mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-27 03:47:43 +00:00
49e16b7bec
This makes 32-bit CHRP systems use the RTAS time-of-day routines if available. It fixes a bug in the RTAS time-of-day routines where they were storing a 64-bit timebase value in an unsigned long by making those variables u64. Also, the direct-access time-of-day routines had the wrong convention for the month and year in the struct rtc_time. Signed-off-by: Paul Mackerras <paulus@samba.org>
106 lines
3.0 KiB
C
106 lines
3.0 KiB
C
#include <linux/kernel.h>
|
|
#include <linux/time.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/init.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/time.h>
|
|
|
|
|
|
#define MAX_RTC_WAIT 5000 /* 5 sec */
|
|
#define RTAS_CLOCK_BUSY (-2)
|
|
unsigned long __init rtas_get_boot_time(void)
|
|
{
|
|
int ret[8];
|
|
int error, wait_time;
|
|
u64 max_wait_tb;
|
|
|
|
max_wait_tb = get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
|
|
do {
|
|
error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
|
|
if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
|
|
wait_time = rtas_extended_busy_delay_time(error);
|
|
/* This is boot time so we spin. */
|
|
udelay(wait_time*1000);
|
|
error = RTAS_CLOCK_BUSY;
|
|
}
|
|
} while (error == RTAS_CLOCK_BUSY && (get_tb() < max_wait_tb));
|
|
|
|
if (error != 0 && printk_ratelimit()) {
|
|
printk(KERN_WARNING "error: reading the clock failed (%d)\n",
|
|
error);
|
|
return 0;
|
|
}
|
|
|
|
return mktime(ret[0], ret[1], ret[2], ret[3], ret[4], ret[5]);
|
|
}
|
|
|
|
/* NOTE: get_rtc_time will get an error if executed in interrupt context
|
|
* and if a delay is needed to read the clock. In this case we just
|
|
* silently return without updating rtc_tm.
|
|
*/
|
|
void rtas_get_rtc_time(struct rtc_time *rtc_tm)
|
|
{
|
|
int ret[8];
|
|
int error, wait_time;
|
|
u64 max_wait_tb;
|
|
|
|
max_wait_tb = get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
|
|
do {
|
|
error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
|
|
if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
|
|
if (in_interrupt() && printk_ratelimit()) {
|
|
memset(&rtc_tm, 0, sizeof(struct rtc_time));
|
|
printk(KERN_WARNING "error: reading clock"
|
|
" would delay interrupt\n");
|
|
return; /* delay not allowed */
|
|
}
|
|
wait_time = rtas_extended_busy_delay_time(error);
|
|
msleep(wait_time);
|
|
error = RTAS_CLOCK_BUSY;
|
|
}
|
|
} while (error == RTAS_CLOCK_BUSY && (get_tb() < max_wait_tb));
|
|
|
|
if (error != 0 && printk_ratelimit()) {
|
|
printk(KERN_WARNING "error: reading the clock failed (%d)\n",
|
|
error);
|
|
return;
|
|
}
|
|
|
|
rtc_tm->tm_sec = ret[5];
|
|
rtc_tm->tm_min = ret[4];
|
|
rtc_tm->tm_hour = ret[3];
|
|
rtc_tm->tm_mday = ret[2];
|
|
rtc_tm->tm_mon = ret[1] - 1;
|
|
rtc_tm->tm_year = ret[0] - 1900;
|
|
}
|
|
|
|
int rtas_set_rtc_time(struct rtc_time *tm)
|
|
{
|
|
int error, wait_time;
|
|
u64 max_wait_tb;
|
|
|
|
max_wait_tb = get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
|
|
do {
|
|
error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
|
|
tm->tm_year + 1900, tm->tm_mon + 1,
|
|
tm->tm_mday, tm->tm_hour, tm->tm_min,
|
|
tm->tm_sec, 0);
|
|
if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
|
|
if (in_interrupt())
|
|
return 1; /* probably decrementer */
|
|
wait_time = rtas_extended_busy_delay_time(error);
|
|
msleep(wait_time);
|
|
error = RTAS_CLOCK_BUSY;
|
|
}
|
|
} while (error == RTAS_CLOCK_BUSY && (get_tb() < max_wait_tb));
|
|
|
|
if (error != 0 && printk_ratelimit())
|
|
printk(KERN_WARNING "error: setting the clock failed (%d)\n",
|
|
error);
|
|
|
|
return 0;
|
|
}
|