mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-11 11:56:48 +00:00
de8d28b16f
One thing this change pointed out was that we really should pull the "get 'local-mac-address' property" logic into a helper function all the network drivers can call. Signed-off-by: David S. Miller <davem@davemloft.net>
1105 lines
29 KiB
C
1105 lines
29 KiB
C
/* $Id: pci_common.c,v 1.29 2002/02/01 00:56:03 davem Exp $
|
|
* pci_common.c: PCI controller common support.
|
|
*
|
|
* Copyright (C) 1999 David S. Miller (davem@redhat.com)
|
|
*/
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/pbm.h>
|
|
#include <asm/prom.h>
|
|
|
|
#include "pci_impl.h"
|
|
|
|
/* Pass "pci=irq_verbose" on the kernel command line to enable this. */
|
|
int pci_irq_verbose;
|
|
|
|
/* Fix self device of BUS and hook it into BUS->self.
|
|
* The pci_scan_bus does not do this for the host bridge.
|
|
*/
|
|
void __init pci_fixup_host_bridge_self(struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
list_for_each_entry(pdev, &pbus->devices, bus_list) {
|
|
if (pdev->class >> 8 == PCI_CLASS_BRIDGE_HOST) {
|
|
pbus->self = pdev;
|
|
return;
|
|
}
|
|
}
|
|
|
|
prom_printf("PCI: Critical error, cannot find host bridge PDEV.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
/* Find the OBP PROM device tree node for a PCI device. */
|
|
static struct device_node * __init
|
|
find_device_prom_node(struct pci_pbm_info *pbm, struct pci_dev *pdev,
|
|
struct device_node *bus_node,
|
|
struct linux_prom_pci_registers **pregs,
|
|
int *nregs)
|
|
{
|
|
struct device_node *dp;
|
|
|
|
*nregs = 0;
|
|
|
|
/*
|
|
* Return the PBM's PROM node in case we are it's PCI device,
|
|
* as the PBM's reg property is different to standard PCI reg
|
|
* properties. We would delete this device entry otherwise,
|
|
* which confuses XFree86's device probing...
|
|
*/
|
|
if ((pdev->bus->number == pbm->pci_bus->number) && (pdev->devfn == 0) &&
|
|
(pdev->vendor == PCI_VENDOR_ID_SUN) &&
|
|
(pdev->device == PCI_DEVICE_ID_SUN_PBM ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_SCHIZO ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_TOMATILLO ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_SABRE ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_HUMMINGBIRD))
|
|
return bus_node;
|
|
|
|
dp = bus_node->child;
|
|
while (dp) {
|
|
struct linux_prom_pci_registers *regs;
|
|
struct property *prop;
|
|
int len;
|
|
|
|
prop = of_find_property(dp, "reg", &len);
|
|
if (!prop)
|
|
goto do_next_sibling;
|
|
|
|
regs = prop->value;
|
|
if (((regs[0].phys_hi >> 8) & 0xff) == pdev->devfn) {
|
|
*pregs = regs;
|
|
*nregs = len / sizeof(struct linux_prom_pci_registers);
|
|
return dp;
|
|
}
|
|
|
|
do_next_sibling:
|
|
dp = dp->sibling;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Older versions of OBP on PCI systems encode 64-bit MEM
|
|
* space assignments incorrectly, this fixes them up. We also
|
|
* take the opportunity here to hide other kinds of bogus
|
|
* assignments.
|
|
*/
|
|
static void __init fixup_obp_assignments(struct pci_dev *pdev,
|
|
struct pcidev_cookie *pcp)
|
|
{
|
|
int i;
|
|
|
|
if (pdev->vendor == PCI_VENDOR_ID_AL &&
|
|
(pdev->device == PCI_DEVICE_ID_AL_M7101 ||
|
|
pdev->device == PCI_DEVICE_ID_AL_M1533)) {
|
|
int i;
|
|
|
|
/* Zap all of the normal resources, they are
|
|
* meaningless and generate bogus resource collision
|
|
* messages. This is OpenBoot's ill-fated attempt to
|
|
* represent the implicit resources that these devices
|
|
* have.
|
|
*/
|
|
pcp->num_prom_assignments = 0;
|
|
for (i = 0; i < 6; i++) {
|
|
pdev->resource[i].start =
|
|
pdev->resource[i].end =
|
|
pdev->resource[i].flags = 0;
|
|
}
|
|
pdev->resource[PCI_ROM_RESOURCE].start =
|
|
pdev->resource[PCI_ROM_RESOURCE].end =
|
|
pdev->resource[PCI_ROM_RESOURCE].flags = 0;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < pcp->num_prom_assignments; i++) {
|
|
struct linux_prom_pci_registers *ap;
|
|
int space;
|
|
|
|
ap = &pcp->prom_assignments[i];
|
|
space = ap->phys_hi >> 24;
|
|
if ((space & 0x3) == 2 &&
|
|
(space & 0x4) != 0) {
|
|
ap->phys_hi &= ~(0x7 << 24);
|
|
ap->phys_hi |= 0x3 << 24;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fill in the PCI device cookie sysdata for the given
|
|
* PCI device. This cookie is the means by which one
|
|
* can get to OBP and PCI controller specific information
|
|
* for a PCI device.
|
|
*/
|
|
static void __init pdev_cookie_fillin(struct pci_pbm_info *pbm,
|
|
struct pci_dev *pdev,
|
|
struct device_node *bus_node)
|
|
{
|
|
struct linux_prom_pci_registers *pregs = NULL;
|
|
struct pcidev_cookie *pcp;
|
|
struct device_node *dp;
|
|
struct property *prop;
|
|
int nregs, len;
|
|
|
|
dp = find_device_prom_node(pbm, pdev, bus_node,
|
|
&pregs, &nregs);
|
|
if (!dp) {
|
|
/* If it is not in the OBP device tree then
|
|
* there must be a damn good reason for it.
|
|
*
|
|
* So what we do is delete the device from the
|
|
* PCI device tree completely. This scenario
|
|
* is seen, for example, on CP1500 for the
|
|
* second EBUS/HappyMeal pair if the external
|
|
* connector for it is not present.
|
|
*/
|
|
pci_remove_bus_device(pdev);
|
|
return;
|
|
}
|
|
|
|
pcp = kzalloc(sizeof(*pcp), GFP_ATOMIC);
|
|
if (pcp == NULL) {
|
|
prom_printf("PCI_COOKIE: Fatal malloc error, aborting...\n");
|
|
prom_halt();
|
|
}
|
|
pcp->pbm = pbm;
|
|
pcp->prom_node = dp;
|
|
memcpy(pcp->prom_regs, pregs,
|
|
nregs * sizeof(struct linux_prom_pci_registers));
|
|
pcp->num_prom_regs = nregs;
|
|
|
|
/* We can't have the pcidev_cookie assignments be just
|
|
* direct pointers into the property value, since they
|
|
* are potentially modified by the probing process.
|
|
*/
|
|
prop = of_find_property(dp, "assigned-addresses", &len);
|
|
if (!prop) {
|
|
pcp->num_prom_assignments = 0;
|
|
} else {
|
|
memcpy(pcp->prom_assignments, prop->value, len);
|
|
pcp->num_prom_assignments =
|
|
(len / sizeof(pcp->prom_assignments[0]));
|
|
}
|
|
|
|
if (strcmp(dp->name, "ebus") == 0) {
|
|
struct linux_prom_ebus_ranges *erng;
|
|
int iter;
|
|
|
|
/* EBUS is special... */
|
|
prop = of_find_property(dp, "ranges", &len);
|
|
if (!prop) {
|
|
prom_printf("EBUS: Fatal error, no range property\n");
|
|
prom_halt();
|
|
}
|
|
erng = prop->value;
|
|
len = (len / sizeof(erng[0]));
|
|
for (iter = 0; iter < len; iter++) {
|
|
struct linux_prom_ebus_ranges *ep = &erng[iter];
|
|
struct linux_prom_pci_registers *ap;
|
|
|
|
ap = &pcp->prom_assignments[iter];
|
|
|
|
ap->phys_hi = ep->parent_phys_hi;
|
|
ap->phys_mid = ep->parent_phys_mid;
|
|
ap->phys_lo = ep->parent_phys_lo;
|
|
ap->size_hi = 0;
|
|
ap->size_lo = ep->size;
|
|
}
|
|
pcp->num_prom_assignments = len;
|
|
}
|
|
|
|
fixup_obp_assignments(pdev, pcp);
|
|
|
|
pdev->sysdata = pcp;
|
|
}
|
|
|
|
void __init pci_fill_in_pbm_cookies(struct pci_bus *pbus,
|
|
struct pci_pbm_info *pbm,
|
|
struct device_node *dp)
|
|
{
|
|
struct pci_dev *pdev, *pdev_next;
|
|
struct pci_bus *this_pbus, *pbus_next;
|
|
|
|
/* This must be _safe because the cookie fillin
|
|
routine can delete devices from the tree. */
|
|
list_for_each_entry_safe(pdev, pdev_next, &pbus->devices, bus_list)
|
|
pdev_cookie_fillin(pbm, pdev, dp);
|
|
|
|
list_for_each_entry_safe(this_pbus, pbus_next, &pbus->children, node) {
|
|
struct pcidev_cookie *pcp = this_pbus->self->sysdata;
|
|
|
|
pci_fill_in_pbm_cookies(this_pbus, pbm, pcp->prom_node);
|
|
}
|
|
}
|
|
|
|
static void __init bad_assignment(struct pci_dev *pdev,
|
|
struct linux_prom_pci_registers *ap,
|
|
struct resource *res,
|
|
int do_prom_halt)
|
|
{
|
|
prom_printf("PCI: Bogus PROM assignment. BUS[%02x] DEVFN[%x]\n",
|
|
pdev->bus->number, pdev->devfn);
|
|
if (ap)
|
|
prom_printf("PCI: phys[%08x:%08x:%08x] size[%08x:%08x]\n",
|
|
ap->phys_hi, ap->phys_mid, ap->phys_lo,
|
|
ap->size_hi, ap->size_lo);
|
|
if (res)
|
|
prom_printf("PCI: RES[%016lx-->%016lx:(%lx)]\n",
|
|
res->start, res->end, res->flags);
|
|
if (do_prom_halt)
|
|
prom_halt();
|
|
}
|
|
|
|
static struct resource *
|
|
__init get_root_resource(struct linux_prom_pci_registers *ap,
|
|
struct pci_pbm_info *pbm)
|
|
{
|
|
int space = (ap->phys_hi >> 24) & 3;
|
|
|
|
switch (space) {
|
|
case 0:
|
|
/* Configuration space, silently ignore it. */
|
|
return NULL;
|
|
|
|
case 1:
|
|
/* 16-bit IO space */
|
|
return &pbm->io_space;
|
|
|
|
case 2:
|
|
/* 32-bit MEM space */
|
|
return &pbm->mem_space;
|
|
|
|
case 3:
|
|
/* 64-bit MEM space, these are allocated out of
|
|
* the 32-bit mem_space range for the PBM, ie.
|
|
* we just zero out the upper 32-bits.
|
|
*/
|
|
return &pbm->mem_space;
|
|
|
|
default:
|
|
printk("PCI: What is resource space %x?\n", space);
|
|
return NULL;
|
|
};
|
|
}
|
|
|
|
static struct resource *
|
|
__init get_device_resource(struct linux_prom_pci_registers *ap,
|
|
struct pci_dev *pdev)
|
|
{
|
|
struct resource *res;
|
|
int breg = (ap->phys_hi & 0xff);
|
|
|
|
switch (breg) {
|
|
case PCI_ROM_ADDRESS:
|
|
/* Unfortunately I have seen several cases where
|
|
* buggy FCODE uses a space value of '1' (I/O space)
|
|
* in the register property for the ROM address
|
|
* so disable this sanity check for now.
|
|
*/
|
|
#if 0
|
|
{
|
|
int space = (ap->phys_hi >> 24) & 3;
|
|
|
|
/* It had better be MEM space. */
|
|
if (space != 2)
|
|
bad_assignment(pdev, ap, NULL, 0);
|
|
}
|
|
#endif
|
|
res = &pdev->resource[PCI_ROM_RESOURCE];
|
|
break;
|
|
|
|
case PCI_BASE_ADDRESS_0:
|
|
case PCI_BASE_ADDRESS_1:
|
|
case PCI_BASE_ADDRESS_2:
|
|
case PCI_BASE_ADDRESS_3:
|
|
case PCI_BASE_ADDRESS_4:
|
|
case PCI_BASE_ADDRESS_5:
|
|
res = &pdev->resource[(breg - PCI_BASE_ADDRESS_0) / 4];
|
|
break;
|
|
|
|
default:
|
|
bad_assignment(pdev, ap, NULL, 0);
|
|
res = NULL;
|
|
break;
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
static int __init pdev_resource_collisions_expected(struct pci_dev *pdev)
|
|
{
|
|
if (pdev->vendor != PCI_VENDOR_ID_SUN)
|
|
return 0;
|
|
|
|
if (pdev->device == PCI_DEVICE_ID_SUN_RIO_EBUS ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_RIO_1394 ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_RIO_USB)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init pdev_record_assignments(struct pci_pbm_info *pbm,
|
|
struct pci_dev *pdev)
|
|
{
|
|
struct pcidev_cookie *pcp = pdev->sysdata;
|
|
int i;
|
|
|
|
for (i = 0; i < pcp->num_prom_assignments; i++) {
|
|
struct linux_prom_pci_registers *ap;
|
|
struct resource *root, *res;
|
|
|
|
/* The format of this property is specified in
|
|
* the PCI Bus Binding to IEEE1275-1994.
|
|
*/
|
|
ap = &pcp->prom_assignments[i];
|
|
root = get_root_resource(ap, pbm);
|
|
res = get_device_resource(ap, pdev);
|
|
if (root == NULL || res == NULL ||
|
|
res->flags == 0)
|
|
continue;
|
|
|
|
/* Ok we know which resource this PROM assignment is
|
|
* for, sanity check it.
|
|
*/
|
|
if ((res->start & 0xffffffffUL) != ap->phys_lo)
|
|
bad_assignment(pdev, ap, res, 1);
|
|
|
|
/* If it is a 64-bit MEM space assignment, verify that
|
|
* the resource is too and that the upper 32-bits match.
|
|
*/
|
|
if (((ap->phys_hi >> 24) & 3) == 3) {
|
|
if (((res->flags & IORESOURCE_MEM) == 0) ||
|
|
((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
|
|
!= PCI_BASE_ADDRESS_MEM_TYPE_64))
|
|
bad_assignment(pdev, ap, res, 1);
|
|
if ((res->start >> 32) != ap->phys_mid)
|
|
bad_assignment(pdev, ap, res, 1);
|
|
|
|
/* PBM cannot generate cpu initiated PIOs
|
|
* to the full 64-bit space. Therefore the
|
|
* upper 32-bits better be zero. If it is
|
|
* not, just skip it and we will assign it
|
|
* properly ourselves.
|
|
*/
|
|
if ((res->start >> 32) != 0UL) {
|
|
printk(KERN_ERR "PCI: OBP assigns out of range MEM address "
|
|
"%016lx for region %ld on device %s\n",
|
|
res->start, (res - &pdev->resource[0]), pci_name(pdev));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Adjust the resource into the physical address space
|
|
* of this PBM.
|
|
*/
|
|
pbm->parent->resource_adjust(pdev, res, root);
|
|
|
|
if (request_resource(root, res) < 0) {
|
|
/* OK, there is some conflict. But this is fine
|
|
* since we'll reassign it in the fixup pass.
|
|
*
|
|
* We notify the user that OBP made an error if it
|
|
* is a case we don't expect.
|
|
*/
|
|
if (!pdev_resource_collisions_expected(pdev)) {
|
|
printk(KERN_ERR "PCI: Address space collision on region %ld "
|
|
"[%016lx:%016lx] of device %s\n",
|
|
(res - &pdev->resource[0]),
|
|
res->start, res->end,
|
|
pci_name(pdev));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init pci_record_assignments(struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(dev, &pbus->devices, bus_list)
|
|
pdev_record_assignments(pbm, dev);
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_record_assignments(pbm, bus);
|
|
}
|
|
|
|
/* Return non-zero if PDEV has implicit I/O resources even
|
|
* though it may not have an I/O base address register
|
|
* active.
|
|
*/
|
|
static int __init has_implicit_io(struct pci_dev *pdev)
|
|
{
|
|
int class = pdev->class >> 8;
|
|
|
|
if (class == PCI_CLASS_NOT_DEFINED ||
|
|
class == PCI_CLASS_NOT_DEFINED_VGA ||
|
|
class == PCI_CLASS_STORAGE_IDE ||
|
|
(pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init pdev_assign_unassigned(struct pci_pbm_info *pbm,
|
|
struct pci_dev *pdev)
|
|
{
|
|
u32 reg;
|
|
u16 cmd;
|
|
int i, io_seen, mem_seen;
|
|
|
|
io_seen = mem_seen = 0;
|
|
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
|
|
struct resource *root, *res;
|
|
unsigned long size, min, max, align;
|
|
|
|
res = &pdev->resource[i];
|
|
|
|
if (res->flags & IORESOURCE_IO)
|
|
io_seen++;
|
|
else if (res->flags & IORESOURCE_MEM)
|
|
mem_seen++;
|
|
|
|
/* If it is already assigned or the resource does
|
|
* not exist, there is nothing to do.
|
|
*/
|
|
if (res->parent != NULL || res->flags == 0UL)
|
|
continue;
|
|
|
|
/* Determine the root we allocate from. */
|
|
if (res->flags & IORESOURCE_IO) {
|
|
root = &pbm->io_space;
|
|
min = root->start + 0x400UL;
|
|
max = root->end;
|
|
} else {
|
|
root = &pbm->mem_space;
|
|
min = root->start;
|
|
max = min + 0x80000000UL;
|
|
}
|
|
|
|
size = res->end - res->start;
|
|
align = size + 1;
|
|
if (allocate_resource(root, res, size + 1, min, max, align, NULL, NULL) < 0) {
|
|
/* uh oh */
|
|
prom_printf("PCI: Failed to allocate resource %d for %s\n",
|
|
i, pci_name(pdev));
|
|
prom_halt();
|
|
}
|
|
|
|
/* Update PCI config space. */
|
|
pbm->parent->base_address_update(pdev, i);
|
|
}
|
|
|
|
/* Special case, disable the ROM. Several devices
|
|
* act funny (ie. do not respond to memory space writes)
|
|
* when it is left enabled. A good example are Qlogic,ISP
|
|
* adapters.
|
|
*/
|
|
pci_read_config_dword(pdev, PCI_ROM_ADDRESS, ®);
|
|
reg &= ~PCI_ROM_ADDRESS_ENABLE;
|
|
pci_write_config_dword(pdev, PCI_ROM_ADDRESS, reg);
|
|
|
|
/* If we saw I/O or MEM resources, enable appropriate
|
|
* bits in PCI command register.
|
|
*/
|
|
if (io_seen || mem_seen) {
|
|
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
if (io_seen || has_implicit_io(pdev))
|
|
cmd |= PCI_COMMAND_IO;
|
|
if (mem_seen)
|
|
cmd |= PCI_COMMAND_MEMORY;
|
|
pci_write_config_word(pdev, PCI_COMMAND, cmd);
|
|
}
|
|
|
|
/* If this is a PCI bridge or an IDE controller,
|
|
* enable bus mastering. In the former case also
|
|
* set the cache line size correctly.
|
|
*/
|
|
if (((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) ||
|
|
(((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) &&
|
|
((pdev->class & 0x80) != 0))) {
|
|
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
cmd |= PCI_COMMAND_MASTER;
|
|
pci_write_config_word(pdev, PCI_COMMAND, cmd);
|
|
|
|
if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
|
|
pci_write_config_byte(pdev,
|
|
PCI_CACHE_LINE_SIZE,
|
|
(64 / sizeof(u32)));
|
|
}
|
|
}
|
|
|
|
void __init pci_assign_unassigned(struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(dev, &pbus->devices, bus_list)
|
|
pdev_assign_unassigned(pbm, dev);
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_assign_unassigned(pbm, bus);
|
|
}
|
|
|
|
static inline unsigned int pci_slot_swivel(struct pci_pbm_info *pbm,
|
|
struct pci_dev *toplevel_pdev,
|
|
struct pci_dev *pdev,
|
|
unsigned int interrupt)
|
|
{
|
|
unsigned int ret;
|
|
|
|
if (unlikely(interrupt < 1 || interrupt > 4)) {
|
|
printk("%s: Device %s interrupt value of %u is strange.\n",
|
|
pbm->name, pci_name(pdev), interrupt);
|
|
return interrupt;
|
|
}
|
|
|
|
ret = ((interrupt - 1 + (PCI_SLOT(pdev->devfn) & 3)) & 3) + 1;
|
|
|
|
if (pci_irq_verbose)
|
|
printk("%s: %s IRQ Swivel %s [%x:%x] -> [%x]\n",
|
|
pbm->name, pci_name(toplevel_pdev), pci_name(pdev),
|
|
interrupt, PCI_SLOT(pdev->devfn), ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline unsigned int pci_apply_intmap(struct pci_pbm_info *pbm,
|
|
struct pci_dev *toplevel_pdev,
|
|
struct pci_dev *pbus,
|
|
struct pci_dev *pdev,
|
|
unsigned int interrupt,
|
|
struct device_node **cnode)
|
|
{
|
|
struct linux_prom_pci_intmap *imap;
|
|
struct linux_prom_pci_intmask *imask;
|
|
struct pcidev_cookie *pbus_pcp = pbus->sysdata;
|
|
struct pcidev_cookie *pdev_pcp = pdev->sysdata;
|
|
struct linux_prom_pci_registers *pregs = pdev_pcp->prom_regs;
|
|
struct property *prop;
|
|
int plen, num_imap, i;
|
|
unsigned int hi, mid, lo, irq, orig_interrupt;
|
|
|
|
*cnode = pbus_pcp->prom_node;
|
|
|
|
prop = of_find_property(pbus_pcp->prom_node, "interrupt-map", &plen);
|
|
if (!prop ||
|
|
(plen % sizeof(struct linux_prom_pci_intmap)) != 0) {
|
|
printk("%s: Device %s interrupt-map has bad len %d\n",
|
|
pbm->name, pci_name(pbus), plen);
|
|
goto no_intmap;
|
|
}
|
|
imap = prop->value;
|
|
num_imap = plen / sizeof(struct linux_prom_pci_intmap);
|
|
|
|
prop = of_find_property(pbus_pcp->prom_node, "interrupt-map-mask", &plen);
|
|
if (!prop ||
|
|
(plen % sizeof(struct linux_prom_pci_intmask)) != 0) {
|
|
printk("%s: Device %s interrupt-map-mask has bad len %d\n",
|
|
pbm->name, pci_name(pbus), plen);
|
|
goto no_intmap;
|
|
}
|
|
imask = prop->value;
|
|
|
|
orig_interrupt = interrupt;
|
|
|
|
hi = pregs->phys_hi & imask->phys_hi;
|
|
mid = pregs->phys_mid & imask->phys_mid;
|
|
lo = pregs->phys_lo & imask->phys_lo;
|
|
irq = interrupt & imask->interrupt;
|
|
|
|
for (i = 0; i < num_imap; i++) {
|
|
if (imap[i].phys_hi == hi &&
|
|
imap[i].phys_mid == mid &&
|
|
imap[i].phys_lo == lo &&
|
|
imap[i].interrupt == irq) {
|
|
*cnode = of_find_node_by_phandle(imap[i].cnode);
|
|
interrupt = imap[i].cinterrupt;
|
|
}
|
|
}
|
|
|
|
if (pci_irq_verbose)
|
|
printk("%s: %s MAP BUS %s DEV %s [%x] -> [%x]\n",
|
|
pbm->name, pci_name(toplevel_pdev),
|
|
pci_name(pbus), pci_name(pdev),
|
|
orig_interrupt, interrupt);
|
|
|
|
no_intmap:
|
|
return interrupt;
|
|
}
|
|
|
|
/* For each PCI bus on the way to the root:
|
|
* 1) If it has an interrupt-map property, apply it.
|
|
* 2) Else, swivel the interrupt number based upon the PCI device number.
|
|
*
|
|
* Return the "IRQ controller" node. If this is the PBM's device node,
|
|
* all interrupt translations are complete, else we should use that node's
|
|
* "reg" property to apply the PBM's "interrupt-{map,mask}" to the interrupt.
|
|
*/
|
|
static struct device_node * __init
|
|
pci_intmap_match_to_root(struct pci_pbm_info *pbm,
|
|
struct pci_dev *pdev,
|
|
unsigned int *interrupt)
|
|
{
|
|
struct pci_dev *toplevel_pdev = pdev;
|
|
struct pcidev_cookie *toplevel_pcp = toplevel_pdev->sysdata;
|
|
struct device_node *cnode = toplevel_pcp->prom_node;
|
|
|
|
while (pdev->bus->number != pbm->pci_first_busno) {
|
|
struct pci_dev *pbus = pdev->bus->self;
|
|
struct pcidev_cookie *pcp = pbus->sysdata;
|
|
struct property *prop;
|
|
|
|
prop = of_find_property(pcp->prom_node, "interrupt-map", NULL);
|
|
if (!prop) {
|
|
*interrupt = pci_slot_swivel(pbm, toplevel_pdev,
|
|
pdev, *interrupt);
|
|
cnode = pcp->prom_node;
|
|
} else {
|
|
*interrupt = pci_apply_intmap(pbm, toplevel_pdev,
|
|
pbus, pdev,
|
|
*interrupt, &cnode);
|
|
|
|
while (pcp->prom_node != cnode &&
|
|
pbus->bus->number != pbm->pci_first_busno) {
|
|
pbus = pbus->bus->self;
|
|
pcp = pbus->sysdata;
|
|
}
|
|
}
|
|
pdev = pbus;
|
|
|
|
if (cnode == pbm->prom_node)
|
|
break;
|
|
}
|
|
|
|
return cnode;
|
|
}
|
|
|
|
static int __init pci_intmap_match(struct pci_dev *pdev, unsigned int *interrupt)
|
|
{
|
|
struct pcidev_cookie *dev_pcp = pdev->sysdata;
|
|
struct pci_pbm_info *pbm = dev_pcp->pbm;
|
|
struct linux_prom_pci_registers *reg;
|
|
struct device_node *cnode;
|
|
struct property *prop;
|
|
unsigned int hi, mid, lo, irq;
|
|
int i, plen;
|
|
|
|
cnode = pci_intmap_match_to_root(pbm, pdev, interrupt);
|
|
if (cnode == pbm->prom_node)
|
|
goto success;
|
|
|
|
prop = of_find_property(cnode, "reg", &plen);
|
|
if (!prop ||
|
|
(plen % sizeof(struct linux_prom_pci_registers)) != 0) {
|
|
printk("%s: OBP node %s reg property has bad len %d\n",
|
|
pbm->name, cnode->full_name, plen);
|
|
goto fail;
|
|
}
|
|
reg = prop->value;
|
|
|
|
hi = reg[0].phys_hi & pbm->pbm_intmask->phys_hi;
|
|
mid = reg[0].phys_mid & pbm->pbm_intmask->phys_mid;
|
|
lo = reg[0].phys_lo & pbm->pbm_intmask->phys_lo;
|
|
irq = *interrupt & pbm->pbm_intmask->interrupt;
|
|
|
|
for (i = 0; i < pbm->num_pbm_intmap; i++) {
|
|
struct linux_prom_pci_intmap *intmap;
|
|
|
|
intmap = &pbm->pbm_intmap[i];
|
|
|
|
if (intmap->phys_hi == hi &&
|
|
intmap->phys_mid == mid &&
|
|
intmap->phys_lo == lo &&
|
|
intmap->interrupt == irq) {
|
|
*interrupt = intmap->cinterrupt;
|
|
goto success;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return 0;
|
|
|
|
success:
|
|
if (pci_irq_verbose)
|
|
printk("%s: Routing bus[%2x] slot[%2x] to INO[%02x]\n",
|
|
pbm->name,
|
|
pdev->bus->number, PCI_SLOT(pdev->devfn),
|
|
*interrupt);
|
|
return 1;
|
|
}
|
|
|
|
static void __init pdev_fixup_irq(struct pci_dev *pdev)
|
|
{
|
|
struct pcidev_cookie *pcp = pdev->sysdata;
|
|
struct pci_pbm_info *pbm = pcp->pbm;
|
|
struct pci_controller_info *p = pbm->parent;
|
|
unsigned int portid = pbm->portid;
|
|
unsigned int prom_irq;
|
|
struct device_node *dp = pcp->prom_node;
|
|
struct property *prop;
|
|
|
|
/* If this is an empty EBUS device, sometimes OBP fails to
|
|
* give it a valid fully specified interrupts property.
|
|
* The EBUS hooked up to SunHME on PCI I/O boards of
|
|
* Ex000 systems is one such case.
|
|
*
|
|
* The interrupt is not important so just ignore it.
|
|
*/
|
|
if (pdev->vendor == PCI_VENDOR_ID_SUN &&
|
|
pdev->device == PCI_DEVICE_ID_SUN_EBUS &&
|
|
!dp->child) {
|
|
pdev->irq = 0;
|
|
return;
|
|
}
|
|
|
|
prop = of_find_property(dp, "interrupts", NULL);
|
|
if (!prop) {
|
|
pdev->irq = 0;
|
|
return;
|
|
}
|
|
prom_irq = *(unsigned int *) prop->value;
|
|
|
|
if (tlb_type != hypervisor) {
|
|
/* Fully specified already? */
|
|
if (((prom_irq & PCI_IRQ_IGN) >> 6) == portid) {
|
|
pdev->irq = p->irq_build(pbm, pdev, prom_irq);
|
|
goto have_irq;
|
|
}
|
|
|
|
/* An onboard device? (bit 5 set) */
|
|
if ((prom_irq & PCI_IRQ_INO) & 0x20) {
|
|
pdev->irq = p->irq_build(pbm, pdev, (portid << 6 | prom_irq));
|
|
goto have_irq;
|
|
}
|
|
}
|
|
|
|
/* Can we find a matching entry in the interrupt-map? */
|
|
if (pci_intmap_match(pdev, &prom_irq)) {
|
|
pdev->irq = p->irq_build(pbm, pdev, (portid << 6) | prom_irq);
|
|
goto have_irq;
|
|
}
|
|
|
|
/* Ok, we have to do it the hard way. */
|
|
{
|
|
unsigned int bus, slot, line;
|
|
|
|
bus = (pbm == &pbm->parent->pbm_B) ? (1 << 4) : 0;
|
|
|
|
/* If we have a legal interrupt property, use it as
|
|
* the IRQ line.
|
|
*/
|
|
if (prom_irq > 0 && prom_irq < 5) {
|
|
line = ((prom_irq - 1) & 3);
|
|
} else {
|
|
u8 pci_irq_line;
|
|
|
|
/* Else just directly consult PCI config space. */
|
|
pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pci_irq_line);
|
|
line = ((pci_irq_line - 1) & 3);
|
|
}
|
|
|
|
/* Now figure out the slot.
|
|
*
|
|
* Basically, device number zero on the top-level bus is
|
|
* always the PCI host controller. Slot 0 is then device 1.
|
|
* PBM A supports two external slots (0 and 1), and PBM B
|
|
* supports 4 external slots (0, 1, 2, and 3). On-board PCI
|
|
* devices are wired to device numbers outside of these
|
|
* ranges. -DaveM
|
|
*/
|
|
if (pdev->bus->number == pbm->pci_first_busno) {
|
|
slot = PCI_SLOT(pdev->devfn) - pbm->pci_first_slot;
|
|
} else {
|
|
struct pci_dev *bus_dev;
|
|
|
|
/* Underneath a bridge, use slot number of parent
|
|
* bridge which is closest to the PBM.
|
|
*/
|
|
bus_dev = pdev->bus->self;
|
|
while (bus_dev->bus &&
|
|
bus_dev->bus->number != pbm->pci_first_busno)
|
|
bus_dev = bus_dev->bus->self;
|
|
|
|
slot = PCI_SLOT(bus_dev->devfn) - pbm->pci_first_slot;
|
|
}
|
|
slot = slot << 2;
|
|
|
|
pdev->irq = p->irq_build(pbm, pdev,
|
|
((portid << 6) & PCI_IRQ_IGN) |
|
|
(bus | slot | line));
|
|
}
|
|
|
|
have_irq:
|
|
pci_write_config_byte(pdev, PCI_INTERRUPT_LINE,
|
|
pdev->irq & PCI_IRQ_INO);
|
|
}
|
|
|
|
void __init pci_fixup_irq(struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(dev, &pbus->devices, bus_list)
|
|
pdev_fixup_irq(dev);
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_fixup_irq(pbm, bus);
|
|
}
|
|
|
|
static void pdev_setup_busmastering(struct pci_dev *pdev, int is_66mhz)
|
|
{
|
|
u16 cmd;
|
|
u8 hdr_type, min_gnt, ltimer;
|
|
|
|
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
cmd |= PCI_COMMAND_MASTER;
|
|
pci_write_config_word(pdev, PCI_COMMAND, cmd);
|
|
|
|
/* Read it back, if the mastering bit did not
|
|
* get set, the device does not support bus
|
|
* mastering so we have nothing to do here.
|
|
*/
|
|
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
if ((cmd & PCI_COMMAND_MASTER) == 0)
|
|
return;
|
|
|
|
/* Set correct cache line size, 64-byte on all
|
|
* Sparc64 PCI systems. Note that the value is
|
|
* measured in 32-bit words.
|
|
*/
|
|
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
|
|
64 / sizeof(u32));
|
|
|
|
pci_read_config_byte(pdev, PCI_HEADER_TYPE, &hdr_type);
|
|
hdr_type &= ~0x80;
|
|
if (hdr_type != PCI_HEADER_TYPE_NORMAL)
|
|
return;
|
|
|
|
/* If the latency timer is already programmed with a non-zero
|
|
* value, assume whoever set it (OBP or whoever) knows what
|
|
* they are doing.
|
|
*/
|
|
pci_read_config_byte(pdev, PCI_LATENCY_TIMER, <imer);
|
|
if (ltimer != 0)
|
|
return;
|
|
|
|
/* XXX Since I'm tipping off the min grant value to
|
|
* XXX choose a suitable latency timer value, I also
|
|
* XXX considered making use of the max latency value
|
|
* XXX as well. Unfortunately I've seen too many bogusly
|
|
* XXX low settings for it to the point where it lacks
|
|
* XXX any usefulness. In one case, an ethernet card
|
|
* XXX claimed a min grant of 10 and a max latency of 5.
|
|
* XXX Now, if I had two such cards on the same bus I
|
|
* XXX could not set the desired burst period (calculated
|
|
* XXX from min grant) without violating the max latency
|
|
* XXX bound. Duh...
|
|
* XXX
|
|
* XXX I blame dumb PC bios implementors for stuff like
|
|
* XXX this, most of them don't even try to do something
|
|
* XXX sensible with latency timer values and just set some
|
|
* XXX default value (usually 32) into every device.
|
|
*/
|
|
|
|
pci_read_config_byte(pdev, PCI_MIN_GNT, &min_gnt);
|
|
|
|
if (min_gnt == 0) {
|
|
/* If no min_gnt setting then use a default
|
|
* value.
|
|
*/
|
|
if (is_66mhz)
|
|
ltimer = 16;
|
|
else
|
|
ltimer = 32;
|
|
} else {
|
|
int shift_factor;
|
|
|
|
if (is_66mhz)
|
|
shift_factor = 2;
|
|
else
|
|
shift_factor = 3;
|
|
|
|
/* Use a default value when the min_gnt value
|
|
* is erroneously high.
|
|
*/
|
|
if (((unsigned int) min_gnt << shift_factor) > 512 ||
|
|
((min_gnt << shift_factor) & 0xff) == 0) {
|
|
ltimer = 8 << shift_factor;
|
|
} else {
|
|
ltimer = min_gnt << shift_factor;
|
|
}
|
|
}
|
|
|
|
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ltimer);
|
|
}
|
|
|
|
void pci_determine_66mhz_disposition(struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
int all_are_66mhz;
|
|
u16 status;
|
|
|
|
if (pbm->is_66mhz_capable == 0) {
|
|
all_are_66mhz = 0;
|
|
goto out;
|
|
}
|
|
|
|
all_are_66mhz = 1;
|
|
list_for_each_entry(pdev, &pbus->devices, bus_list) {
|
|
pci_read_config_word(pdev, PCI_STATUS, &status);
|
|
if (!(status & PCI_STATUS_66MHZ)) {
|
|
all_are_66mhz = 0;
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
pbm->all_devs_66mhz = all_are_66mhz;
|
|
|
|
printk("PCI%d(PBM%c): Bus running at %dMHz\n",
|
|
pbm->parent->index,
|
|
(pbm == &pbm->parent->pbm_A) ? 'A' : 'B',
|
|
(all_are_66mhz ? 66 : 33));
|
|
}
|
|
|
|
void pci_setup_busmastering(struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *bus;
|
|
int is_66mhz;
|
|
|
|
is_66mhz = pbm->is_66mhz_capable && pbm->all_devs_66mhz;
|
|
|
|
list_for_each_entry(dev, &pbus->devices, bus_list)
|
|
pdev_setup_busmastering(dev, is_66mhz);
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_setup_busmastering(pbm, bus);
|
|
}
|
|
|
|
void pci_register_legacy_regions(struct resource *io_res,
|
|
struct resource *mem_res)
|
|
{
|
|
struct resource *p;
|
|
|
|
/* VGA Video RAM. */
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return;
|
|
|
|
p->name = "Video RAM area";
|
|
p->start = mem_res->start + 0xa0000UL;
|
|
p->end = p->start + 0x1ffffUL;
|
|
p->flags = IORESOURCE_BUSY;
|
|
request_resource(mem_res, p);
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return;
|
|
|
|
p->name = "System ROM";
|
|
p->start = mem_res->start + 0xf0000UL;
|
|
p->end = p->start + 0xffffUL;
|
|
p->flags = IORESOURCE_BUSY;
|
|
request_resource(mem_res, p);
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return;
|
|
|
|
p->name = "Video ROM";
|
|
p->start = mem_res->start + 0xc0000UL;
|
|
p->end = p->start + 0x7fffUL;
|
|
p->flags = IORESOURCE_BUSY;
|
|
request_resource(mem_res, p);
|
|
}
|
|
|
|
/* Generic helper routines for PCI error reporting. */
|
|
void pci_scan_for_target_abort(struct pci_controller_info *p,
|
|
struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(pdev, &pbus->devices, bus_list) {
|
|
u16 status, error_bits;
|
|
|
|
pci_read_config_word(pdev, PCI_STATUS, &status);
|
|
error_bits =
|
|
(status & (PCI_STATUS_SIG_TARGET_ABORT |
|
|
PCI_STATUS_REC_TARGET_ABORT));
|
|
if (error_bits) {
|
|
pci_write_config_word(pdev, PCI_STATUS, error_bits);
|
|
printk("PCI%d(PBM%c): Device [%s] saw Target Abort [%016x]\n",
|
|
p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'),
|
|
pci_name(pdev), status);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_scan_for_target_abort(p, pbm, bus);
|
|
}
|
|
|
|
void pci_scan_for_master_abort(struct pci_controller_info *p,
|
|
struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(pdev, &pbus->devices, bus_list) {
|
|
u16 status, error_bits;
|
|
|
|
pci_read_config_word(pdev, PCI_STATUS, &status);
|
|
error_bits =
|
|
(status & (PCI_STATUS_REC_MASTER_ABORT));
|
|
if (error_bits) {
|
|
pci_write_config_word(pdev, PCI_STATUS, error_bits);
|
|
printk("PCI%d(PBM%c): Device [%s] received Master Abort [%016x]\n",
|
|
p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'),
|
|
pci_name(pdev), status);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_scan_for_master_abort(p, pbm, bus);
|
|
}
|
|
|
|
void pci_scan_for_parity_error(struct pci_controller_info *p,
|
|
struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(pdev, &pbus->devices, bus_list) {
|
|
u16 status, error_bits;
|
|
|
|
pci_read_config_word(pdev, PCI_STATUS, &status);
|
|
error_bits =
|
|
(status & (PCI_STATUS_PARITY |
|
|
PCI_STATUS_DETECTED_PARITY));
|
|
if (error_bits) {
|
|
pci_write_config_word(pdev, PCI_STATUS, error_bits);
|
|
printk("PCI%d(PBM%c): Device [%s] saw Parity Error [%016x]\n",
|
|
p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'),
|
|
pci_name(pdev), status);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_scan_for_parity_error(p, pbm, bus);
|
|
}
|