linux/arch/arm/mm/init.c
Russell King 92a8cbed29 [PATCH] ARM: Remove explicit page-alignments in memory init
Since meminfo.bank[] array contains page-aligned start/size, we
no longer need to explicitly round up/down the addresses when
converting to PFNs.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2005-06-22 21:47:25 +01:00

618 lines
14 KiB
C

/*
* linux/arch/arm/mm/init.c
*
* Copyright (C) 1995-2002 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/swap.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
#include <linux/initrd.h>
#include <asm/mach-types.h>
#include <asm/hardware.h>
#include <asm/setup.h>
#include <asm/tlb.h>
#include <asm/mach/arch.h>
#include <asm/mach/map.h>
#define TABLE_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t))
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
extern unsigned long phys_initrd_start;
extern unsigned long phys_initrd_size;
/*
* The sole use of this is to pass memory configuration
* data from paging_init to mem_init.
*/
static struct meminfo meminfo __initdata = { 0, };
/*
* empty_zero_page is a special page that is used for
* zero-initialized data and COW.
*/
struct page *empty_zero_page;
void show_mem(void)
{
int free = 0, total = 0, reserved = 0;
int shared = 0, cached = 0, slab = 0, node;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
for_each_online_node(node) {
struct page *page, *end;
page = NODE_MEM_MAP(node);
end = page + NODE_DATA(node)->node_spanned_pages;
do {
total++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (PageSlab(page))
slab++;
else if (!page_count(page))
free++;
else
shared += page_count(page) - 1;
page++;
} while (page < end);
}
printk("%d pages of RAM\n", total);
printk("%d free pages\n", free);
printk("%d reserved pages\n", reserved);
printk("%d slab pages\n", slab);
printk("%d pages shared\n", shared);
printk("%d pages swap cached\n", cached);
}
struct node_info {
unsigned int start;
unsigned int end;
int bootmap_pages;
};
#define O_PFN_DOWN(x) ((x) >> PAGE_SHIFT)
#define O_PFN_UP(x) (PAGE_ALIGN(x) >> PAGE_SHIFT)
/*
* FIXME: We really want to avoid allocating the bootmap bitmap
* over the top of the initrd. Hopefully, this is located towards
* the start of a bank, so if we allocate the bootmap bitmap at
* the end, we won't clash.
*/
static unsigned int __init
find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
{
unsigned int start_pfn, bank, bootmap_pfn;
start_pfn = O_PFN_UP(__pa(&_end));
bootmap_pfn = 0;
for (bank = 0; bank < mi->nr_banks; bank ++) {
unsigned int start, end;
if (mi->bank[bank].node != node)
continue;
start = mi->bank[bank].start >> PAGE_SHIFT;
end = (mi->bank[bank].size +
mi->bank[bank].start) >> PAGE_SHIFT;
if (end < start_pfn)
continue;
if (start < start_pfn)
start = start_pfn;
if (end <= start)
continue;
if (end - start >= bootmap_pages) {
bootmap_pfn = start;
break;
}
}
if (bootmap_pfn == 0)
BUG();
return bootmap_pfn;
}
/*
* Scan the memory info structure and pull out:
* - the end of memory
* - the number of nodes
* - the pfn range of each node
* - the number of bootmem bitmap pages
*/
static unsigned int __init
find_memend_and_nodes(struct meminfo *mi, struct node_info *np)
{
unsigned int i, bootmem_pages = 0, memend_pfn = 0;
for (i = 0; i < MAX_NUMNODES; i++) {
np[i].start = -1U;
np[i].end = 0;
np[i].bootmap_pages = 0;
}
for (i = 0; i < mi->nr_banks; i++) {
unsigned long start, end;
int node;
if (mi->bank[i].size == 0) {
/*
* Mark this bank with an invalid node number
*/
mi->bank[i].node = -1;
continue;
}
node = mi->bank[i].node;
/*
* Make sure we haven't exceeded the maximum number of nodes
* that we have in this configuration. If we have, we're in
* trouble. (maybe we ought to limit, instead of bugging?)
*/
if (node >= MAX_NUMNODES)
BUG();
node_set_online(node);
/*
* Get the start and end pfns for this bank
*/
start = mi->bank[i].start >> PAGE_SHIFT;
end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT;
if (np[node].start > start)
np[node].start = start;
if (np[node].end < end)
np[node].end = end;
if (memend_pfn < end)
memend_pfn = end;
}
/*
* Calculate the number of pages we require to
* store the bootmem bitmaps.
*/
for_each_online_node(i) {
if (np[i].end == 0)
continue;
np[i].bootmap_pages = bootmem_bootmap_pages(np[i].end -
np[i].start);
bootmem_pages += np[i].bootmap_pages;
}
high_memory = __va(memend_pfn << PAGE_SHIFT);
/*
* This doesn't seem to be used by the Linux memory
* manager any more. If we can get rid of it, we
* also get rid of some of the stuff above as well.
*
* Note: max_low_pfn and max_pfn reflect the number
* of _pages_ in the system, not the maximum PFN.
*/
max_low_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET);
max_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET);
return bootmem_pages;
}
static int __init check_initrd(struct meminfo *mi)
{
int initrd_node = -2;
#ifdef CONFIG_BLK_DEV_INITRD
unsigned long end = phys_initrd_start + phys_initrd_size;
/*
* Make sure that the initrd is within a valid area of
* memory.
*/
if (phys_initrd_size) {
unsigned int i;
initrd_node = -1;
for (i = 0; i < mi->nr_banks; i++) {
unsigned long bank_end;
bank_end = mi->bank[i].start + mi->bank[i].size;
if (mi->bank[i].start <= phys_initrd_start &&
end <= bank_end)
initrd_node = mi->bank[i].node;
}
}
if (initrd_node == -1) {
printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
"physical memory - disabling initrd\n",
phys_initrd_start, end);
phys_initrd_start = phys_initrd_size = 0;
}
#endif
return initrd_node;
}
/*
* Reserve the various regions of node 0
*/
static __init void reserve_node_zero(unsigned int bootmap_pfn, unsigned int bootmap_pages)
{
pg_data_t *pgdat = NODE_DATA(0);
unsigned long res_size = 0;
/*
* Register the kernel text and data with bootmem.
* Note that this can only be in node 0.
*/
#ifdef CONFIG_XIP_KERNEL
reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
#else
reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
#endif
/*
* Reserve the page tables. These are already in use,
* and can only be in node 0.
*/
reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
PTRS_PER_PGD * sizeof(pgd_t));
/*
* And don't forget to reserve the allocator bitmap,
* which will be freed later.
*/
reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT,
bootmap_pages << PAGE_SHIFT);
/*
* Hmm... This should go elsewhere, but we really really need to
* stop things allocating the low memory; ideally we need a better
* implementation of GFP_DMA which does not assume that DMA-able
* memory starts at zero.
*/
if (machine_is_integrator() || machine_is_cintegrator())
res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
/*
* These should likewise go elsewhere. They pre-reserve the
* screen memory region at the start of main system memory.
*/
if (machine_is_edb7211())
res_size = 0x00020000;
if (machine_is_p720t())
res_size = 0x00014000;
#ifdef CONFIG_SA1111
/*
* Because of the SA1111 DMA bug, we want to preserve our
* precious DMA-able memory...
*/
res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
#endif
if (res_size)
reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
}
/*
* Register all available RAM in this node with the bootmem allocator.
*/
static inline void free_bootmem_node_bank(int node, struct meminfo *mi)
{
pg_data_t *pgdat = NODE_DATA(node);
int bank;
for (bank = 0; bank < mi->nr_banks; bank++)
if (mi->bank[bank].node == node)
free_bootmem_node(pgdat, mi->bank[bank].start,
mi->bank[bank].size);
}
/*
* Initialise the bootmem allocator for all nodes. This is called
* early during the architecture specific initialisation.
*/
static void __init bootmem_init(struct meminfo *mi)
{
struct node_info node_info[MAX_NUMNODES], *np = node_info;
unsigned int bootmap_pages, bootmap_pfn, map_pg;
int node, initrd_node;
bootmap_pages = find_memend_and_nodes(mi, np);
bootmap_pfn = find_bootmap_pfn(0, mi, bootmap_pages);
initrd_node = check_initrd(mi);
map_pg = bootmap_pfn;
/*
* Initialise the bootmem nodes.
*
* What we really want to do is:
*
* unmap_all_regions_except_kernel();
* for_each_node_in_reverse_order(node) {
* map_node(node);
* allocate_bootmem_map(node);
* init_bootmem_node(node);
* free_bootmem_node(node);
* }
*
* but this is a 2.5-type change. For now, we just set
* the nodes up in reverse order.
*
* (we could also do with rolling bootmem_init and paging_init
* into one generic "memory_init" type function).
*/
np += num_online_nodes() - 1;
for (node = num_online_nodes() - 1; node >= 0; node--, np--) {
/*
* If there are no pages in this node, ignore it.
* Note that node 0 must always have some pages.
*/
if (np->end == 0 || !node_online(node)) {
if (node == 0)
BUG();
continue;
}
/*
* Initialise the bootmem allocator.
*/
init_bootmem_node(NODE_DATA(node), map_pg, np->start, np->end);
free_bootmem_node_bank(node, mi);
map_pg += np->bootmap_pages;
/*
* If this is node 0, we need to reserve some areas ASAP -
* we may use bootmem on node 0 to setup the other nodes.
*/
if (node == 0)
reserve_node_zero(bootmap_pfn, bootmap_pages);
}
#ifdef CONFIG_BLK_DEV_INITRD
if (phys_initrd_size && initrd_node >= 0) {
reserve_bootmem_node(NODE_DATA(initrd_node), phys_initrd_start,
phys_initrd_size);
initrd_start = __phys_to_virt(phys_initrd_start);
initrd_end = initrd_start + phys_initrd_size;
}
#endif
BUG_ON(map_pg != bootmap_pfn + bootmap_pages);
}
/*
* paging_init() sets up the page tables, initialises the zone memory
* maps, and sets up the zero page, bad page and bad page tables.
*/
void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
{
void *zero_page;
int node;
bootmem_init(mi);
memcpy(&meminfo, mi, sizeof(meminfo));
/*
* allocate the zero page. Note that we count on this going ok.
*/
zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
/*
* initialise the page tables.
*/
memtable_init(mi);
if (mdesc->map_io)
mdesc->map_io();
flush_tlb_all();
/*
* initialise the zones within each node
*/
for_each_online_node(node) {
unsigned long zone_size[MAX_NR_ZONES];
unsigned long zhole_size[MAX_NR_ZONES];
struct bootmem_data *bdata;
pg_data_t *pgdat;
int i;
/*
* Initialise the zone size information.
*/
for (i = 0; i < MAX_NR_ZONES; i++) {
zone_size[i] = 0;
zhole_size[i] = 0;
}
pgdat = NODE_DATA(node);
bdata = pgdat->bdata;
/*
* The size of this node has already been determined.
* If we need to do anything fancy with the allocation
* of this memory to the zones, now is the time to do
* it.
*/
zone_size[0] = bdata->node_low_pfn -
(bdata->node_boot_start >> PAGE_SHIFT);
/*
* If this zone has zero size, skip it.
*/
if (!zone_size[0])
continue;
/*
* For each bank in this node, calculate the size of the
* holes. holes = node_size - sum(bank_sizes_in_node)
*/
zhole_size[0] = zone_size[0];
for (i = 0; i < mi->nr_banks; i++) {
if (mi->bank[i].node != node)
continue;
zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
}
/*
* Adjust the sizes according to any special
* requirements for this machine type.
*/
arch_adjust_zones(node, zone_size, zhole_size);
free_area_init_node(node, pgdat, zone_size,
bdata->node_boot_start >> PAGE_SHIFT, zhole_size);
}
/*
* finish off the bad pages once
* the mem_map is initialised
*/
memzero(zero_page, PAGE_SIZE);
empty_zero_page = virt_to_page(zero_page);
flush_dcache_page(empty_zero_page);
}
static inline void free_area(unsigned long addr, unsigned long end, char *s)
{
unsigned int size = (end - addr) >> 10;
for (; addr < end; addr += PAGE_SIZE) {
struct page *page = virt_to_page(addr);
ClearPageReserved(page);
set_page_count(page, 1);
free_page(addr);
totalram_pages++;
}
if (size && s)
printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
}
/*
* mem_init() marks the free areas in the mem_map and tells us how much
* memory is free. This is done after various parts of the system have
* claimed their memory after the kernel image.
*/
void __init mem_init(void)
{
unsigned int codepages, datapages, initpages;
int i, node;
codepages = &_etext - &_text;
datapages = &_end - &__data_start;
initpages = &__init_end - &__init_begin;
#ifndef CONFIG_DISCONTIGMEM
max_mapnr = virt_to_page(high_memory) - mem_map;
#endif
/*
* We may have non-contiguous memory.
*/
if (meminfo.nr_banks != 1)
create_memmap_holes(&meminfo);
/* this will put all unused low memory onto the freelists */
for_each_online_node(node) {
pg_data_t *pgdat = NODE_DATA(node);
if (pgdat->node_spanned_pages != 0)
totalram_pages += free_all_bootmem_node(pgdat);
}
#ifdef CONFIG_SA1111
/* now that our DMA memory is actually so designated, we can free it */
free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
#endif
/*
* Since our memory may not be contiguous, calculate the
* real number of pages we have in this system
*/
printk(KERN_INFO "Memory:");
num_physpages = 0;
for (i = 0; i < meminfo.nr_banks; i++) {
num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
printk(" %ldMB", meminfo.bank[i].size >> 20);
}
printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
"%dK data, %dK init)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
codepages >> 10, datapages >> 10, initpages >> 10);
if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
extern int sysctl_overcommit_memory;
/*
* On a machine this small we won't get
* anywhere without overcommit, so turn
* it on by default.
*/
sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
}
}
void free_initmem(void)
{
if (!machine_is_integrator() && !machine_is_cintegrator()) {
free_area((unsigned long)(&__init_begin),
(unsigned long)(&__init_end),
"init");
}
}
#ifdef CONFIG_BLK_DEV_INITRD
static int keep_initrd;
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (!keep_initrd)
free_area(start, end, "initrd");
}
static int __init keepinitrd_setup(char *__unused)
{
keep_initrd = 1;
return 1;
}
__setup("keepinitrd", keepinitrd_setup);
#endif