linux/drivers/dma/omap-dma.c
Russell King 3ed4d18f39 dmaengine: omap-dma: consolidate setup of CCR
Consolidate the setup of the channel control register.  Prepare the
basic value in the preparation of the DMA descriptor, and write it into
the register upon descriptor execution.

Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Vinod Koul <vinod.koul@intel.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-04-04 00:27:59 +01:00

969 lines
23 KiB
C

/*
* OMAP DMAengine support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/omap-dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of_dma.h>
#include <linux/of_device.h>
#include "virt-dma.h"
struct omap_dmadev {
struct dma_device ddev;
spinlock_t lock;
struct tasklet_struct task;
struct list_head pending;
struct omap_system_dma_plat_info *plat;
};
struct omap_chan {
struct virt_dma_chan vc;
struct list_head node;
struct omap_system_dma_plat_info *plat;
struct dma_slave_config cfg;
unsigned dma_sig;
bool cyclic;
bool paused;
int dma_ch;
struct omap_desc *desc;
unsigned sgidx;
};
struct omap_sg {
dma_addr_t addr;
uint32_t en; /* number of elements (24-bit) */
uint32_t fn; /* number of frames (16-bit) */
};
struct omap_desc {
struct virt_dma_desc vd;
enum dma_transfer_direction dir;
dma_addr_t dev_addr;
int16_t fi; /* for OMAP_DMA_SYNC_PACKET */
uint8_t es; /* OMAP_DMA_DATA_TYPE_xxx */
uint32_t ccr; /* CCR value */
uint16_t cicr; /* CICR value */
uint32_t csdp; /* CSDP value */
unsigned sglen;
struct omap_sg sg[0];
};
static const unsigned es_bytes[] = {
[OMAP_DMA_DATA_TYPE_S8] = 1,
[OMAP_DMA_DATA_TYPE_S16] = 2,
[OMAP_DMA_DATA_TYPE_S32] = 4,
};
static struct of_dma_filter_info omap_dma_info = {
.filter_fn = omap_dma_filter_fn,
};
static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
{
return container_of(d, struct omap_dmadev, ddev);
}
static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
{
return container_of(c, struct omap_chan, vc.chan);
}
static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
{
return container_of(t, struct omap_desc, vd.tx);
}
static void omap_dma_desc_free(struct virt_dma_desc *vd)
{
kfree(container_of(vd, struct omap_desc, vd));
}
static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
{
struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
uint32_t val;
if (__dma_omap15xx(od->plat->dma_attr))
c->plat->dma_write(0, CPC, c->dma_ch);
else
c->plat->dma_write(0, CDAC, c->dma_ch);
if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
val = c->plat->dma_read(CLNK_CTRL, c->dma_ch);
if (dma_omap1())
val &= ~(1 << 14);
val |= c->dma_ch | 1 << 15;
c->plat->dma_write(val, CLNK_CTRL, c->dma_ch);
} else if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
c->plat->dma_write(c->dma_ch, CLNK_CTRL, c->dma_ch);
/* Clear CSR */
if (dma_omap1())
c->plat->dma_read(CSR, c->dma_ch);
else
c->plat->dma_write(~0, CSR, c->dma_ch);
/* Enable interrupts */
c->plat->dma_write(d->cicr, CICR, c->dma_ch);
val = c->plat->dma_read(CCR, c->dma_ch);
if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
val |= OMAP_DMA_CCR_BUFFERING_DISABLE;
val |= OMAP_DMA_CCR_EN;
mb();
c->plat->dma_write(val, CCR, c->dma_ch);
}
static void omap_dma_stop(struct omap_chan *c)
{
struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
uint32_t val;
/* disable irq */
c->plat->dma_write(0, CICR, c->dma_ch);
/* Clear CSR */
if (dma_omap1())
c->plat->dma_read(CSR, c->dma_ch);
else
c->plat->dma_write(~0, CSR, c->dma_ch);
val = c->plat->dma_read(CCR, c->dma_ch);
if (od->plat->errata & DMA_ERRATA_i541 &&
val & OMAP_DMA_CCR_SEL_SRC_DST_SYNC) {
uint32_t sysconfig;
unsigned i;
sysconfig = c->plat->dma_read(OCP_SYSCONFIG, c->dma_ch);
val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
c->plat->dma_write(val, OCP_SYSCONFIG, c->dma_ch);
val = c->plat->dma_read(CCR, c->dma_ch);
val &= ~OMAP_DMA_CCR_EN;
c->plat->dma_write(val, CCR, c->dma_ch);
/* Wait for sDMA FIFO to drain */
for (i = 0; ; i++) {
val = c->plat->dma_read(CCR, c->dma_ch);
if (!(val & (OMAP_DMA_CCR_RD_ACTIVE | OMAP_DMA_CCR_WR_ACTIVE)))
break;
if (i > 100)
break;
udelay(5);
}
if (val & (OMAP_DMA_CCR_RD_ACTIVE | OMAP_DMA_CCR_WR_ACTIVE))
dev_err(c->vc.chan.device->dev,
"DMA drain did not complete on lch %d\n",
c->dma_ch);
c->plat->dma_write(sysconfig, OCP_SYSCONFIG, c->dma_ch);
} else {
val &= ~OMAP_DMA_CCR_EN;
c->plat->dma_write(val, CCR, c->dma_ch);
}
mb();
if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
val = c->plat->dma_read(CLNK_CTRL, c->dma_ch);
if (dma_omap1())
val |= 1 << 14; /* set the STOP_LNK bit */
else
val &= ~(1 << 15); /* Clear the ENABLE_LNK bit */
c->plat->dma_write(val, CLNK_CTRL, c->dma_ch);
}
}
static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d,
unsigned idx)
{
struct omap_sg *sg = d->sg + idx;
if (d->dir == DMA_DEV_TO_MEM) {
c->plat->dma_write(sg->addr, CDSA, c->dma_ch);
c->plat->dma_write(0, CDEI, c->dma_ch);
c->plat->dma_write(0, CDFI, c->dma_ch);
} else {
c->plat->dma_write(sg->addr, CSSA, c->dma_ch);
c->plat->dma_write(0, CSEI, c->dma_ch);
c->plat->dma_write(0, CSFI, c->dma_ch);
}
c->plat->dma_write(sg->en, CEN, c->dma_ch);
c->plat->dma_write(sg->fn, CFN, c->dma_ch);
omap_dma_start(c, d);
}
static void omap_dma_start_desc(struct omap_chan *c)
{
struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
struct omap_desc *d;
if (!vd) {
c->desc = NULL;
return;
}
list_del(&vd->node);
c->desc = d = to_omap_dma_desc(&vd->tx);
c->sgidx = 0;
c->plat->dma_write(d->ccr, CCR, c->dma_ch);
if (dma_omap1())
c->plat->dma_write(d->ccr >> 16, CCR2, c->dma_ch);
if (d->dir == DMA_DEV_TO_MEM) {
c->plat->dma_write(d->dev_addr, CSSA, c->dma_ch);
c->plat->dma_write(0, CSEI, c->dma_ch);
c->plat->dma_write(d->fi, CSFI, c->dma_ch);
} else {
c->plat->dma_write(d->dev_addr, CDSA, c->dma_ch);
c->plat->dma_write(0, CDEI, c->dma_ch);
c->plat->dma_write(d->fi, CDFI, c->dma_ch);
}
c->plat->dma_write(d->csdp, CSDP, c->dma_ch);
omap_dma_start_sg(c, d, 0);
}
static void omap_dma_callback(int ch, u16 status, void *data)
{
struct omap_chan *c = data;
struct omap_desc *d;
unsigned long flags;
spin_lock_irqsave(&c->vc.lock, flags);
d = c->desc;
if (d) {
if (!c->cyclic) {
if (++c->sgidx < d->sglen) {
omap_dma_start_sg(c, d, c->sgidx);
} else {
omap_dma_start_desc(c);
vchan_cookie_complete(&d->vd);
}
} else {
vchan_cyclic_callback(&d->vd);
}
}
spin_unlock_irqrestore(&c->vc.lock, flags);
}
/*
* This callback schedules all pending channels. We could be more
* clever here by postponing allocation of the real DMA channels to
* this point, and freeing them when our virtual channel becomes idle.
*
* We would then need to deal with 'all channels in-use'
*/
static void omap_dma_sched(unsigned long data)
{
struct omap_dmadev *d = (struct omap_dmadev *)data;
LIST_HEAD(head);
spin_lock_irq(&d->lock);
list_splice_tail_init(&d->pending, &head);
spin_unlock_irq(&d->lock);
while (!list_empty(&head)) {
struct omap_chan *c = list_first_entry(&head,
struct omap_chan, node);
spin_lock_irq(&c->vc.lock);
list_del_init(&c->node);
omap_dma_start_desc(c);
spin_unlock_irq(&c->vc.lock);
}
}
static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct omap_chan *c = to_omap_dma_chan(chan);
dev_dbg(c->vc.chan.device->dev, "allocating channel for %u\n", c->dma_sig);
return omap_request_dma(c->dma_sig, "DMA engine",
omap_dma_callback, c, &c->dma_ch);
}
static void omap_dma_free_chan_resources(struct dma_chan *chan)
{
struct omap_chan *c = to_omap_dma_chan(chan);
vchan_free_chan_resources(&c->vc);
omap_free_dma(c->dma_ch);
dev_dbg(c->vc.chan.device->dev, "freeing channel for %u\n", c->dma_sig);
}
static size_t omap_dma_sg_size(struct omap_sg *sg)
{
return sg->en * sg->fn;
}
static size_t omap_dma_desc_size(struct omap_desc *d)
{
unsigned i;
size_t size;
for (size = i = 0; i < d->sglen; i++)
size += omap_dma_sg_size(&d->sg[i]);
return size * es_bytes[d->es];
}
static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
{
unsigned i;
size_t size, es_size = es_bytes[d->es];
for (size = i = 0; i < d->sglen; i++) {
size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
if (size)
size += this_size;
else if (addr >= d->sg[i].addr &&
addr < d->sg[i].addr + this_size)
size += d->sg[i].addr + this_size - addr;
}
return size;
}
static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
{
struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
dma_addr_t addr;
if (__dma_omap15xx(od->plat->dma_attr))
addr = c->plat->dma_read(CPC, c->dma_ch);
else
addr = c->plat->dma_read(CSAC, c->dma_ch);
if (od->plat->errata & DMA_ERRATA_3_3 && addr == 0)
addr = c->plat->dma_read(CSAC, c->dma_ch);
if (!__dma_omap15xx(od->plat->dma_attr)) {
/*
* CDAC == 0 indicates that the DMA transfer on the channel has
* not been started (no data has been transferred so far).
* Return the programmed source start address in this case.
*/
if (c->plat->dma_read(CDAC, c->dma_ch))
addr = c->plat->dma_read(CSAC, c->dma_ch);
else
addr = c->plat->dma_read(CSSA, c->dma_ch);
}
if (dma_omap1())
addr |= c->plat->dma_read(CSSA, c->dma_ch) & 0xffff0000;
return addr;
}
static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
{
struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
dma_addr_t addr;
if (__dma_omap15xx(od->plat->dma_attr))
addr = c->plat->dma_read(CPC, c->dma_ch);
else
addr = c->plat->dma_read(CDAC, c->dma_ch);
/*
* omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
* read before the DMA controller finished disabling the channel.
*/
if (!__dma_omap15xx(od->plat->dma_attr) && addr == 0) {
addr = c->plat->dma_read(CDAC, c->dma_ch);
/*
* CDAC == 0 indicates that the DMA transfer on the channel has
* not been started (no data has been transferred so far).
* Return the programmed destination start address in this case.
*/
if (addr == 0)
addr = c->plat->dma_read(CDSA, c->dma_ch);
}
if (dma_omap1())
addr |= c->plat->dma_read(CDSA, c->dma_ch) & 0xffff0000;
return addr;
}
static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct omap_chan *c = to_omap_dma_chan(chan);
struct virt_dma_desc *vd;
enum dma_status ret;
unsigned long flags;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&c->vc.lock, flags);
vd = vchan_find_desc(&c->vc, cookie);
if (vd) {
txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
} else if (c->desc && c->desc->vd.tx.cookie == cookie) {
struct omap_desc *d = c->desc;
dma_addr_t pos;
if (d->dir == DMA_MEM_TO_DEV)
pos = omap_dma_get_src_pos(c);
else if (d->dir == DMA_DEV_TO_MEM)
pos = omap_dma_get_dst_pos(c);
else
pos = 0;
txstate->residue = omap_dma_desc_size_pos(d, pos);
} else {
txstate->residue = 0;
}
spin_unlock_irqrestore(&c->vc.lock, flags);
return ret;
}
static void omap_dma_issue_pending(struct dma_chan *chan)
{
struct omap_chan *c = to_omap_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&c->vc.lock, flags);
if (vchan_issue_pending(&c->vc) && !c->desc) {
/*
* c->cyclic is used only by audio and in this case the DMA need
* to be started without delay.
*/
if (!c->cyclic) {
struct omap_dmadev *d = to_omap_dma_dev(chan->device);
spin_lock(&d->lock);
if (list_empty(&c->node))
list_add_tail(&c->node, &d->pending);
spin_unlock(&d->lock);
tasklet_schedule(&d->task);
} else {
omap_dma_start_desc(c);
}
}
spin_unlock_irqrestore(&c->vc.lock, flags);
}
static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
{
struct omap_chan *c = to_omap_dma_chan(chan);
enum dma_slave_buswidth dev_width;
struct scatterlist *sgent;
struct omap_desc *d;
dma_addr_t dev_addr;
unsigned i, j = 0, es, en, frame_bytes;
u32 burst;
if (dir == DMA_DEV_TO_MEM) {
dev_addr = c->cfg.src_addr;
dev_width = c->cfg.src_addr_width;
burst = c->cfg.src_maxburst;
} else if (dir == DMA_MEM_TO_DEV) {
dev_addr = c->cfg.dst_addr;
dev_width = c->cfg.dst_addr_width;
burst = c->cfg.dst_maxburst;
} else {
dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
return NULL;
}
/* Bus width translates to the element size (ES) */
switch (dev_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
es = OMAP_DMA_DATA_TYPE_S8;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
es = OMAP_DMA_DATA_TYPE_S16;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
es = OMAP_DMA_DATA_TYPE_S32;
break;
default: /* not reached */
return NULL;
}
/* Now allocate and setup the descriptor. */
d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
if (!d)
return NULL;
d->dir = dir;
d->dev_addr = dev_addr;
d->es = es;
d->ccr = 0;
if (dir == DMA_DEV_TO_MEM)
d->ccr |= OMAP_DMA_AMODE_POST_INC << 14 |
OMAP_DMA_AMODE_CONSTANT << 12;
else
d->ccr |= OMAP_DMA_AMODE_CONSTANT << 14 |
OMAP_DMA_AMODE_POST_INC << 12;
d->cicr = OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ;
d->csdp = es;
if (dma_omap1()) {
d->ccr |= 1 << 5; /* frame sync */
if (__dma_omap16xx(od->plat->dma_attr)) {
d->ccr |= 1 << 10; /* disable 3.0/3.1 compatibility mode */
/* Duplicate what plat-omap/dma.c does */
d->ccr |= c->dma_ch + 1;
} else {
d->ccr |= c->dma_sig & 0x1f;
}
d->cicr |= OMAP1_DMA_TOUT_IRQ;
if (dir == DMA_DEV_TO_MEM)
d->csdp |= OMAP_DMA_PORT_EMIFF << 9 |
OMAP_DMA_PORT_TIPB << 2;
else
d->csdp |= OMAP_DMA_PORT_TIPB << 9 |
OMAP_DMA_PORT_EMIFF << 2;
} else {
d->ccr |= (c->dma_sig & ~0x1f) << 14;
d->ccr |= c->dma_sig & 0x1f;
d->ccr |= 1 << 5; /* frame sync */
if (dir == DMA_DEV_TO_MEM)
d->ccr |= 1 << 24; /* source synch */
d->cicr |= OMAP2_DMA_MISALIGNED_ERR_IRQ | OMAP2_DMA_TRANS_ERR_IRQ;
}
/*
* Build our scatterlist entries: each contains the address,
* the number of elements (EN) in each frame, and the number of
* frames (FN). Number of bytes for this entry = ES * EN * FN.
*
* Burst size translates to number of elements with frame sync.
* Note: DMA engine defines burst to be the number of dev-width
* transfers.
*/
en = burst;
frame_bytes = es_bytes[es] * en;
for_each_sg(sgl, sgent, sglen, i) {
d->sg[j].addr = sg_dma_address(sgent);
d->sg[j].en = en;
d->sg[j].fn = sg_dma_len(sgent) / frame_bytes;
j++;
}
d->sglen = j;
return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}
static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction dir, unsigned long flags,
void *context)
{
struct omap_dmadev *od = to_omap_dma_dev(chan->device);
struct omap_chan *c = to_omap_dma_chan(chan);
enum dma_slave_buswidth dev_width;
struct omap_desc *d;
dma_addr_t dev_addr;
unsigned es;
u32 burst;
if (dir == DMA_DEV_TO_MEM) {
dev_addr = c->cfg.src_addr;
dev_width = c->cfg.src_addr_width;
burst = c->cfg.src_maxburst;
} else if (dir == DMA_MEM_TO_DEV) {
dev_addr = c->cfg.dst_addr;
dev_width = c->cfg.dst_addr_width;
burst = c->cfg.dst_maxburst;
} else {
dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
return NULL;
}
/* Bus width translates to the element size (ES) */
switch (dev_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
es = OMAP_DMA_DATA_TYPE_S8;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
es = OMAP_DMA_DATA_TYPE_S16;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
es = OMAP_DMA_DATA_TYPE_S32;
break;
default: /* not reached */
return NULL;
}
/* Now allocate and setup the descriptor. */
d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
if (!d)
return NULL;
d->dir = dir;
d->dev_addr = dev_addr;
d->fi = burst;
d->es = es;
d->sg[0].addr = buf_addr;
d->sg[0].en = period_len / es_bytes[es];
d->sg[0].fn = buf_len / period_len;
d->sglen = 1;
d->ccr = 0;
if (__dma_omap15xx(od->plat->dma_attr))
d->ccr = 3 << 8;
if (dir == DMA_DEV_TO_MEM)
d->ccr |= OMAP_DMA_AMODE_POST_INC << 14 |
OMAP_DMA_AMODE_CONSTANT << 12;
else
d->ccr |= OMAP_DMA_AMODE_CONSTANT << 14 |
OMAP_DMA_AMODE_POST_INC << 12;
d->cicr = OMAP_DMA_DROP_IRQ;
if (flags & DMA_PREP_INTERRUPT)
d->cicr |= OMAP_DMA_FRAME_IRQ;
d->csdp = es;
if (dma_omap1()) {
if (__dma_omap16xx(od->plat->dma_attr)) {
d->ccr |= 1 << 10; /* disable 3.0/3.1 compatibility mode */
/* Duplicate what plat-omap/dma.c does */
d->ccr |= c->dma_ch + 1;
} else {
d->ccr |= c->dma_sig & 0x1f;
}
d->cicr |= OMAP1_DMA_TOUT_IRQ;
if (dir == DMA_DEV_TO_MEM)
d->csdp |= OMAP_DMA_PORT_EMIFF << 9 |
OMAP_DMA_PORT_MPUI << 2;
else
d->csdp |= OMAP_DMA_PORT_MPUI << 9 |
OMAP_DMA_PORT_EMIFF << 2;
} else {
d->ccr |= (c->dma_sig & ~0x1f) << 14;
d->ccr |= c->dma_sig & 0x1f;
if (burst)
d->ccr |= 1 << 18 | 1 << 5; /* packet */
if (dir == DMA_DEV_TO_MEM)
d->ccr |= 1 << 24; /* source synch */
d->cicr |= OMAP2_DMA_MISALIGNED_ERR_IRQ | OMAP2_DMA_TRANS_ERR_IRQ;
/* src and dst burst mode 16 */
d->csdp |= 3 << 14 | 3 << 7;
}
c->cyclic = true;
return vchan_tx_prep(&c->vc, &d->vd, flags);
}
static int omap_dma_slave_config(struct omap_chan *c, struct dma_slave_config *cfg)
{
if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
return -EINVAL;
memcpy(&c->cfg, cfg, sizeof(c->cfg));
return 0;
}
static int omap_dma_terminate_all(struct omap_chan *c)
{
struct omap_dmadev *d = to_omap_dma_dev(c->vc.chan.device);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&c->vc.lock, flags);
/* Prevent this channel being scheduled */
spin_lock(&d->lock);
list_del_init(&c->node);
spin_unlock(&d->lock);
/*
* Stop DMA activity: we assume the callback will not be called
* after omap_dma_stop() returns (even if it does, it will see
* c->desc is NULL and exit.)
*/
if (c->desc) {
c->desc = NULL;
/* Avoid stopping the dma twice */
if (!c->paused)
omap_dma_stop(c);
}
if (c->cyclic) {
c->cyclic = false;
c->paused = false;
}
vchan_get_all_descriptors(&c->vc, &head);
spin_unlock_irqrestore(&c->vc.lock, flags);
vchan_dma_desc_free_list(&c->vc, &head);
return 0;
}
static int omap_dma_pause(struct omap_chan *c)
{
/* Pause/Resume only allowed with cyclic mode */
if (!c->cyclic)
return -EINVAL;
if (!c->paused) {
omap_dma_stop(c);
c->paused = true;
}
return 0;
}
static int omap_dma_resume(struct omap_chan *c)
{
/* Pause/Resume only allowed with cyclic mode */
if (!c->cyclic)
return -EINVAL;
if (c->paused) {
omap_dma_start(c, c->desc);
c->paused = false;
}
return 0;
}
static int omap_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct omap_chan *c = to_omap_dma_chan(chan);
int ret;
switch (cmd) {
case DMA_SLAVE_CONFIG:
ret = omap_dma_slave_config(c, (struct dma_slave_config *)arg);
break;
case DMA_TERMINATE_ALL:
ret = omap_dma_terminate_all(c);
break;
case DMA_PAUSE:
ret = omap_dma_pause(c);
break;
case DMA_RESUME:
ret = omap_dma_resume(c);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int omap_dma_chan_init(struct omap_dmadev *od, int dma_sig)
{
struct omap_chan *c;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return -ENOMEM;
c->plat = od->plat;
c->dma_sig = dma_sig;
c->vc.desc_free = omap_dma_desc_free;
vchan_init(&c->vc, &od->ddev);
INIT_LIST_HEAD(&c->node);
od->ddev.chancnt++;
return 0;
}
static void omap_dma_free(struct omap_dmadev *od)
{
tasklet_kill(&od->task);
while (!list_empty(&od->ddev.channels)) {
struct omap_chan *c = list_first_entry(&od->ddev.channels,
struct omap_chan, vc.chan.device_node);
list_del(&c->vc.chan.device_node);
tasklet_kill(&c->vc.task);
kfree(c);
}
}
static int omap_dma_probe(struct platform_device *pdev)
{
struct omap_dmadev *od;
int rc, i;
od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
if (!od)
return -ENOMEM;
od->plat = omap_get_plat_info();
if (!od->plat)
return -EPROBE_DEFER;
dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
od->ddev.device_tx_status = omap_dma_tx_status;
od->ddev.device_issue_pending = omap_dma_issue_pending;
od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
od->ddev.device_control = omap_dma_control;
od->ddev.dev = &pdev->dev;
INIT_LIST_HEAD(&od->ddev.channels);
INIT_LIST_HEAD(&od->pending);
spin_lock_init(&od->lock);
tasklet_init(&od->task, omap_dma_sched, (unsigned long)od);
for (i = 0; i < 127; i++) {
rc = omap_dma_chan_init(od, i);
if (rc) {
omap_dma_free(od);
return rc;
}
}
rc = dma_async_device_register(&od->ddev);
if (rc) {
pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
rc);
omap_dma_free(od);
return rc;
}
platform_set_drvdata(pdev, od);
if (pdev->dev.of_node) {
omap_dma_info.dma_cap = od->ddev.cap_mask;
/* Device-tree DMA controller registration */
rc = of_dma_controller_register(pdev->dev.of_node,
of_dma_simple_xlate, &omap_dma_info);
if (rc) {
pr_warn("OMAP-DMA: failed to register DMA controller\n");
dma_async_device_unregister(&od->ddev);
omap_dma_free(od);
}
}
dev_info(&pdev->dev, "OMAP DMA engine driver\n");
return rc;
}
static int omap_dma_remove(struct platform_device *pdev)
{
struct omap_dmadev *od = platform_get_drvdata(pdev);
if (pdev->dev.of_node)
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&od->ddev);
omap_dma_free(od);
return 0;
}
static const struct of_device_id omap_dma_match[] = {
{ .compatible = "ti,omap2420-sdma", },
{ .compatible = "ti,omap2430-sdma", },
{ .compatible = "ti,omap3430-sdma", },
{ .compatible = "ti,omap3630-sdma", },
{ .compatible = "ti,omap4430-sdma", },
{},
};
MODULE_DEVICE_TABLE(of, omap_dma_match);
static struct platform_driver omap_dma_driver = {
.probe = omap_dma_probe,
.remove = omap_dma_remove,
.driver = {
.name = "omap-dma-engine",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(omap_dma_match),
},
};
bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
{
if (chan->device->dev->driver == &omap_dma_driver.driver) {
struct omap_chan *c = to_omap_dma_chan(chan);
unsigned req = *(unsigned *)param;
return req == c->dma_sig;
}
return false;
}
EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
static int omap_dma_init(void)
{
return platform_driver_register(&omap_dma_driver);
}
subsys_initcall(omap_dma_init);
static void __exit omap_dma_exit(void)
{
platform_driver_unregister(&omap_dma_driver);
}
module_exit(omap_dma_exit);
MODULE_AUTHOR("Russell King");
MODULE_LICENSE("GPL");