ctl_reg) {
|
|
dev_err(&spi->dev,
|
|
"do not set bits that the SPI framework manages\n");
|
|
goto error;
|
|
}
|
|
chip->control = chip_info->control;
|
|
chip->cs_chg_udelay = chip_info->cs_chg_udelay;
|
|
chip->tx_dummy_val = chip_info->tx_dummy_val;
|
|
chip->enable_dma = chip_info->enable_dma;
|
|
}
|
|
chip->cs = spi->chip_select;
|
|
|
|
if (chip->cs < MAX_CTRL_CS) {
|
|
chip->ssel = (1 << chip->cs) << 8;
|
|
ret = peripheral_request(ssel[spi->master->bus_num]
|
|
[chip->cs-1], dev_name(&spi->dev));
|
|
if (ret) {
|
|
dev_err(&spi->dev, "peripheral_request() error\n");
|
|
goto error;
|
|
}
|
|
} else {
|
|
chip->cs_gpio = chip->cs - MAX_CTRL_CS;
|
|
ret = gpio_request_one(chip->cs_gpio, GPIOF_OUT_INIT_HIGH,
|
|
dev_name(&spi->dev));
|
|
if (ret) {
|
|
dev_err(&spi->dev, "gpio_request_one() error\n");
|
|
goto error;
|
|
}
|
|
}
|
|
spi_set_ctldata(spi, chip);
|
|
}
|
|
|
|
/* force a default base state */
|
|
chip->control &= ctl_reg;
|
|
|
|
if (spi->mode & SPI_CPOL)
|
|
chip->control |= SPI_CTL_CPOL;
|
|
if (spi->mode & SPI_CPHA)
|
|
chip->control |= SPI_CTL_CPHA;
|
|
if (spi->mode & SPI_LSB_FIRST)
|
|
chip->control |= SPI_CTL_LSBF;
|
|
chip->control |= SPI_CTL_MSTR;
|
|
/* we choose software to controll cs */
|
|
chip->control &= ~SPI_CTL_ASSEL;
|
|
|
|
chip->clock = hz_to_spi_clock(drv_data->sclk, spi->max_speed_hz);
|
|
|
|
adi_spi_cs_enable(drv_data, chip);
|
|
adi_spi_cs_deactive(drv_data, chip);
|
|
|
|
return 0;
|
|
error:
|
|
if (chip) {
|
|
kfree(chip);
|
|
spi_set_ctldata(spi, NULL);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void adi_spi_cleanup(struct spi_device *spi)
|
|
{
|
|
struct adi_spi_device *chip = spi_get_ctldata(spi);
|
|
struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
|
|
|
|
if (!chip)
|
|
return;
|
|
|
|
if (chip->cs < MAX_CTRL_CS) {
|
|
peripheral_free(ssel[spi->master->bus_num]
|
|
[chip->cs-1]);
|
|
adi_spi_cs_disable(drv_data, chip);
|
|
} else {
|
|
gpio_free(chip->cs_gpio);
|
|
}
|
|
|
|
kfree(chip);
|
|
spi_set_ctldata(spi, NULL);
|
|
}
|
|
|
|
static irqreturn_t adi_spi_tx_dma_isr(int irq, void *dev_id)
|
|
{
|
|
struct adi_spi_master *drv_data = dev_id;
|
|
u32 dma_stat = get_dma_curr_irqstat(drv_data->tx_dma);
|
|
u32 tx_ctl;
|
|
|
|
clear_dma_irqstat(drv_data->tx_dma);
|
|
if (dma_stat & DMA_DONE) {
|
|
drv_data->tx_num++;
|
|
} else {
|
|
dev_err(&drv_data->master->dev,
|
|
"spi tx dma error: %d\n", dma_stat);
|
|
if (drv_data->tx)
|
|
drv_data->state = ERROR_STATE;
|
|
}
|
|
tx_ctl = ioread32(&drv_data->regs->tx_control);
|
|
tx_ctl &= ~SPI_TXCTL_TDR_NF;
|
|
iowrite32(tx_ctl, &drv_data->regs->tx_control);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t adi_spi_rx_dma_isr(int irq, void *dev_id)
|
|
{
|
|
struct adi_spi_master *drv_data = dev_id;
|
|
struct spi_message *msg = drv_data->cur_msg;
|
|
u32 dma_stat = get_dma_curr_irqstat(drv_data->rx_dma);
|
|
|
|
clear_dma_irqstat(drv_data->rx_dma);
|
|
if (dma_stat & DMA_DONE) {
|
|
drv_data->rx_num++;
|
|
/* we may fail on tx dma */
|
|
if (drv_data->state != ERROR_STATE)
|
|
msg->actual_length += drv_data->transfer_len;
|
|
} else {
|
|
drv_data->state = ERROR_STATE;
|
|
dev_err(&drv_data->master->dev,
|
|
"spi rx dma error: %d\n", dma_stat);
|
|
}
|
|
iowrite32(0, &drv_data->regs->tx_control);
|
|
iowrite32(0, &drv_data->regs->rx_control);
|
|
if (drv_data->rx_num != drv_data->tx_num)
|
|
dev_dbg(&drv_data->master->dev,
|
|
"dma interrupt missing: tx=%d,rx=%d\n",
|
|
drv_data->tx_num, drv_data->rx_num);
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int adi_spi_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct adi_spi3_master *info = dev_get_platdata(dev);
|
|
struct spi_master *master;
|
|
struct adi_spi_master *drv_data;
|
|
struct resource *mem, *res;
|
|
unsigned int tx_dma, rx_dma;
|
|
struct clk *sclk;
|
|
int ret;
|
|
|
|
if (!info) {
|
|
dev_err(dev, "platform data missing!\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
sclk = devm_clk_get(dev, "spi");
|
|
if (IS_ERR(sclk)) {
|
|
dev_err(dev, "can not get spi clock\n");
|
|
return PTR_ERR(sclk);
|
|
}
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
|
|
if (!res) {
|
|
dev_err(dev, "can not get tx dma resource\n");
|
|
return -ENXIO;
|
|
}
|
|
tx_dma = res->start;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
|
|
if (!res) {
|
|
dev_err(dev, "can not get rx dma resource\n");
|
|
return -ENXIO;
|
|
}
|
|
rx_dma = res->start;
|
|
|
|
/* allocate master with space for drv_data */
|
|
master = spi_alloc_master(dev, sizeof(*drv_data));
|
|
if (!master) {
|
|
dev_err(dev, "can not alloc spi_master\n");
|
|
return -ENOMEM;
|
|
}
|
|
platform_set_drvdata(pdev, master);
|
|
|
|
/* the mode bits supported by this driver */
|
|
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
|
|
|
|
master->bus_num = pdev->id;
|
|
master->num_chipselect = info->num_chipselect;
|
|
master->cleanup = adi_spi_cleanup;
|
|
master->setup = adi_spi_setup;
|
|
master->transfer_one_message = adi_spi_transfer_one_message;
|
|
master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
|
|
SPI_BPW_MASK(8);
|
|
|
|
drv_data = spi_master_get_devdata(master);
|
|
drv_data->master = master;
|
|
drv_data->tx_dma = tx_dma;
|
|
drv_data->rx_dma = rx_dma;
|
|
drv_data->pin_req = info->pin_req;
|
|
drv_data->sclk = clk_get_rate(sclk);
|
|
|
|
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
drv_data->regs = devm_ioremap_resource(dev, mem);
|
|
if (IS_ERR(drv_data->regs)) {
|
|
ret = PTR_ERR(drv_data->regs);
|
|
goto err_put_master;
|
|
}
|
|
|
|
/* request tx and rx dma */
|
|
ret = request_dma(tx_dma, "SPI_TX_DMA");
|
|
if (ret) {
|
|
dev_err(dev, "can not request SPI TX DMA channel\n");
|
|
goto err_put_master;
|
|
}
|
|
set_dma_callback(tx_dma, adi_spi_tx_dma_isr, drv_data);
|
|
|
|
ret = request_dma(rx_dma, "SPI_RX_DMA");
|
|
if (ret) {
|
|
dev_err(dev, "can not request SPI RX DMA channel\n");
|
|
goto err_free_tx_dma;
|
|
}
|
|
set_dma_callback(drv_data->rx_dma, adi_spi_rx_dma_isr, drv_data);
|
|
|
|
/* request CLK, MOSI and MISO */
|
|
ret = peripheral_request_list(drv_data->pin_req, "adi-spi3");
|
|
if (ret < 0) {
|
|
dev_err(dev, "can not request spi pins\n");
|
|
goto err_free_rx_dma;
|
|
}
|
|
|
|
iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
|
|
iowrite32(0x0000FE00, &drv_data->regs->ssel);
|
|
iowrite32(0x0, &drv_data->regs->delay);
|
|
|
|
tasklet_init(&drv_data->pump_transfers,
|
|
adi_spi_pump_transfers, (unsigned long)drv_data);
|
|
/* register with the SPI framework */
|
|
ret = devm_spi_register_master(dev, master);
|
|
if (ret) {
|
|
dev_err(dev, "can not register spi master\n");
|
|
goto err_free_peripheral;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err_free_peripheral:
|
|
peripheral_free_list(drv_data->pin_req);
|
|
err_free_rx_dma:
|
|
free_dma(rx_dma);
|
|
err_free_tx_dma:
|
|
free_dma(tx_dma);
|
|
err_put_master:
|
|
spi_master_put(master);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int adi_spi_remove(struct platform_device *pdev)
|
|
{
|
|
struct spi_master *master = platform_get_drvdata(pdev);
|
|
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
|
|
|
|
adi_spi_disable(drv_data);
|
|
peripheral_free_list(drv_data->pin_req);
|
|
free_dma(drv_data->rx_dma);
|
|
free_dma(drv_data->tx_dma);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int adi_spi_suspend(struct device *dev)
|
|
{
|
|
struct spi_master *master = dev_get_drvdata(dev);
|
|
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
|
|
|
|
spi_master_suspend(master);
|
|
|
|
drv_data->control = ioread32(&drv_data->regs->control);
|
|
drv_data->ssel = ioread32(&drv_data->regs->ssel);
|
|
|
|
iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
|
|
iowrite32(0x0000FE00, &drv_data->regs->ssel);
|
|
dma_disable_irq(drv_data->rx_dma);
|
|
dma_disable_irq(drv_data->tx_dma);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int adi_spi_resume(struct device *dev)
|
|
{
|
|
struct spi_master *master = dev_get_drvdata(dev);
|
|
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
|
|
int ret = 0;
|
|
|
|
/* bootrom may modify spi and dma status when resume in spi boot mode */
|
|
disable_dma(drv_data->rx_dma);
|
|
|
|
dma_enable_irq(drv_data->rx_dma);
|
|
dma_enable_irq(drv_data->tx_dma);
|
|
iowrite32(drv_data->control, &drv_data->regs->control);
|
|
iowrite32(drv_data->ssel, &drv_data->regs->ssel);
|
|
|
|
ret = spi_master_resume(master);
|
|
if (ret) {
|
|
free_dma(drv_data->rx_dma);
|
|
free_dma(drv_data->tx_dma);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
static const struct dev_pm_ops adi_spi_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(adi_spi_suspend, adi_spi_resume)
|
|
};
|
|
|
|
MODULE_ALIAS("platform:adi-spi3");
|
|
static struct platform_driver adi_spi_driver = {
|
|
.driver = {
|
|
.name = "adi-spi3",
|
|
.owner = THIS_MODULE,
|
|
.pm = &adi_spi_pm_ops,
|
|
},
|
|
.remove = adi_spi_remove,
|
|
};
|
|
|
|
module_platform_driver_probe(adi_spi_driver, adi_spi_probe);
|
|
|
|
MODULE_DESCRIPTION("Analog Devices SPI3 controller driver");
|
|
MODULE_AUTHOR("Scott Jiang <Scott.Jiang.Linux@gmail.com>");
|
|
MODULE_LICENSE("GPL v2");
|