mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-22 17:33:01 +00:00
5dfe4c964a
Many struct file_operations in the kernel can be "const". Marking them const moves these to the .rodata section, which avoids false sharing with potential dirty data. In addition it'll catch accidental writes at compile time to these shared resources. [akpm@osdl.org: sparc64 fix] Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
738 lines
18 KiB
C
738 lines
18 KiB
C
/*
|
|
* c 2001 PPC 64 Team, IBM Corp
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* /dev/nvram driver for PPC64
|
|
*
|
|
* This perhaps should live in drivers/char
|
|
*
|
|
* TODO: Split the /dev/nvram part (that one can use
|
|
* drivers/char/generic_nvram.c) from the arch & partition
|
|
* parsing code.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/nvram.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/nvram.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/machdep.h>
|
|
|
|
#undef DEBUG_NVRAM
|
|
|
|
static int nvram_scan_partitions(void);
|
|
static int nvram_setup_partition(void);
|
|
static int nvram_create_os_partition(void);
|
|
static int nvram_remove_os_partition(void);
|
|
|
|
static struct nvram_partition * nvram_part;
|
|
static long nvram_error_log_index = -1;
|
|
static long nvram_error_log_size = 0;
|
|
|
|
int no_logging = 1; /* Until we initialize everything,
|
|
* make sure we don't try logging
|
|
* anything */
|
|
|
|
extern volatile int error_log_cnt;
|
|
|
|
struct err_log_info {
|
|
int error_type;
|
|
unsigned int seq_num;
|
|
};
|
|
|
|
static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
|
|
{
|
|
int size;
|
|
|
|
if (ppc_md.nvram_size == NULL)
|
|
return -ENODEV;
|
|
size = ppc_md.nvram_size();
|
|
|
|
switch (origin) {
|
|
case 1:
|
|
offset += file->f_pos;
|
|
break;
|
|
case 2:
|
|
offset += size;
|
|
break;
|
|
}
|
|
if (offset < 0)
|
|
return -EINVAL;
|
|
file->f_pos = offset;
|
|
return file->f_pos;
|
|
}
|
|
|
|
|
|
static ssize_t dev_nvram_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
ssize_t ret;
|
|
char *tmp = NULL;
|
|
ssize_t size;
|
|
|
|
ret = -ENODEV;
|
|
if (!ppc_md.nvram_size)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
size = ppc_md.nvram_size();
|
|
if (*ppos >= size || size < 0)
|
|
goto out;
|
|
|
|
count = min_t(size_t, count, size - *ppos);
|
|
count = min(count, PAGE_SIZE);
|
|
|
|
ret = -ENOMEM;
|
|
tmp = kmalloc(count, GFP_KERNEL);
|
|
if (!tmp)
|
|
goto out;
|
|
|
|
ret = ppc_md.nvram_read(tmp, count, ppos);
|
|
if (ret <= 0)
|
|
goto out;
|
|
|
|
if (copy_to_user(buf, tmp, ret))
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
kfree(tmp);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
ssize_t ret;
|
|
char *tmp = NULL;
|
|
ssize_t size;
|
|
|
|
ret = -ENODEV;
|
|
if (!ppc_md.nvram_size)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
size = ppc_md.nvram_size();
|
|
if (*ppos >= size || size < 0)
|
|
goto out;
|
|
|
|
count = min_t(size_t, count, size - *ppos);
|
|
count = min(count, PAGE_SIZE);
|
|
|
|
ret = -ENOMEM;
|
|
tmp = kmalloc(count, GFP_KERNEL);
|
|
if (!tmp)
|
|
goto out;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(tmp, buf, count))
|
|
goto out;
|
|
|
|
ret = ppc_md.nvram_write(tmp, count, ppos);
|
|
|
|
out:
|
|
kfree(tmp);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static int dev_nvram_ioctl(struct inode *inode, struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch(cmd) {
|
|
#ifdef CONFIG_PPC_PMAC
|
|
case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
|
|
printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
|
|
case IOC_NVRAM_GET_OFFSET: {
|
|
int part, offset;
|
|
|
|
if (!machine_is(powermac))
|
|
return -EINVAL;
|
|
if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
|
|
return -EFAULT;
|
|
if (part < pmac_nvram_OF || part > pmac_nvram_NR)
|
|
return -EINVAL;
|
|
offset = pmac_get_partition(part);
|
|
if (offset < 0)
|
|
return offset;
|
|
if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PPC_PMAC */
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
const struct file_operations nvram_fops = {
|
|
.owner = THIS_MODULE,
|
|
.llseek = dev_nvram_llseek,
|
|
.read = dev_nvram_read,
|
|
.write = dev_nvram_write,
|
|
.ioctl = dev_nvram_ioctl,
|
|
};
|
|
|
|
static struct miscdevice nvram_dev = {
|
|
NVRAM_MINOR,
|
|
"nvram",
|
|
&nvram_fops
|
|
};
|
|
|
|
|
|
#ifdef DEBUG_NVRAM
|
|
static void nvram_print_partitions(char * label)
|
|
{
|
|
struct list_head * p;
|
|
struct nvram_partition * tmp_part;
|
|
|
|
printk(KERN_WARNING "--------%s---------\n", label);
|
|
printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
|
|
list_for_each(p, &nvram_part->partition) {
|
|
tmp_part = list_entry(p, struct nvram_partition, partition);
|
|
printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%s\n",
|
|
tmp_part->index, tmp_part->header.signature,
|
|
tmp_part->header.checksum, tmp_part->header.length,
|
|
tmp_part->header.name);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
static int nvram_write_header(struct nvram_partition * part)
|
|
{
|
|
loff_t tmp_index;
|
|
int rc;
|
|
|
|
tmp_index = part->index;
|
|
rc = ppc_md.nvram_write((char *)&part->header, NVRAM_HEADER_LEN, &tmp_index);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
static unsigned char nvram_checksum(struct nvram_header *p)
|
|
{
|
|
unsigned int c_sum, c_sum2;
|
|
unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
|
|
c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
|
|
|
|
/* The sum may have spilled into the 3rd byte. Fold it back. */
|
|
c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
|
|
/* The sum cannot exceed 2 bytes. Fold it into a checksum */
|
|
c_sum2 = (c_sum >> 8) + (c_sum << 8);
|
|
c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
|
|
return c_sum;
|
|
}
|
|
|
|
|
|
/*
|
|
* Find an nvram partition, sig can be 0 for any
|
|
* partition or name can be NULL for any name, else
|
|
* tries to match both
|
|
*/
|
|
struct nvram_partition *nvram_find_partition(int sig, const char *name)
|
|
{
|
|
struct nvram_partition * part;
|
|
struct list_head * p;
|
|
|
|
list_for_each(p, &nvram_part->partition) {
|
|
part = list_entry(p, struct nvram_partition, partition);
|
|
|
|
if (sig && part->header.signature != sig)
|
|
continue;
|
|
if (name && 0 != strncmp(name, part->header.name, 12))
|
|
continue;
|
|
return part;
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(nvram_find_partition);
|
|
|
|
|
|
static int nvram_remove_os_partition(void)
|
|
{
|
|
struct list_head *i;
|
|
struct list_head *j;
|
|
struct nvram_partition * part;
|
|
struct nvram_partition * cur_part;
|
|
int rc;
|
|
|
|
list_for_each(i, &nvram_part->partition) {
|
|
part = list_entry(i, struct nvram_partition, partition);
|
|
if (part->header.signature != NVRAM_SIG_OS)
|
|
continue;
|
|
|
|
/* Make os partition a free partition */
|
|
part->header.signature = NVRAM_SIG_FREE;
|
|
sprintf(part->header.name, "wwwwwwwwwwww");
|
|
part->header.checksum = nvram_checksum(&part->header);
|
|
|
|
/* Merge contiguous free partitions backwards */
|
|
list_for_each_prev(j, &part->partition) {
|
|
cur_part = list_entry(j, struct nvram_partition, partition);
|
|
if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
|
|
break;
|
|
}
|
|
|
|
part->header.length += cur_part->header.length;
|
|
part->header.checksum = nvram_checksum(&part->header);
|
|
part->index = cur_part->index;
|
|
|
|
list_del(&cur_part->partition);
|
|
kfree(cur_part);
|
|
j = &part->partition; /* fixup our loop */
|
|
}
|
|
|
|
/* Merge contiguous free partitions forwards */
|
|
list_for_each(j, &part->partition) {
|
|
cur_part = list_entry(j, struct nvram_partition, partition);
|
|
if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
|
|
break;
|
|
}
|
|
|
|
part->header.length += cur_part->header.length;
|
|
part->header.checksum = nvram_checksum(&part->header);
|
|
|
|
list_del(&cur_part->partition);
|
|
kfree(cur_part);
|
|
j = &part->partition; /* fixup our loop */
|
|
}
|
|
|
|
rc = nvram_write_header(part);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_remove_os_partition: nvram_write failed (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* nvram_create_os_partition
|
|
*
|
|
* Create a OS linux partition to buffer error logs.
|
|
* Will create a partition starting at the first free
|
|
* space found if space has enough room.
|
|
*/
|
|
static int nvram_create_os_partition(void)
|
|
{
|
|
struct nvram_partition *part;
|
|
struct nvram_partition *new_part;
|
|
struct nvram_partition *free_part = NULL;
|
|
int seq_init[2] = { 0, 0 };
|
|
loff_t tmp_index;
|
|
long size = 0;
|
|
int rc;
|
|
|
|
/* Find a free partition that will give us the maximum needed size
|
|
If can't find one that will give us the minimum size needed */
|
|
list_for_each_entry(part, &nvram_part->partition, partition) {
|
|
if (part->header.signature != NVRAM_SIG_FREE)
|
|
continue;
|
|
|
|
if (part->header.length >= NVRAM_MAX_REQ) {
|
|
size = NVRAM_MAX_REQ;
|
|
free_part = part;
|
|
break;
|
|
}
|
|
if (!size && part->header.length >= NVRAM_MIN_REQ) {
|
|
size = NVRAM_MIN_REQ;
|
|
free_part = part;
|
|
}
|
|
}
|
|
if (!size)
|
|
return -ENOSPC;
|
|
|
|
/* Create our OS partition */
|
|
new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
|
|
if (!new_part) {
|
|
printk(KERN_ERR "nvram_create_os_partition: kmalloc failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
new_part->index = free_part->index;
|
|
new_part->header.signature = NVRAM_SIG_OS;
|
|
new_part->header.length = size;
|
|
strcpy(new_part->header.name, "ppc64,linux");
|
|
new_part->header.checksum = nvram_checksum(&new_part->header);
|
|
|
|
rc = nvram_write_header(new_part);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_create_os_partition: nvram_write_header \
|
|
failed (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* make sure and initialize to zero the sequence number and the error
|
|
type logged */
|
|
tmp_index = new_part->index + NVRAM_HEADER_LEN;
|
|
rc = ppc_md.nvram_write((char *)&seq_init, sizeof(seq_init), &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_create_os_partition: nvram_write "
|
|
"failed (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
nvram_error_log_index = new_part->index + NVRAM_HEADER_LEN;
|
|
nvram_error_log_size = ((part->header.length - 1) *
|
|
NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
|
|
|
|
list_add_tail(&new_part->partition, &free_part->partition);
|
|
|
|
if (free_part->header.length <= size) {
|
|
list_del(&free_part->partition);
|
|
kfree(free_part);
|
|
return 0;
|
|
}
|
|
|
|
/* Adjust the partition we stole the space from */
|
|
free_part->index += size * NVRAM_BLOCK_LEN;
|
|
free_part->header.length -= size;
|
|
free_part->header.checksum = nvram_checksum(&free_part->header);
|
|
|
|
rc = nvram_write_header(free_part);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_create_os_partition: nvram_write_header "
|
|
"failed (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* nvram_setup_partition
|
|
*
|
|
* This will setup the partition we need for buffering the
|
|
* error logs and cleanup partitions if needed.
|
|
*
|
|
* The general strategy is the following:
|
|
* 1.) If there is ppc64,linux partition large enough then use it.
|
|
* 2.) If there is not a ppc64,linux partition large enough, search
|
|
* for a free partition that is large enough.
|
|
* 3.) If there is not a free partition large enough remove
|
|
* _all_ OS partitions and consolidate the space.
|
|
* 4.) Will first try getting a chunk that will satisfy the maximum
|
|
* error log size (NVRAM_MAX_REQ).
|
|
* 5.) If the max chunk cannot be allocated then try finding a chunk
|
|
* that will satisfy the minum needed (NVRAM_MIN_REQ).
|
|
*/
|
|
static int nvram_setup_partition(void)
|
|
{
|
|
struct list_head * p;
|
|
struct nvram_partition * part;
|
|
int rc;
|
|
|
|
/* For now, we don't do any of this on pmac, until I
|
|
* have figured out if it's worth killing some unused stuffs
|
|
* in our nvram, as Apple defined partitions use pretty much
|
|
* all of the space
|
|
*/
|
|
if (machine_is(powermac))
|
|
return -ENOSPC;
|
|
|
|
/* see if we have an OS partition that meets our needs.
|
|
will try getting the max we need. If not we'll delete
|
|
partitions and try again. */
|
|
list_for_each(p, &nvram_part->partition) {
|
|
part = list_entry(p, struct nvram_partition, partition);
|
|
if (part->header.signature != NVRAM_SIG_OS)
|
|
continue;
|
|
|
|
if (strcmp(part->header.name, "ppc64,linux"))
|
|
continue;
|
|
|
|
if (part->header.length >= NVRAM_MIN_REQ) {
|
|
/* found our partition */
|
|
nvram_error_log_index = part->index + NVRAM_HEADER_LEN;
|
|
nvram_error_log_size = ((part->header.length - 1) *
|
|
NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* try creating a partition with the free space we have */
|
|
rc = nvram_create_os_partition();
|
|
if (!rc) {
|
|
return 0;
|
|
}
|
|
|
|
/* need to free up some space */
|
|
rc = nvram_remove_os_partition();
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
/* create a partition in this new space */
|
|
rc = nvram_create_os_partition();
|
|
if (rc) {
|
|
printk(KERN_ERR "nvram_create_os_partition: Could not find a "
|
|
"NVRAM partition large enough\n");
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int nvram_scan_partitions(void)
|
|
{
|
|
loff_t cur_index = 0;
|
|
struct nvram_header phead;
|
|
struct nvram_partition * tmp_part;
|
|
unsigned char c_sum;
|
|
char * header;
|
|
int total_size;
|
|
int err;
|
|
|
|
if (ppc_md.nvram_size == NULL)
|
|
return -ENODEV;
|
|
total_size = ppc_md.nvram_size();
|
|
|
|
header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
|
|
if (!header) {
|
|
printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
while (cur_index < total_size) {
|
|
|
|
err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
|
|
if (err != NVRAM_HEADER_LEN) {
|
|
printk(KERN_ERR "nvram_scan_partitions: Error parsing "
|
|
"nvram partitions\n");
|
|
goto out;
|
|
}
|
|
|
|
cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
|
|
|
|
memcpy(&phead, header, NVRAM_HEADER_LEN);
|
|
|
|
err = 0;
|
|
c_sum = nvram_checksum(&phead);
|
|
if (c_sum != phead.checksum) {
|
|
printk(KERN_WARNING "WARNING: nvram partition checksum"
|
|
" was %02x, should be %02x!\n",
|
|
phead.checksum, c_sum);
|
|
printk(KERN_WARNING "Terminating nvram partition scan\n");
|
|
goto out;
|
|
}
|
|
if (!phead.length) {
|
|
printk(KERN_WARNING "WARNING: nvram corruption "
|
|
"detected: 0-length partition\n");
|
|
goto out;
|
|
}
|
|
tmp_part = (struct nvram_partition *)
|
|
kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
|
|
err = -ENOMEM;
|
|
if (!tmp_part) {
|
|
printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
|
|
goto out;
|
|
}
|
|
|
|
memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
|
|
tmp_part->index = cur_index;
|
|
list_add_tail(&tmp_part->partition, &nvram_part->partition);
|
|
|
|
cur_index += phead.length * NVRAM_BLOCK_LEN;
|
|
}
|
|
err = 0;
|
|
|
|
out:
|
|
kfree(header);
|
|
return err;
|
|
}
|
|
|
|
static int __init nvram_init(void)
|
|
{
|
|
int error;
|
|
int rc;
|
|
|
|
if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
|
|
return -ENODEV;
|
|
|
|
rc = misc_register(&nvram_dev);
|
|
if (rc != 0) {
|
|
printk(KERN_ERR "nvram_init: failed to register device\n");
|
|
return rc;
|
|
}
|
|
|
|
/* initialize our anchor for the nvram partition list */
|
|
nvram_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
|
|
if (!nvram_part) {
|
|
printk(KERN_ERR "nvram_init: Failed kmalloc\n");
|
|
return -ENOMEM;
|
|
}
|
|
INIT_LIST_HEAD(&nvram_part->partition);
|
|
|
|
/* Get all the NVRAM partitions */
|
|
error = nvram_scan_partitions();
|
|
if (error) {
|
|
printk(KERN_ERR "nvram_init: Failed nvram_scan_partitions\n");
|
|
return error;
|
|
}
|
|
|
|
if(nvram_setup_partition())
|
|
printk(KERN_WARNING "nvram_init: Could not find nvram partition"
|
|
" for nvram buffered error logging.\n");
|
|
|
|
#ifdef DEBUG_NVRAM
|
|
nvram_print_partitions("NVRAM Partitions");
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
void __exit nvram_cleanup(void)
|
|
{
|
|
misc_deregister( &nvram_dev );
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
|
|
/* nvram_write_error_log
|
|
*
|
|
* We need to buffer the error logs into nvram to ensure that we have
|
|
* the failure information to decode. If we have a severe error there
|
|
* is no way to guarantee that the OS or the machine is in a state to
|
|
* get back to user land and write the error to disk. For example if
|
|
* the SCSI device driver causes a Machine Check by writing to a bad
|
|
* IO address, there is no way of guaranteeing that the device driver
|
|
* is in any state that is would also be able to write the error data
|
|
* captured to disk, thus we buffer it in NVRAM for analysis on the
|
|
* next boot.
|
|
*
|
|
* In NVRAM the partition containing the error log buffer will looks like:
|
|
* Header (in bytes):
|
|
* +-----------+----------+--------+------------+------------------+
|
|
* | signature | checksum | length | name | data |
|
|
* |0 |1 |2 3|4 15|16 length-1|
|
|
* +-----------+----------+--------+------------+------------------+
|
|
*
|
|
* The 'data' section would look like (in bytes):
|
|
* +--------------+------------+-----------------------------------+
|
|
* | event_logged | sequence # | error log |
|
|
* |0 3|4 7|8 nvram_error_log_size-1|
|
|
* +--------------+------------+-----------------------------------+
|
|
*
|
|
* event_logged: 0 if event has not been logged to syslog, 1 if it has
|
|
* sequence #: The unique sequence # for each event. (until it wraps)
|
|
* error log: The error log from event_scan
|
|
*/
|
|
int nvram_write_error_log(char * buff, int length, unsigned int err_type)
|
|
{
|
|
int rc;
|
|
loff_t tmp_index;
|
|
struct err_log_info info;
|
|
|
|
if (no_logging) {
|
|
return -EPERM;
|
|
}
|
|
|
|
if (nvram_error_log_index == -1) {
|
|
return -ESPIPE;
|
|
}
|
|
|
|
if (length > nvram_error_log_size) {
|
|
length = nvram_error_log_size;
|
|
}
|
|
|
|
info.error_type = err_type;
|
|
info.seq_num = error_log_cnt;
|
|
|
|
tmp_index = nvram_error_log_index;
|
|
|
|
rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = ppc_md.nvram_write(buff, length, &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* nvram_read_error_log
|
|
*
|
|
* Reads nvram for error log for at most 'length'
|
|
*/
|
|
int nvram_read_error_log(char * buff, int length, unsigned int * err_type)
|
|
{
|
|
int rc;
|
|
loff_t tmp_index;
|
|
struct err_log_info info;
|
|
|
|
if (nvram_error_log_index == -1)
|
|
return -1;
|
|
|
|
if (length > nvram_error_log_size)
|
|
length = nvram_error_log_size;
|
|
|
|
tmp_index = nvram_error_log_index;
|
|
|
|
rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = ppc_md.nvram_read(buff, length, &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
error_log_cnt = info.seq_num;
|
|
*err_type = info.error_type;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This doesn't actually zero anything, but it sets the event_logged
|
|
* word to tell that this event is safely in syslog.
|
|
*/
|
|
int nvram_clear_error_log(void)
|
|
{
|
|
loff_t tmp_index;
|
|
int clear_word = ERR_FLAG_ALREADY_LOGGED;
|
|
int rc;
|
|
|
|
tmp_index = nvram_error_log_index;
|
|
|
|
rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_PPC_PSERIES */
|
|
|
|
module_init(nvram_init);
|
|
module_exit(nvram_cleanup);
|
|
MODULE_LICENSE("GPL");
|