mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-17 06:52:43 +00:00
9f993fe463
if the runlist was not mapped at all and a mapping error occured we would leave the runlist locked on exit to the function so that the next access to the same file would try to take the lock and deadlock. Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
2379 lines
70 KiB
C
2379 lines
70 KiB
C
/**
|
|
* aops.c - NTFS kernel address space operations and page cache handling.
|
|
* Part of the Linux-NTFS project.
|
|
*
|
|
* Copyright (c) 2001-2005 Anton Altaparmakov
|
|
* Copyright (c) 2002 Richard Russon
|
|
*
|
|
* This program/include file is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program/include file is distributed in the hope that it will be
|
|
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program (in the main directory of the Linux-NTFS
|
|
* distribution in the file COPYING); if not, write to the Free Software
|
|
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/writeback.h>
|
|
|
|
#include "aops.h"
|
|
#include "attrib.h"
|
|
#include "debug.h"
|
|
#include "inode.h"
|
|
#include "mft.h"
|
|
#include "runlist.h"
|
|
#include "types.h"
|
|
#include "ntfs.h"
|
|
|
|
/**
|
|
* ntfs_end_buffer_async_read - async io completion for reading attributes
|
|
* @bh: buffer head on which io is completed
|
|
* @uptodate: whether @bh is now uptodate or not
|
|
*
|
|
* Asynchronous I/O completion handler for reading pages belonging to the
|
|
* attribute address space of an inode. The inodes can either be files or
|
|
* directories or they can be fake inodes describing some attribute.
|
|
*
|
|
* If NInoMstProtected(), perform the post read mst fixups when all IO on the
|
|
* page has been completed and mark the page uptodate or set the error bit on
|
|
* the page. To determine the size of the records that need fixing up, we
|
|
* cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
|
|
* record size, and index_block_size_bits, to the log(base 2) of the ntfs
|
|
* record size.
|
|
*/
|
|
static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
|
|
{
|
|
static DEFINE_SPINLOCK(page_uptodate_lock);
|
|
unsigned long flags;
|
|
struct buffer_head *tmp;
|
|
struct page *page;
|
|
ntfs_inode *ni;
|
|
int page_uptodate = 1;
|
|
|
|
page = bh->b_page;
|
|
ni = NTFS_I(page->mapping->host);
|
|
|
|
if (likely(uptodate)) {
|
|
s64 file_ofs, initialized_size;
|
|
|
|
set_buffer_uptodate(bh);
|
|
|
|
file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
|
|
bh_offset(bh);
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
initialized_size = ni->initialized_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
/* Check for the current buffer head overflowing. */
|
|
if (file_ofs + bh->b_size > initialized_size) {
|
|
char *addr;
|
|
int ofs = 0;
|
|
|
|
if (file_ofs < initialized_size)
|
|
ofs = initialized_size - file_ofs;
|
|
addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
|
|
memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(addr, KM_BIO_SRC_IRQ);
|
|
}
|
|
} else {
|
|
clear_buffer_uptodate(bh);
|
|
ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
|
|
(unsigned long long)bh->b_blocknr);
|
|
SetPageError(page);
|
|
}
|
|
spin_lock_irqsave(&page_uptodate_lock, flags);
|
|
clear_buffer_async_read(bh);
|
|
unlock_buffer(bh);
|
|
tmp = bh;
|
|
do {
|
|
if (!buffer_uptodate(tmp))
|
|
page_uptodate = 0;
|
|
if (buffer_async_read(tmp)) {
|
|
if (likely(buffer_locked(tmp)))
|
|
goto still_busy;
|
|
/* Async buffers must be locked. */
|
|
BUG();
|
|
}
|
|
tmp = tmp->b_this_page;
|
|
} while (tmp != bh);
|
|
spin_unlock_irqrestore(&page_uptodate_lock, flags);
|
|
/*
|
|
* If none of the buffers had errors then we can set the page uptodate,
|
|
* but we first have to perform the post read mst fixups, if the
|
|
* attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
|
|
* Note we ignore fixup errors as those are detected when
|
|
* map_mft_record() is called which gives us per record granularity
|
|
* rather than per page granularity.
|
|
*/
|
|
if (!NInoMstProtected(ni)) {
|
|
if (likely(page_uptodate && !PageError(page)))
|
|
SetPageUptodate(page);
|
|
} else {
|
|
char *addr;
|
|
unsigned int i, recs;
|
|
u32 rec_size;
|
|
|
|
rec_size = ni->itype.index.block_size;
|
|
recs = PAGE_CACHE_SIZE / rec_size;
|
|
/* Should have been verified before we got here... */
|
|
BUG_ON(!recs);
|
|
addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
|
|
for (i = 0; i < recs; i++)
|
|
post_read_mst_fixup((NTFS_RECORD*)(addr +
|
|
i * rec_size), rec_size);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(addr, KM_BIO_SRC_IRQ);
|
|
if (likely(page_uptodate && !PageError(page)))
|
|
SetPageUptodate(page);
|
|
}
|
|
unlock_page(page);
|
|
return;
|
|
still_busy:
|
|
spin_unlock_irqrestore(&page_uptodate_lock, flags);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* ntfs_read_block - fill a @page of an address space with data
|
|
* @page: page cache page to fill with data
|
|
*
|
|
* Fill the page @page of the address space belonging to the @page->host inode.
|
|
* We read each buffer asynchronously and when all buffers are read in, our io
|
|
* completion handler ntfs_end_buffer_read_async(), if required, automatically
|
|
* applies the mst fixups to the page before finally marking it uptodate and
|
|
* unlocking it.
|
|
*
|
|
* We only enforce allocated_size limit because i_size is checked for in
|
|
* generic_file_read().
|
|
*
|
|
* Return 0 on success and -errno on error.
|
|
*
|
|
* Contains an adapted version of fs/buffer.c::block_read_full_page().
|
|
*/
|
|
static int ntfs_read_block(struct page *page)
|
|
{
|
|
VCN vcn;
|
|
LCN lcn;
|
|
ntfs_inode *ni;
|
|
ntfs_volume *vol;
|
|
runlist_element *rl;
|
|
struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
|
|
sector_t iblock, lblock, zblock;
|
|
unsigned long flags;
|
|
unsigned int blocksize, vcn_ofs;
|
|
int i, nr;
|
|
unsigned char blocksize_bits;
|
|
|
|
ni = NTFS_I(page->mapping->host);
|
|
vol = ni->vol;
|
|
|
|
/* $MFT/$DATA must have its complete runlist in memory at all times. */
|
|
BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
|
|
|
|
blocksize_bits = VFS_I(ni)->i_blkbits;
|
|
blocksize = 1 << blocksize_bits;
|
|
|
|
if (!page_has_buffers(page))
|
|
create_empty_buffers(page, blocksize, 0);
|
|
bh = head = page_buffers(page);
|
|
if (unlikely(!bh)) {
|
|
unlock_page(page);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
|
|
zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
|
|
/* Loop through all the buffers in the page. */
|
|
rl = NULL;
|
|
nr = i = 0;
|
|
do {
|
|
u8 *kaddr;
|
|
|
|
if (unlikely(buffer_uptodate(bh)))
|
|
continue;
|
|
if (unlikely(buffer_mapped(bh))) {
|
|
arr[nr++] = bh;
|
|
continue;
|
|
}
|
|
bh->b_bdev = vol->sb->s_bdev;
|
|
/* Is the block within the allowed limits? */
|
|
if (iblock < lblock) {
|
|
BOOL is_retry = FALSE;
|
|
|
|
/* Convert iblock into corresponding vcn and offset. */
|
|
vcn = (VCN)iblock << blocksize_bits >>
|
|
vol->cluster_size_bits;
|
|
vcn_ofs = ((VCN)iblock << blocksize_bits) &
|
|
vol->cluster_size_mask;
|
|
if (!rl) {
|
|
lock_retry_remap:
|
|
down_read(&ni->runlist.lock);
|
|
rl = ni->runlist.rl;
|
|
}
|
|
if (likely(rl != NULL)) {
|
|
/* Seek to element containing target vcn. */
|
|
while (rl->length && rl[1].vcn <= vcn)
|
|
rl++;
|
|
lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
|
|
} else
|
|
lcn = LCN_RL_NOT_MAPPED;
|
|
/* Successful remap. */
|
|
if (lcn >= 0) {
|
|
/* Setup buffer head to correct block. */
|
|
bh->b_blocknr = ((lcn << vol->cluster_size_bits)
|
|
+ vcn_ofs) >> blocksize_bits;
|
|
set_buffer_mapped(bh);
|
|
/* Only read initialized data blocks. */
|
|
if (iblock < zblock) {
|
|
arr[nr++] = bh;
|
|
continue;
|
|
}
|
|
/* Fully non-initialized data block, zero it. */
|
|
goto handle_zblock;
|
|
}
|
|
/* It is a hole, need to zero it. */
|
|
if (lcn == LCN_HOLE)
|
|
goto handle_hole;
|
|
/* If first try and runlist unmapped, map and retry. */
|
|
if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
|
|
int err;
|
|
is_retry = TRUE;
|
|
/*
|
|
* Attempt to map runlist, dropping lock for
|
|
* the duration.
|
|
*/
|
|
up_read(&ni->runlist.lock);
|
|
err = ntfs_map_runlist(ni, vcn);
|
|
if (likely(!err))
|
|
goto lock_retry_remap;
|
|
rl = NULL;
|
|
lcn = err;
|
|
} else if (!rl)
|
|
up_read(&ni->runlist.lock);
|
|
/* Hard error, zero out region. */
|
|
bh->b_blocknr = -1;
|
|
SetPageError(page);
|
|
ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
|
|
"attribute type 0x%x, vcn 0x%llx, "
|
|
"offset 0x%x because its location on "
|
|
"disk could not be determined%s "
|
|
"(error code %lli).", ni->mft_no,
|
|
ni->type, (unsigned long long)vcn,
|
|
vcn_ofs, is_retry ? " even after "
|
|
"retrying" : "", (long long)lcn);
|
|
}
|
|
/*
|
|
* Either iblock was outside lblock limits or
|
|
* ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
|
|
* of the page and set the buffer uptodate.
|
|
*/
|
|
handle_hole:
|
|
bh->b_blocknr = -1UL;
|
|
clear_buffer_mapped(bh);
|
|
handle_zblock:
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memset(kaddr + i * blocksize, 0, blocksize);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
set_buffer_uptodate(bh);
|
|
} while (i++, iblock++, (bh = bh->b_this_page) != head);
|
|
|
|
/* Release the lock if we took it. */
|
|
if (rl)
|
|
up_read(&ni->runlist.lock);
|
|
|
|
/* Check we have at least one buffer ready for i/o. */
|
|
if (nr) {
|
|
struct buffer_head *tbh;
|
|
|
|
/* Lock the buffers. */
|
|
for (i = 0; i < nr; i++) {
|
|
tbh = arr[i];
|
|
lock_buffer(tbh);
|
|
tbh->b_end_io = ntfs_end_buffer_async_read;
|
|
set_buffer_async_read(tbh);
|
|
}
|
|
/* Finally, start i/o on the buffers. */
|
|
for (i = 0; i < nr; i++) {
|
|
tbh = arr[i];
|
|
if (likely(!buffer_uptodate(tbh)))
|
|
submit_bh(READ, tbh);
|
|
else
|
|
ntfs_end_buffer_async_read(tbh, 1);
|
|
}
|
|
return 0;
|
|
}
|
|
/* No i/o was scheduled on any of the buffers. */
|
|
if (likely(!PageError(page)))
|
|
SetPageUptodate(page);
|
|
else /* Signal synchronous i/o error. */
|
|
nr = -EIO;
|
|
unlock_page(page);
|
|
return nr;
|
|
}
|
|
|
|
/**
|
|
* ntfs_readpage - fill a @page of a @file with data from the device
|
|
* @file: open file to which the page @page belongs or NULL
|
|
* @page: page cache page to fill with data
|
|
*
|
|
* For non-resident attributes, ntfs_readpage() fills the @page of the open
|
|
* file @file by calling the ntfs version of the generic block_read_full_page()
|
|
* function, ntfs_read_block(), which in turn creates and reads in the buffers
|
|
* associated with the page asynchronously.
|
|
*
|
|
* For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
|
|
* data from the mft record (which at this stage is most likely in memory) and
|
|
* fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
|
|
* even if the mft record is not cached at this point in time, we need to wait
|
|
* for it to be read in before we can do the copy.
|
|
*
|
|
* Return 0 on success and -errno on error.
|
|
*/
|
|
static int ntfs_readpage(struct file *file, struct page *page)
|
|
{
|
|
ntfs_inode *ni, *base_ni;
|
|
u8 *kaddr;
|
|
ntfs_attr_search_ctx *ctx;
|
|
MFT_RECORD *mrec;
|
|
unsigned long flags;
|
|
u32 attr_len;
|
|
int err = 0;
|
|
|
|
retry_readpage:
|
|
BUG_ON(!PageLocked(page));
|
|
/*
|
|
* This can potentially happen because we clear PageUptodate() during
|
|
* ntfs_writepage() of MstProtected() attributes.
|
|
*/
|
|
if (PageUptodate(page)) {
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
ni = NTFS_I(page->mapping->host);
|
|
|
|
/* NInoNonResident() == NInoIndexAllocPresent() */
|
|
if (NInoNonResident(ni)) {
|
|
/*
|
|
* Only unnamed $DATA attributes can be compressed or
|
|
* encrypted.
|
|
*/
|
|
if (ni->type == AT_DATA && !ni->name_len) {
|
|
/* If file is encrypted, deny access, just like NT4. */
|
|
if (NInoEncrypted(ni)) {
|
|
err = -EACCES;
|
|
goto err_out;
|
|
}
|
|
/* Compressed data streams are handled in compress.c. */
|
|
if (NInoCompressed(ni))
|
|
return ntfs_read_compressed_block(page);
|
|
}
|
|
/* Normal data stream. */
|
|
return ntfs_read_block(page);
|
|
}
|
|
/*
|
|
* Attribute is resident, implying it is not compressed or encrypted.
|
|
* This also means the attribute is smaller than an mft record and
|
|
* hence smaller than a page, so can simply zero out any pages with
|
|
* index above 0.
|
|
*/
|
|
if (unlikely(page->index > 0)) {
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memset(kaddr, 0, PAGE_CACHE_SIZE);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
goto done;
|
|
}
|
|
if (!NInoAttr(ni))
|
|
base_ni = ni;
|
|
else
|
|
base_ni = ni->ext.base_ntfs_ino;
|
|
/* Map, pin, and lock the mft record. */
|
|
mrec = map_mft_record(base_ni);
|
|
if (IS_ERR(mrec)) {
|
|
err = PTR_ERR(mrec);
|
|
goto err_out;
|
|
}
|
|
/*
|
|
* If a parallel write made the attribute non-resident, drop the mft
|
|
* record and retry the readpage.
|
|
*/
|
|
if (unlikely(NInoNonResident(ni))) {
|
|
unmap_mft_record(base_ni);
|
|
goto retry_readpage;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
|
|
if (unlikely(!ctx)) {
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err))
|
|
goto put_unm_err_out;
|
|
attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
if (unlikely(attr_len > ni->initialized_size))
|
|
attr_len = ni->initialized_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
/* Copy the data to the page. */
|
|
memcpy(kaddr, (u8*)ctx->attr +
|
|
le16_to_cpu(ctx->attr->data.resident.value_offset),
|
|
attr_len);
|
|
/* Zero the remainder of the page. */
|
|
memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
put_unm_err_out:
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unm_err_out:
|
|
unmap_mft_record(base_ni);
|
|
done:
|
|
SetPageUptodate(page);
|
|
err_out:
|
|
unlock_page(page);
|
|
return err;
|
|
}
|
|
|
|
#ifdef NTFS_RW
|
|
|
|
/**
|
|
* ntfs_write_block - write a @page to the backing store
|
|
* @page: page cache page to write out
|
|
* @wbc: writeback control structure
|
|
*
|
|
* This function is for writing pages belonging to non-resident, non-mst
|
|
* protected attributes to their backing store.
|
|
*
|
|
* For a page with buffers, map and write the dirty buffers asynchronously
|
|
* under page writeback. For a page without buffers, create buffers for the
|
|
* page, then proceed as above.
|
|
*
|
|
* If a page doesn't have buffers the page dirty state is definitive. If a page
|
|
* does have buffers, the page dirty state is just a hint, and the buffer dirty
|
|
* state is definitive. (A hint which has rules: dirty buffers against a clean
|
|
* page is illegal. Other combinations are legal and need to be handled. In
|
|
* particular a dirty page containing clean buffers for example.)
|
|
*
|
|
* Return 0 on success and -errno on error.
|
|
*
|
|
* Based on ntfs_read_block() and __block_write_full_page().
|
|
*/
|
|
static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
|
|
{
|
|
VCN vcn;
|
|
LCN lcn;
|
|
s64 initialized_size;
|
|
loff_t i_size;
|
|
sector_t block, dblock, iblock;
|
|
struct inode *vi;
|
|
ntfs_inode *ni;
|
|
ntfs_volume *vol;
|
|
runlist_element *rl;
|
|
struct buffer_head *bh, *head;
|
|
unsigned long flags;
|
|
unsigned int blocksize, vcn_ofs;
|
|
int err;
|
|
BOOL need_end_writeback;
|
|
unsigned char blocksize_bits;
|
|
|
|
vi = page->mapping->host;
|
|
ni = NTFS_I(vi);
|
|
vol = ni->vol;
|
|
|
|
ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
|
|
"0x%lx.", ni->mft_no, ni->type, page->index);
|
|
|
|
BUG_ON(!NInoNonResident(ni));
|
|
BUG_ON(NInoMstProtected(ni));
|
|
|
|
blocksize_bits = vi->i_blkbits;
|
|
blocksize = 1 << blocksize_bits;
|
|
|
|
if (!page_has_buffers(page)) {
|
|
BUG_ON(!PageUptodate(page));
|
|
create_empty_buffers(page, blocksize,
|
|
(1 << BH_Uptodate) | (1 << BH_Dirty));
|
|
}
|
|
bh = head = page_buffers(page);
|
|
if (unlikely(!bh)) {
|
|
ntfs_warning(vol->sb, "Error allocating page buffers. "
|
|
"Redirtying page so we try again later.");
|
|
/*
|
|
* Put the page back on mapping->dirty_pages, but leave its
|
|
* buffer's dirty state as-is.
|
|
*/
|
|
redirty_page_for_writepage(wbc, page);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
/* NOTE: Different naming scheme to ntfs_read_block()! */
|
|
|
|
/* The first block in the page. */
|
|
block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
|
|
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
i_size = i_size_read(vi);
|
|
initialized_size = ni->initialized_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
|
|
/* The first out of bounds block for the data size. */
|
|
dblock = (i_size + blocksize - 1) >> blocksize_bits;
|
|
|
|
/* The last (fully or partially) initialized block. */
|
|
iblock = initialized_size >> blocksize_bits;
|
|
|
|
/*
|
|
* Be very careful. We have no exclusion from __set_page_dirty_buffers
|
|
* here, and the (potentially unmapped) buffers may become dirty at
|
|
* any time. If a buffer becomes dirty here after we've inspected it
|
|
* then we just miss that fact, and the page stays dirty.
|
|
*
|
|
* Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
|
|
* handle that here by just cleaning them.
|
|
*/
|
|
|
|
/*
|
|
* Loop through all the buffers in the page, mapping all the dirty
|
|
* buffers to disk addresses and handling any aliases from the
|
|
* underlying block device's mapping.
|
|
*/
|
|
rl = NULL;
|
|
err = 0;
|
|
do {
|
|
BOOL is_retry = FALSE;
|
|
|
|
if (unlikely(block >= dblock)) {
|
|
/*
|
|
* Mapped buffers outside i_size will occur, because
|
|
* this page can be outside i_size when there is a
|
|
* truncate in progress. The contents of such buffers
|
|
* were zeroed by ntfs_writepage().
|
|
*
|
|
* FIXME: What about the small race window where
|
|
* ntfs_writepage() has not done any clearing because
|
|
* the page was within i_size but before we get here,
|
|
* vmtruncate() modifies i_size?
|
|
*/
|
|
clear_buffer_dirty(bh);
|
|
set_buffer_uptodate(bh);
|
|
continue;
|
|
}
|
|
|
|
/* Clean buffers are not written out, so no need to map them. */
|
|
if (!buffer_dirty(bh))
|
|
continue;
|
|
|
|
/* Make sure we have enough initialized size. */
|
|
if (unlikely((block >= iblock) &&
|
|
(initialized_size < i_size))) {
|
|
/*
|
|
* If this page is fully outside initialized size, zero
|
|
* out all pages between the current initialized size
|
|
* and the current page. Just use ntfs_readpage() to do
|
|
* the zeroing transparently.
|
|
*/
|
|
if (block > iblock) {
|
|
// TODO:
|
|
// For each page do:
|
|
// - read_cache_page()
|
|
// Again for each page do:
|
|
// - wait_on_page_locked()
|
|
// - Check (PageUptodate(page) &&
|
|
// !PageError(page))
|
|
// Update initialized size in the attribute and
|
|
// in the inode.
|
|
// Again, for each page do:
|
|
// __set_page_dirty_buffers();
|
|
// page_cache_release()
|
|
// We don't need to wait on the writes.
|
|
// Update iblock.
|
|
}
|
|
/*
|
|
* The current page straddles initialized size. Zero
|
|
* all non-uptodate buffers and set them uptodate (and
|
|
* dirty?). Note, there aren't any non-uptodate buffers
|
|
* if the page is uptodate.
|
|
* FIXME: For an uptodate page, the buffers may need to
|
|
* be written out because they were not initialized on
|
|
* disk before.
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
// TODO:
|
|
// Zero any non-uptodate buffers up to i_size.
|
|
// Set them uptodate and dirty.
|
|
}
|
|
// TODO:
|
|
// Update initialized size in the attribute and in the
|
|
// inode (up to i_size).
|
|
// Update iblock.
|
|
// FIXME: This is inefficient. Try to batch the two
|
|
// size changes to happen in one go.
|
|
ntfs_error(vol->sb, "Writing beyond initialized size "
|
|
"is not supported yet. Sorry.");
|
|
err = -EOPNOTSUPP;
|
|
break;
|
|
// Do NOT set_buffer_new() BUT DO clear buffer range
|
|
// outside write request range.
|
|
// set_buffer_uptodate() on complete buffers as well as
|
|
// set_buffer_dirty().
|
|
}
|
|
|
|
/* No need to map buffers that are already mapped. */
|
|
if (buffer_mapped(bh))
|
|
continue;
|
|
|
|
/* Unmapped, dirty buffer. Need to map it. */
|
|
bh->b_bdev = vol->sb->s_bdev;
|
|
|
|
/* Convert block into corresponding vcn and offset. */
|
|
vcn = (VCN)block << blocksize_bits;
|
|
vcn_ofs = vcn & vol->cluster_size_mask;
|
|
vcn >>= vol->cluster_size_bits;
|
|
if (!rl) {
|
|
lock_retry_remap:
|
|
down_read(&ni->runlist.lock);
|
|
rl = ni->runlist.rl;
|
|
}
|
|
if (likely(rl != NULL)) {
|
|
/* Seek to element containing target vcn. */
|
|
while (rl->length && rl[1].vcn <= vcn)
|
|
rl++;
|
|
lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
|
|
} else
|
|
lcn = LCN_RL_NOT_MAPPED;
|
|
/* Successful remap. */
|
|
if (lcn >= 0) {
|
|
/* Setup buffer head to point to correct block. */
|
|
bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
|
|
vcn_ofs) >> blocksize_bits;
|
|
set_buffer_mapped(bh);
|
|
continue;
|
|
}
|
|
/* It is a hole, need to instantiate it. */
|
|
if (lcn == LCN_HOLE) {
|
|
// TODO: Instantiate the hole.
|
|
// clear_buffer_new(bh);
|
|
// unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
|
|
ntfs_error(vol->sb, "Writing into sparse regions is "
|
|
"not supported yet. Sorry.");
|
|
err = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
/* If first try and runlist unmapped, map and retry. */
|
|
if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
|
|
is_retry = TRUE;
|
|
/*
|
|
* Attempt to map runlist, dropping lock for
|
|
* the duration.
|
|
*/
|
|
up_read(&ni->runlist.lock);
|
|
err = ntfs_map_runlist(ni, vcn);
|
|
if (likely(!err))
|
|
goto lock_retry_remap;
|
|
rl = NULL;
|
|
lcn = err;
|
|
} else if (!rl)
|
|
up_read(&ni->runlist.lock);
|
|
/* Failed to map the buffer, even after retrying. */
|
|
bh->b_blocknr = -1;
|
|
ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
|
|
"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
|
|
"because its location on disk could not be "
|
|
"determined%s (error code %lli).", ni->mft_no,
|
|
ni->type, (unsigned long long)vcn,
|
|
vcn_ofs, is_retry ? " even after "
|
|
"retrying" : "", (long long)lcn);
|
|
if (!err)
|
|
err = -EIO;
|
|
break;
|
|
} while (block++, (bh = bh->b_this_page) != head);
|
|
|
|
/* Release the lock if we took it. */
|
|
if (rl)
|
|
up_read(&ni->runlist.lock);
|
|
|
|
/* For the error case, need to reset bh to the beginning. */
|
|
bh = head;
|
|
|
|
/* Just an optimization, so ->readpage() isn't called later. */
|
|
if (unlikely(!PageUptodate(page))) {
|
|
int uptodate = 1;
|
|
do {
|
|
if (!buffer_uptodate(bh)) {
|
|
uptodate = 0;
|
|
bh = head;
|
|
break;
|
|
}
|
|
} while ((bh = bh->b_this_page) != head);
|
|
if (uptodate)
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
/* Setup all mapped, dirty buffers for async write i/o. */
|
|
do {
|
|
get_bh(bh);
|
|
if (buffer_mapped(bh) && buffer_dirty(bh)) {
|
|
lock_buffer(bh);
|
|
if (test_clear_buffer_dirty(bh)) {
|
|
BUG_ON(!buffer_uptodate(bh));
|
|
mark_buffer_async_write(bh);
|
|
} else
|
|
unlock_buffer(bh);
|
|
} else if (unlikely(err)) {
|
|
/*
|
|
* For the error case. The buffer may have been set
|
|
* dirty during attachment to a dirty page.
|
|
*/
|
|
if (err != -ENOMEM)
|
|
clear_buffer_dirty(bh);
|
|
}
|
|
} while ((bh = bh->b_this_page) != head);
|
|
|
|
if (unlikely(err)) {
|
|
// TODO: Remove the -EOPNOTSUPP check later on...
|
|
if (unlikely(err == -EOPNOTSUPP))
|
|
err = 0;
|
|
else if (err == -ENOMEM) {
|
|
ntfs_warning(vol->sb, "Error allocating memory. "
|
|
"Redirtying page so we try again "
|
|
"later.");
|
|
/*
|
|
* Put the page back on mapping->dirty_pages, but
|
|
* leave its buffer's dirty state as-is.
|
|
*/
|
|
redirty_page_for_writepage(wbc, page);
|
|
err = 0;
|
|
} else
|
|
SetPageError(page);
|
|
}
|
|
|
|
BUG_ON(PageWriteback(page));
|
|
set_page_writeback(page); /* Keeps try_to_free_buffers() away. */
|
|
unlock_page(page);
|
|
|
|
/*
|
|
* Submit the prepared buffers for i/o. Note the page is unlocked,
|
|
* and the async write i/o completion handler can end_page_writeback()
|
|
* at any time after the *first* submit_bh(). So the buffers can then
|
|
* disappear...
|
|
*/
|
|
need_end_writeback = TRUE;
|
|
do {
|
|
struct buffer_head *next = bh->b_this_page;
|
|
if (buffer_async_write(bh)) {
|
|
submit_bh(WRITE, bh);
|
|
need_end_writeback = FALSE;
|
|
}
|
|
put_bh(bh);
|
|
bh = next;
|
|
} while (bh != head);
|
|
|
|
/* If no i/o was started, need to end_page_writeback(). */
|
|
if (unlikely(need_end_writeback))
|
|
end_page_writeback(page);
|
|
|
|
ntfs_debug("Done.");
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_write_mst_block - write a @page to the backing store
|
|
* @page: page cache page to write out
|
|
* @wbc: writeback control structure
|
|
*
|
|
* This function is for writing pages belonging to non-resident, mst protected
|
|
* attributes to their backing store. The only supported attributes are index
|
|
* allocation and $MFT/$DATA. Both directory inodes and index inodes are
|
|
* supported for the index allocation case.
|
|
*
|
|
* The page must remain locked for the duration of the write because we apply
|
|
* the mst fixups, write, and then undo the fixups, so if we were to unlock the
|
|
* page before undoing the fixups, any other user of the page will see the
|
|
* page contents as corrupt.
|
|
*
|
|
* We clear the page uptodate flag for the duration of the function to ensure
|
|
* exclusion for the $MFT/$DATA case against someone mapping an mft record we
|
|
* are about to apply the mst fixups to.
|
|
*
|
|
* Return 0 on success and -errno on error.
|
|
*
|
|
* Based on ntfs_write_block(), ntfs_mft_writepage(), and
|
|
* write_mft_record_nolock().
|
|
*/
|
|
static int ntfs_write_mst_block(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
sector_t block, dblock, rec_block;
|
|
struct inode *vi = page->mapping->host;
|
|
ntfs_inode *ni = NTFS_I(vi);
|
|
ntfs_volume *vol = ni->vol;
|
|
u8 *kaddr;
|
|
unsigned int rec_size = ni->itype.index.block_size;
|
|
ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
|
|
struct buffer_head *bh, *head, *tbh, *rec_start_bh;
|
|
struct buffer_head *bhs[MAX_BUF_PER_PAGE];
|
|
runlist_element *rl;
|
|
int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
|
|
unsigned bh_size, rec_size_bits;
|
|
BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
|
|
unsigned char bh_size_bits;
|
|
|
|
ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
|
|
"0x%lx.", vi->i_ino, ni->type, page->index);
|
|
BUG_ON(!NInoNonResident(ni));
|
|
BUG_ON(!NInoMstProtected(ni));
|
|
is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
|
|
/*
|
|
* NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
|
|
* in its page cache were to be marked dirty. However this should
|
|
* never happen with the current driver and considering we do not
|
|
* handle this case here we do want to BUG(), at least for now.
|
|
*/
|
|
BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
|
|
(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
|
|
bh_size_bits = vi->i_blkbits;
|
|
bh_size = 1 << bh_size_bits;
|
|
max_bhs = PAGE_CACHE_SIZE / bh_size;
|
|
BUG_ON(!max_bhs);
|
|
BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
|
|
|
|
/* Were we called for sync purposes? */
|
|
sync = (wbc->sync_mode == WB_SYNC_ALL);
|
|
|
|
/* Make sure we have mapped buffers. */
|
|
BUG_ON(!page_has_buffers(page));
|
|
bh = head = page_buffers(page);
|
|
BUG_ON(!bh);
|
|
|
|
rec_size_bits = ni->itype.index.block_size_bits;
|
|
BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
|
|
bhs_per_rec = rec_size >> bh_size_bits;
|
|
BUG_ON(!bhs_per_rec);
|
|
|
|
/* The first block in the page. */
|
|
rec_block = block = (sector_t)page->index <<
|
|
(PAGE_CACHE_SHIFT - bh_size_bits);
|
|
|
|
/* The first out of bounds block for the data size. */
|
|
dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
|
|
|
|
rl = NULL;
|
|
err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
|
|
page_is_dirty = rec_is_dirty = FALSE;
|
|
rec_start_bh = NULL;
|
|
do {
|
|
BOOL is_retry = FALSE;
|
|
|
|
if (likely(block < rec_block)) {
|
|
if (unlikely(block >= dblock)) {
|
|
clear_buffer_dirty(bh);
|
|
set_buffer_uptodate(bh);
|
|
continue;
|
|
}
|
|
/*
|
|
* This block is not the first one in the record. We
|
|
* ignore the buffer's dirty state because we could
|
|
* have raced with a parallel mark_ntfs_record_dirty().
|
|
*/
|
|
if (!rec_is_dirty)
|
|
continue;
|
|
if (unlikely(err2)) {
|
|
if (err2 != -ENOMEM)
|
|
clear_buffer_dirty(bh);
|
|
continue;
|
|
}
|
|
} else /* if (block == rec_block) */ {
|
|
BUG_ON(block > rec_block);
|
|
/* This block is the first one in the record. */
|
|
rec_block += bhs_per_rec;
|
|
err2 = 0;
|
|
if (unlikely(block >= dblock)) {
|
|
clear_buffer_dirty(bh);
|
|
continue;
|
|
}
|
|
if (!buffer_dirty(bh)) {
|
|
/* Clean records are not written out. */
|
|
rec_is_dirty = FALSE;
|
|
continue;
|
|
}
|
|
rec_is_dirty = TRUE;
|
|
rec_start_bh = bh;
|
|
}
|
|
/* Need to map the buffer if it is not mapped already. */
|
|
if (unlikely(!buffer_mapped(bh))) {
|
|
VCN vcn;
|
|
LCN lcn;
|
|
unsigned int vcn_ofs;
|
|
|
|
/* Obtain the vcn and offset of the current block. */
|
|
vcn = (VCN)block << bh_size_bits;
|
|
vcn_ofs = vcn & vol->cluster_size_mask;
|
|
vcn >>= vol->cluster_size_bits;
|
|
if (!rl) {
|
|
lock_retry_remap:
|
|
down_read(&ni->runlist.lock);
|
|
rl = ni->runlist.rl;
|
|
}
|
|
if (likely(rl != NULL)) {
|
|
/* Seek to element containing target vcn. */
|
|
while (rl->length && rl[1].vcn <= vcn)
|
|
rl++;
|
|
lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
|
|
} else
|
|
lcn = LCN_RL_NOT_MAPPED;
|
|
/* Successful remap. */
|
|
if (likely(lcn >= 0)) {
|
|
/* Setup buffer head to correct block. */
|
|
bh->b_blocknr = ((lcn <<
|
|
vol->cluster_size_bits) +
|
|
vcn_ofs) >> bh_size_bits;
|
|
set_buffer_mapped(bh);
|
|
} else {
|
|
/*
|
|
* Remap failed. Retry to map the runlist once
|
|
* unless we are working on $MFT which always
|
|
* has the whole of its runlist in memory.
|
|
*/
|
|
if (!is_mft && !is_retry &&
|
|
lcn == LCN_RL_NOT_MAPPED) {
|
|
is_retry = TRUE;
|
|
/*
|
|
* Attempt to map runlist, dropping
|
|
* lock for the duration.
|
|
*/
|
|
up_read(&ni->runlist.lock);
|
|
err2 = ntfs_map_runlist(ni, vcn);
|
|
if (likely(!err2))
|
|
goto lock_retry_remap;
|
|
if (err2 == -ENOMEM)
|
|
page_is_dirty = TRUE;
|
|
lcn = err2;
|
|
} else {
|
|
err2 = -EIO;
|
|
if (!rl)
|
|
up_read(&ni->runlist.lock);
|
|
}
|
|
/* Hard error. Abort writing this record. */
|
|
if (!err || err == -ENOMEM)
|
|
err = err2;
|
|
bh->b_blocknr = -1;
|
|
ntfs_error(vol->sb, "Cannot write ntfs record "
|
|
"0x%llx (inode 0x%lx, "
|
|
"attribute type 0x%x) because "
|
|
"its location on disk could "
|
|
"not be determined (error "
|
|
"code %lli).",
|
|
(long long)block <<
|
|
bh_size_bits >>
|
|
vol->mft_record_size_bits,
|
|
ni->mft_no, ni->type,
|
|
(long long)lcn);
|
|
/*
|
|
* If this is not the first buffer, remove the
|
|
* buffers in this record from the list of
|
|
* buffers to write and clear their dirty bit
|
|
* if not error -ENOMEM.
|
|
*/
|
|
if (rec_start_bh != bh) {
|
|
while (bhs[--nr_bhs] != rec_start_bh)
|
|
;
|
|
if (err2 != -ENOMEM) {
|
|
do {
|
|
clear_buffer_dirty(
|
|
rec_start_bh);
|
|
} while ((rec_start_bh =
|
|
rec_start_bh->
|
|
b_this_page) !=
|
|
bh);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
BUG_ON(!buffer_uptodate(bh));
|
|
BUG_ON(nr_bhs >= max_bhs);
|
|
bhs[nr_bhs++] = bh;
|
|
} while (block++, (bh = bh->b_this_page) != head);
|
|
if (unlikely(rl))
|
|
up_read(&ni->runlist.lock);
|
|
/* If there were no dirty buffers, we are done. */
|
|
if (!nr_bhs)
|
|
goto done;
|
|
/* Map the page so we can access its contents. */
|
|
kaddr = kmap(page);
|
|
/* Clear the page uptodate flag whilst the mst fixups are applied. */
|
|
BUG_ON(!PageUptodate(page));
|
|
ClearPageUptodate(page);
|
|
for (i = 0; i < nr_bhs; i++) {
|
|
unsigned int ofs;
|
|
|
|
/* Skip buffers which are not at the beginning of records. */
|
|
if (i % bhs_per_rec)
|
|
continue;
|
|
tbh = bhs[i];
|
|
ofs = bh_offset(tbh);
|
|
if (is_mft) {
|
|
ntfs_inode *tni;
|
|
unsigned long mft_no;
|
|
|
|
/* Get the mft record number. */
|
|
mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
|
|
>> rec_size_bits;
|
|
/* Check whether to write this mft record. */
|
|
tni = NULL;
|
|
if (!ntfs_may_write_mft_record(vol, mft_no,
|
|
(MFT_RECORD*)(kaddr + ofs), &tni)) {
|
|
/*
|
|
* The record should not be written. This
|
|
* means we need to redirty the page before
|
|
* returning.
|
|
*/
|
|
page_is_dirty = TRUE;
|
|
/*
|
|
* Remove the buffers in this mft record from
|
|
* the list of buffers to write.
|
|
*/
|
|
do {
|
|
bhs[i] = NULL;
|
|
} while (++i % bhs_per_rec);
|
|
continue;
|
|
}
|
|
/*
|
|
* The record should be written. If a locked ntfs
|
|
* inode was returned, add it to the array of locked
|
|
* ntfs inodes.
|
|
*/
|
|
if (tni)
|
|
locked_nis[nr_locked_nis++] = tni;
|
|
}
|
|
/* Apply the mst protection fixups. */
|
|
err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
|
|
rec_size);
|
|
if (unlikely(err2)) {
|
|
if (!err || err == -ENOMEM)
|
|
err = -EIO;
|
|
ntfs_error(vol->sb, "Failed to apply mst fixups "
|
|
"(inode 0x%lx, attribute type 0x%x, "
|
|
"page index 0x%lx, page offset 0x%x)!"
|
|
" Unmount and run chkdsk.", vi->i_ino,
|
|
ni->type, page->index, ofs);
|
|
/*
|
|
* Mark all the buffers in this record clean as we do
|
|
* not want to write corrupt data to disk.
|
|
*/
|
|
do {
|
|
clear_buffer_dirty(bhs[i]);
|
|
bhs[i] = NULL;
|
|
} while (++i % bhs_per_rec);
|
|
continue;
|
|
}
|
|
nr_recs++;
|
|
}
|
|
/* If no records are to be written out, we are done. */
|
|
if (!nr_recs)
|
|
goto unm_done;
|
|
flush_dcache_page(page);
|
|
/* Lock buffers and start synchronous write i/o on them. */
|
|
for (i = 0; i < nr_bhs; i++) {
|
|
tbh = bhs[i];
|
|
if (!tbh)
|
|
continue;
|
|
if (unlikely(test_set_buffer_locked(tbh)))
|
|
BUG();
|
|
/* The buffer dirty state is now irrelevant, just clean it. */
|
|
clear_buffer_dirty(tbh);
|
|
BUG_ON(!buffer_uptodate(tbh));
|
|
BUG_ON(!buffer_mapped(tbh));
|
|
get_bh(tbh);
|
|
tbh->b_end_io = end_buffer_write_sync;
|
|
submit_bh(WRITE, tbh);
|
|
}
|
|
/* Synchronize the mft mirror now if not @sync. */
|
|
if (is_mft && !sync)
|
|
goto do_mirror;
|
|
do_wait:
|
|
/* Wait on i/o completion of buffers. */
|
|
for (i = 0; i < nr_bhs; i++) {
|
|
tbh = bhs[i];
|
|
if (!tbh)
|
|
continue;
|
|
wait_on_buffer(tbh);
|
|
if (unlikely(!buffer_uptodate(tbh))) {
|
|
ntfs_error(vol->sb, "I/O error while writing ntfs "
|
|
"record buffer (inode 0x%lx, "
|
|
"attribute type 0x%x, page index "
|
|
"0x%lx, page offset 0x%lx)! Unmount "
|
|
"and run chkdsk.", vi->i_ino, ni->type,
|
|
page->index, bh_offset(tbh));
|
|
if (!err || err == -ENOMEM)
|
|
err = -EIO;
|
|
/*
|
|
* Set the buffer uptodate so the page and buffer
|
|
* states do not become out of sync.
|
|
*/
|
|
set_buffer_uptodate(tbh);
|
|
}
|
|
}
|
|
/* If @sync, now synchronize the mft mirror. */
|
|
if (is_mft && sync) {
|
|
do_mirror:
|
|
for (i = 0; i < nr_bhs; i++) {
|
|
unsigned long mft_no;
|
|
unsigned int ofs;
|
|
|
|
/*
|
|
* Skip buffers which are not at the beginning of
|
|
* records.
|
|
*/
|
|
if (i % bhs_per_rec)
|
|
continue;
|
|
tbh = bhs[i];
|
|
/* Skip removed buffers (and hence records). */
|
|
if (!tbh)
|
|
continue;
|
|
ofs = bh_offset(tbh);
|
|
/* Get the mft record number. */
|
|
mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
|
|
>> rec_size_bits;
|
|
if (mft_no < vol->mftmirr_size)
|
|
ntfs_sync_mft_mirror(vol, mft_no,
|
|
(MFT_RECORD*)(kaddr + ofs),
|
|
sync);
|
|
}
|
|
if (!sync)
|
|
goto do_wait;
|
|
}
|
|
/* Remove the mst protection fixups again. */
|
|
for (i = 0; i < nr_bhs; i++) {
|
|
if (!(i % bhs_per_rec)) {
|
|
tbh = bhs[i];
|
|
if (!tbh)
|
|
continue;
|
|
post_write_mst_fixup((NTFS_RECORD*)(kaddr +
|
|
bh_offset(tbh)));
|
|
}
|
|
}
|
|
flush_dcache_page(page);
|
|
unm_done:
|
|
/* Unlock any locked inodes. */
|
|
while (nr_locked_nis-- > 0) {
|
|
ntfs_inode *tni, *base_tni;
|
|
|
|
tni = locked_nis[nr_locked_nis];
|
|
/* Get the base inode. */
|
|
down(&tni->extent_lock);
|
|
if (tni->nr_extents >= 0)
|
|
base_tni = tni;
|
|
else {
|
|
base_tni = tni->ext.base_ntfs_ino;
|
|
BUG_ON(!base_tni);
|
|
}
|
|
up(&tni->extent_lock);
|
|
ntfs_debug("Unlocking %s inode 0x%lx.",
|
|
tni == base_tni ? "base" : "extent",
|
|
tni->mft_no);
|
|
up(&tni->mrec_lock);
|
|
atomic_dec(&tni->count);
|
|
iput(VFS_I(base_tni));
|
|
}
|
|
SetPageUptodate(page);
|
|
kunmap(page);
|
|
done:
|
|
if (unlikely(err && err != -ENOMEM)) {
|
|
/*
|
|
* Set page error if there is only one ntfs record in the page.
|
|
* Otherwise we would loose per-record granularity.
|
|
*/
|
|
if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
|
|
SetPageError(page);
|
|
NVolSetErrors(vol);
|
|
}
|
|
if (page_is_dirty) {
|
|
ntfs_debug("Page still contains one or more dirty ntfs "
|
|
"records. Redirtying the page starting at "
|
|
"record 0x%lx.", page->index <<
|
|
(PAGE_CACHE_SHIFT - rec_size_bits));
|
|
redirty_page_for_writepage(wbc, page);
|
|
unlock_page(page);
|
|
} else {
|
|
/*
|
|
* Keep the VM happy. This must be done otherwise the
|
|
* radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
|
|
* the page is clean.
|
|
*/
|
|
BUG_ON(PageWriteback(page));
|
|
set_page_writeback(page);
|
|
unlock_page(page);
|
|
end_page_writeback(page);
|
|
}
|
|
if (likely(!err))
|
|
ntfs_debug("Done.");
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_writepage - write a @page to the backing store
|
|
* @page: page cache page to write out
|
|
* @wbc: writeback control structure
|
|
*
|
|
* This is called from the VM when it wants to have a dirty ntfs page cache
|
|
* page cleaned. The VM has already locked the page and marked it clean.
|
|
*
|
|
* For non-resident attributes, ntfs_writepage() writes the @page by calling
|
|
* the ntfs version of the generic block_write_full_page() function,
|
|
* ntfs_write_block(), which in turn if necessary creates and writes the
|
|
* buffers associated with the page asynchronously.
|
|
*
|
|
* For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
|
|
* the data to the mft record (which at this stage is most likely in memory).
|
|
* The mft record is then marked dirty and written out asynchronously via the
|
|
* vfs inode dirty code path for the inode the mft record belongs to or via the
|
|
* vm page dirty code path for the page the mft record is in.
|
|
*
|
|
* Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
|
|
*
|
|
* Return 0 on success and -errno on error.
|
|
*/
|
|
static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
|
|
{
|
|
loff_t i_size;
|
|
struct inode *vi = page->mapping->host;
|
|
ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
|
|
char *kaddr;
|
|
ntfs_attr_search_ctx *ctx = NULL;
|
|
MFT_RECORD *m = NULL;
|
|
u32 attr_len;
|
|
int err;
|
|
|
|
retry_writepage:
|
|
BUG_ON(!PageLocked(page));
|
|
i_size = i_size_read(vi);
|
|
/* Is the page fully outside i_size? (truncate in progress) */
|
|
if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
|
|
PAGE_CACHE_SHIFT)) {
|
|
/*
|
|
* The page may have dirty, unmapped buffers. Make them
|
|
* freeable here, so the page does not leak.
|
|
*/
|
|
block_invalidatepage(page, 0);
|
|
unlock_page(page);
|
|
ntfs_debug("Write outside i_size - truncated?");
|
|
return 0;
|
|
}
|
|
/* NInoNonResident() == NInoIndexAllocPresent() */
|
|
if (NInoNonResident(ni)) {
|
|
/*
|
|
* Only unnamed $DATA attributes can be compressed, encrypted,
|
|
* and/or sparse.
|
|
*/
|
|
if (ni->type == AT_DATA && !ni->name_len) {
|
|
/* If file is encrypted, deny access, just like NT4. */
|
|
if (NInoEncrypted(ni)) {
|
|
unlock_page(page);
|
|
ntfs_debug("Denying write access to encrypted "
|
|
"file.");
|
|
return -EACCES;
|
|
}
|
|
/* Compressed data streams are handled in compress.c. */
|
|
if (NInoCompressed(ni)) {
|
|
// TODO: Implement and replace this check with
|
|
// return ntfs_write_compressed_block(page);
|
|
unlock_page(page);
|
|
ntfs_error(vi->i_sb, "Writing to compressed "
|
|
"files is not supported yet. "
|
|
"Sorry.");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
// TODO: Implement and remove this check.
|
|
if (NInoSparse(ni)) {
|
|
unlock_page(page);
|
|
ntfs_error(vi->i_sb, "Writing to sparse files "
|
|
"is not supported yet. Sorry.");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
/* We have to zero every time due to mmap-at-end-of-file. */
|
|
if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
|
|
/* The page straddles i_size. */
|
|
unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
}
|
|
/* Handle mst protected attributes. */
|
|
if (NInoMstProtected(ni))
|
|
return ntfs_write_mst_block(page, wbc);
|
|
/* Normal data stream. */
|
|
return ntfs_write_block(page, wbc);
|
|
}
|
|
/*
|
|
* Attribute is resident, implying it is not compressed, encrypted,
|
|
* sparse, or mst protected. This also means the attribute is smaller
|
|
* than an mft record and hence smaller than a page, so can simply
|
|
* return error on any pages with index above 0.
|
|
*/
|
|
BUG_ON(page_has_buffers(page));
|
|
BUG_ON(!PageUptodate(page));
|
|
if (unlikely(page->index > 0)) {
|
|
ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. "
|
|
"Aborting write.", page->index);
|
|
BUG_ON(PageWriteback(page));
|
|
set_page_writeback(page);
|
|
unlock_page(page);
|
|
end_page_writeback(page);
|
|
return -EIO;
|
|
}
|
|
if (!NInoAttr(ni))
|
|
base_ni = ni;
|
|
else
|
|
base_ni = ni->ext.base_ntfs_ino;
|
|
/* Map, pin, and lock the mft record. */
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
goto err_out;
|
|
}
|
|
/*
|
|
* If a parallel write made the attribute non-resident, drop the mft
|
|
* record and retry the writepage.
|
|
*/
|
|
if (unlikely(NInoNonResident(ni))) {
|
|
unmap_mft_record(base_ni);
|
|
goto retry_writepage;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (unlikely(!ctx)) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err))
|
|
goto err_out;
|
|
/*
|
|
* Keep the VM happy. This must be done otherwise the radix-tree tag
|
|
* PAGECACHE_TAG_DIRTY remains set even though the page is clean.
|
|
*/
|
|
BUG_ON(PageWriteback(page));
|
|
set_page_writeback(page);
|
|
unlock_page(page);
|
|
|
|
/*
|
|
* Here, we don't need to zero the out of bounds area everytime because
|
|
* the below memcpy() already takes care of the mmap-at-end-of-file
|
|
* requirements. If the file is converted to a non-resident one, then
|
|
* the code path use is switched to the non-resident one where the
|
|
* zeroing happens on each ntfs_writepage() invocation.
|
|
*
|
|
* The above also applies nicely when i_size is decreased.
|
|
*
|
|
* When i_size is increased, the memory between the old and new i_size
|
|
* _must_ be zeroed (or overwritten with new data). Otherwise we will
|
|
* expose data to userspace/disk which should never have been exposed.
|
|
*
|
|
* FIXME: Ensure that i_size increases do the zeroing/overwriting and
|
|
* if we cannot guarantee that, then enable the zeroing below. If the
|
|
* zeroing below is enabled, we MUST move the unlock_page() from above
|
|
* to after the kunmap_atomic(), i.e. just before the
|
|
* end_page_writeback().
|
|
* UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size
|
|
* increases for resident attributes so those are ok.
|
|
* TODO: ntfs_truncate(), others?
|
|
*/
|
|
|
|
attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
|
|
i_size = i_size_read(vi);
|
|
if (unlikely(attr_len > i_size)) {
|
|
attr_len = i_size;
|
|
ctx->attr->data.resident.value_length = cpu_to_le32(attr_len);
|
|
}
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
/* Copy the data from the page to the mft record. */
|
|
memcpy((u8*)ctx->attr +
|
|
le16_to_cpu(ctx->attr->data.resident.value_offset),
|
|
kaddr, attr_len);
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
/* Zero out of bounds area in the page cache page. */
|
|
memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
|
|
end_page_writeback(page);
|
|
|
|
/* Mark the mft record dirty, so it gets written back. */
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
return 0;
|
|
err_out:
|
|
if (err == -ENOMEM) {
|
|
ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
|
|
"page so we try again later.");
|
|
/*
|
|
* Put the page back on mapping->dirty_pages, but leave its
|
|
* buffers' dirty state as-is.
|
|
*/
|
|
redirty_page_for_writepage(wbc, page);
|
|
err = 0;
|
|
} else {
|
|
ntfs_error(vi->i_sb, "Resident attribute write failed with "
|
|
"error %i.", err);
|
|
SetPageError(page);
|
|
NVolSetErrors(ni->vol);
|
|
make_bad_inode(vi);
|
|
}
|
|
unlock_page(page);
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(base_ni);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_prepare_nonresident_write -
|
|
*
|
|
*/
|
|
static int ntfs_prepare_nonresident_write(struct page *page,
|
|
unsigned from, unsigned to)
|
|
{
|
|
VCN vcn;
|
|
LCN lcn;
|
|
s64 initialized_size;
|
|
loff_t i_size;
|
|
sector_t block, ablock, iblock;
|
|
struct inode *vi;
|
|
ntfs_inode *ni;
|
|
ntfs_volume *vol;
|
|
runlist_element *rl;
|
|
struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
|
|
unsigned long flags;
|
|
unsigned int vcn_ofs, block_start, block_end, blocksize;
|
|
int err;
|
|
BOOL is_retry;
|
|
unsigned char blocksize_bits;
|
|
|
|
vi = page->mapping->host;
|
|
ni = NTFS_I(vi);
|
|
vol = ni->vol;
|
|
|
|
ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
|
|
"0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
|
|
page->index, from, to);
|
|
|
|
BUG_ON(!NInoNonResident(ni));
|
|
|
|
blocksize_bits = vi->i_blkbits;
|
|
blocksize = 1 << blocksize_bits;
|
|
|
|
/*
|
|
* create_empty_buffers() will create uptodate/dirty buffers if the
|
|
* page is uptodate/dirty.
|
|
*/
|
|
if (!page_has_buffers(page))
|
|
create_empty_buffers(page, blocksize, 0);
|
|
bh = head = page_buffers(page);
|
|
if (unlikely(!bh))
|
|
return -ENOMEM;
|
|
|
|
/* The first block in the page. */
|
|
block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
|
|
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
/*
|
|
* The first out of bounds block for the allocated size. No need to
|
|
* round up as allocated_size is in multiples of cluster size and the
|
|
* minimum cluster size is 512 bytes, which is equal to the smallest
|
|
* blocksize.
|
|
*/
|
|
ablock = ni->allocated_size >> blocksize_bits;
|
|
i_size = i_size_read(vi);
|
|
initialized_size = ni->initialized_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
|
|
/* The last (fully or partially) initialized block. */
|
|
iblock = initialized_size >> blocksize_bits;
|
|
|
|
/* Loop through all the buffers in the page. */
|
|
block_start = 0;
|
|
rl = NULL;
|
|
err = 0;
|
|
do {
|
|
block_end = block_start + blocksize;
|
|
/*
|
|
* If buffer @bh is outside the write, just mark it uptodate
|
|
* if the page is uptodate and continue with the next buffer.
|
|
*/
|
|
if (block_end <= from || block_start >= to) {
|
|
if (PageUptodate(page)) {
|
|
if (!buffer_uptodate(bh))
|
|
set_buffer_uptodate(bh);
|
|
}
|
|
continue;
|
|
}
|
|
/*
|
|
* @bh is at least partially being written to.
|
|
* Make sure it is not marked as new.
|
|
*/
|
|
//if (buffer_new(bh))
|
|
// clear_buffer_new(bh);
|
|
|
|
if (block >= ablock) {
|
|
// TODO: block is above allocated_size, need to
|
|
// allocate it. Best done in one go to accommodate not
|
|
// only block but all above blocks up to and including:
|
|
// ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
|
|
// - 1) >> blobksize_bits. Obviously will need to round
|
|
// up to next cluster boundary, too. This should be
|
|
// done with a helper function, so it can be reused.
|
|
ntfs_error(vol->sb, "Writing beyond allocated size "
|
|
"is not supported yet. Sorry.");
|
|
err = -EOPNOTSUPP;
|
|
goto err_out;
|
|
// Need to update ablock.
|
|
// Need to set_buffer_new() on all block bhs that are
|
|
// newly allocated.
|
|
}
|
|
/*
|
|
* Now we have enough allocated size to fulfill the whole
|
|
* request, i.e. block < ablock is true.
|
|
*/
|
|
if (unlikely((block >= iblock) &&
|
|
(initialized_size < i_size))) {
|
|
/*
|
|
* If this page is fully outside initialized size, zero
|
|
* out all pages between the current initialized size
|
|
* and the current page. Just use ntfs_readpage() to do
|
|
* the zeroing transparently.
|
|
*/
|
|
if (block > iblock) {
|
|
// TODO:
|
|
// For each page do:
|
|
// - read_cache_page()
|
|
// Again for each page do:
|
|
// - wait_on_page_locked()
|
|
// - Check (PageUptodate(page) &&
|
|
// !PageError(page))
|
|
// Update initialized size in the attribute and
|
|
// in the inode.
|
|
// Again, for each page do:
|
|
// __set_page_dirty_buffers();
|
|
// page_cache_release()
|
|
// We don't need to wait on the writes.
|
|
// Update iblock.
|
|
}
|
|
/*
|
|
* The current page straddles initialized size. Zero
|
|
* all non-uptodate buffers and set them uptodate (and
|
|
* dirty?). Note, there aren't any non-uptodate buffers
|
|
* if the page is uptodate.
|
|
* FIXME: For an uptodate page, the buffers may need to
|
|
* be written out because they were not initialized on
|
|
* disk before.
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
// TODO:
|
|
// Zero any non-uptodate buffers up to i_size.
|
|
// Set them uptodate and dirty.
|
|
}
|
|
// TODO:
|
|
// Update initialized size in the attribute and in the
|
|
// inode (up to i_size).
|
|
// Update iblock.
|
|
// FIXME: This is inefficient. Try to batch the two
|
|
// size changes to happen in one go.
|
|
ntfs_error(vol->sb, "Writing beyond initialized size "
|
|
"is not supported yet. Sorry.");
|
|
err = -EOPNOTSUPP;
|
|
goto err_out;
|
|
// Do NOT set_buffer_new() BUT DO clear buffer range
|
|
// outside write request range.
|
|
// set_buffer_uptodate() on complete buffers as well as
|
|
// set_buffer_dirty().
|
|
}
|
|
|
|
/* Need to map unmapped buffers. */
|
|
if (!buffer_mapped(bh)) {
|
|
/* Unmapped buffer. Need to map it. */
|
|
bh->b_bdev = vol->sb->s_bdev;
|
|
|
|
/* Convert block into corresponding vcn and offset. */
|
|
vcn = (VCN)block << blocksize_bits >>
|
|
vol->cluster_size_bits;
|
|
vcn_ofs = ((VCN)block << blocksize_bits) &
|
|
vol->cluster_size_mask;
|
|
|
|
is_retry = FALSE;
|
|
if (!rl) {
|
|
lock_retry_remap:
|
|
down_read(&ni->runlist.lock);
|
|
rl = ni->runlist.rl;
|
|
}
|
|
if (likely(rl != NULL)) {
|
|
/* Seek to element containing target vcn. */
|
|
while (rl->length && rl[1].vcn <= vcn)
|
|
rl++;
|
|
lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
|
|
} else
|
|
lcn = LCN_RL_NOT_MAPPED;
|
|
if (unlikely(lcn < 0)) {
|
|
/*
|
|
* We extended the attribute allocation above.
|
|
* If we hit an ENOENT here it means that the
|
|
* allocation was insufficient which is a bug.
|
|
*/
|
|
BUG_ON(lcn == LCN_ENOENT);
|
|
|
|
/* It is a hole, need to instantiate it. */
|
|
if (lcn == LCN_HOLE) {
|
|
// TODO: Instantiate the hole.
|
|
// clear_buffer_new(bh);
|
|
// unmap_underlying_metadata(bh->b_bdev,
|
|
// bh->b_blocknr);
|
|
// For non-uptodate buffers, need to
|
|
// zero out the region outside the
|
|
// request in this bh or all bhs,
|
|
// depending on what we implemented
|
|
// above.
|
|
// Need to flush_dcache_page().
|
|
// Or could use set_buffer_new()
|
|
// instead?
|
|
ntfs_error(vol->sb, "Writing into "
|
|
"sparse regions is "
|
|
"not supported yet. "
|
|
"Sorry.");
|
|
err = -EOPNOTSUPP;
|
|
if (!rl)
|
|
up_read(&ni->runlist.lock);
|
|
goto err_out;
|
|
} else if (!is_retry &&
|
|
lcn == LCN_RL_NOT_MAPPED) {
|
|
is_retry = TRUE;
|
|
/*
|
|
* Attempt to map runlist, dropping
|
|
* lock for the duration.
|
|
*/
|
|
up_read(&ni->runlist.lock);
|
|
err = ntfs_map_runlist(ni, vcn);
|
|
if (likely(!err))
|
|
goto lock_retry_remap;
|
|
rl = NULL;
|
|
lcn = err;
|
|
} else if (!rl)
|
|
up_read(&ni->runlist.lock);
|
|
/*
|
|
* Failed to map the buffer, even after
|
|
* retrying.
|
|
*/
|
|
bh->b_blocknr = -1;
|
|
ntfs_error(vol->sb, "Failed to write to inode "
|
|
"0x%lx, attribute type 0x%x, "
|
|
"vcn 0x%llx, offset 0x%x "
|
|
"because its location on disk "
|
|
"could not be determined%s "
|
|
"(error code %lli).",
|
|
ni->mft_no, ni->type,
|
|
(unsigned long long)vcn,
|
|
vcn_ofs, is_retry ? " even "
|
|
"after retrying" : "",
|
|
(long long)lcn);
|
|
if (!err)
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
/* We now have a successful remap, i.e. lcn >= 0. */
|
|
|
|
/* Setup buffer head to correct block. */
|
|
bh->b_blocknr = ((lcn << vol->cluster_size_bits)
|
|
+ vcn_ofs) >> blocksize_bits;
|
|
set_buffer_mapped(bh);
|
|
|
|
// FIXME: Something analogous to this is needed for
|
|
// each newly allocated block, i.e. BH_New.
|
|
// FIXME: Might need to take this out of the
|
|
// if (!buffer_mapped(bh)) {}, depending on how we
|
|
// implement things during the allocated_size and
|
|
// initialized_size extension code above.
|
|
if (buffer_new(bh)) {
|
|
clear_buffer_new(bh);
|
|
unmap_underlying_metadata(bh->b_bdev,
|
|
bh->b_blocknr);
|
|
if (PageUptodate(page)) {
|
|
set_buffer_uptodate(bh);
|
|
continue;
|
|
}
|
|
/*
|
|
* Page is _not_ uptodate, zero surrounding
|
|
* region. NOTE: This is how we decide if to
|
|
* zero or not!
|
|
*/
|
|
if (block_end > to || block_start < from) {
|
|
void *kaddr;
|
|
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
if (block_end > to)
|
|
memset(kaddr + to, 0,
|
|
block_end - to);
|
|
if (block_start < from)
|
|
memset(kaddr + block_start, 0,
|
|
from -
|
|
block_start);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
/* @bh is mapped, set it uptodate if the page is uptodate. */
|
|
if (PageUptodate(page)) {
|
|
if (!buffer_uptodate(bh))
|
|
set_buffer_uptodate(bh);
|
|
continue;
|
|
}
|
|
/*
|
|
* The page is not uptodate. The buffer is mapped. If it is not
|
|
* uptodate, and it is only partially being written to, we need
|
|
* to read the buffer in before the write, i.e. right now.
|
|
*/
|
|
if (!buffer_uptodate(bh) &&
|
|
(block_start < from || block_end > to)) {
|
|
ll_rw_block(READ, 1, &bh);
|
|
*wait_bh++ = bh;
|
|
}
|
|
} while (block++, block_start = block_end,
|
|
(bh = bh->b_this_page) != head);
|
|
|
|
/* Release the lock if we took it. */
|
|
if (rl) {
|
|
up_read(&ni->runlist.lock);
|
|
rl = NULL;
|
|
}
|
|
|
|
/* If we issued read requests, let them complete. */
|
|
while (wait_bh > wait) {
|
|
wait_on_buffer(*--wait_bh);
|
|
if (!buffer_uptodate(*wait_bh))
|
|
return -EIO;
|
|
}
|
|
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
err_out:
|
|
/*
|
|
* Zero out any newly allocated blocks to avoid exposing stale data.
|
|
* If BH_New is set, we know that the block was newly allocated in the
|
|
* above loop.
|
|
* FIXME: What about initialized_size increments? Have we done all the
|
|
* required zeroing above? If not this error handling is broken, and
|
|
* in particular the if (block_end <= from) check is completely bogus.
|
|
*/
|
|
bh = head;
|
|
block_start = 0;
|
|
is_retry = FALSE;
|
|
do {
|
|
block_end = block_start + blocksize;
|
|
if (block_end <= from)
|
|
continue;
|
|
if (block_start >= to)
|
|
break;
|
|
if (buffer_new(bh)) {
|
|
void *kaddr;
|
|
|
|
clear_buffer_new(bh);
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memset(kaddr + block_start, 0, bh->b_size);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
set_buffer_uptodate(bh);
|
|
mark_buffer_dirty(bh);
|
|
is_retry = TRUE;
|
|
}
|
|
} while (block_start = block_end, (bh = bh->b_this_page) != head);
|
|
if (is_retry)
|
|
flush_dcache_page(page);
|
|
if (rl)
|
|
up_read(&ni->runlist.lock);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_prepare_write - prepare a page for receiving data
|
|
*
|
|
* This is called from generic_file_write() with i_sem held on the inode
|
|
* (@page->mapping->host). The @page is locked but not kmap()ped. The source
|
|
* data has not yet been copied into the @page.
|
|
*
|
|
* Need to extend the attribute/fill in holes if necessary, create blocks and
|
|
* make partially overwritten blocks uptodate,
|
|
*
|
|
* i_size is not to be modified yet.
|
|
*
|
|
* Return 0 on success or -errno on error.
|
|
*
|
|
* Should be using block_prepare_write() [support for sparse files] or
|
|
* cont_prepare_write() [no support for sparse files]. Cannot do that due to
|
|
* ntfs specifics but can look at them for implementation guidance.
|
|
*
|
|
* Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
|
|
* the first byte in the page that will be written to and @to is the first byte
|
|
* after the last byte that will be written to.
|
|
*/
|
|
static int ntfs_prepare_write(struct file *file, struct page *page,
|
|
unsigned from, unsigned to)
|
|
{
|
|
s64 new_size;
|
|
loff_t i_size;
|
|
struct inode *vi = page->mapping->host;
|
|
ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
|
|
ntfs_volume *vol = ni->vol;
|
|
ntfs_attr_search_ctx *ctx = NULL;
|
|
MFT_RECORD *m = NULL;
|
|
ATTR_RECORD *a;
|
|
u8 *kaddr;
|
|
u32 attr_len;
|
|
int err;
|
|
|
|
ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
|
|
"0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
|
|
page->index, from, to);
|
|
BUG_ON(!PageLocked(page));
|
|
BUG_ON(from > PAGE_CACHE_SIZE);
|
|
BUG_ON(to > PAGE_CACHE_SIZE);
|
|
BUG_ON(from > to);
|
|
BUG_ON(NInoMstProtected(ni));
|
|
/*
|
|
* If a previous ntfs_truncate() failed, repeat it and abort if it
|
|
* fails again.
|
|
*/
|
|
if (unlikely(NInoTruncateFailed(ni))) {
|
|
down_write(&vi->i_alloc_sem);
|
|
err = ntfs_truncate(vi);
|
|
up_write(&vi->i_alloc_sem);
|
|
if (err || NInoTruncateFailed(ni)) {
|
|
if (!err)
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
}
|
|
/* If the attribute is not resident, deal with it elsewhere. */
|
|
if (NInoNonResident(ni)) {
|
|
/*
|
|
* Only unnamed $DATA attributes can be compressed, encrypted,
|
|
* and/or sparse.
|
|
*/
|
|
if (ni->type == AT_DATA && !ni->name_len) {
|
|
/* If file is encrypted, deny access, just like NT4. */
|
|
if (NInoEncrypted(ni)) {
|
|
ntfs_debug("Denying write access to encrypted "
|
|
"file.");
|
|
return -EACCES;
|
|
}
|
|
/* Compressed data streams are handled in compress.c. */
|
|
if (NInoCompressed(ni)) {
|
|
// TODO: Implement and replace this check with
|
|
// return ntfs_write_compressed_block(page);
|
|
ntfs_error(vi->i_sb, "Writing to compressed "
|
|
"files is not supported yet. "
|
|
"Sorry.");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
// TODO: Implement and remove this check.
|
|
if (NInoSparse(ni)) {
|
|
ntfs_error(vi->i_sb, "Writing to sparse files "
|
|
"is not supported yet. Sorry.");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
/* Normal data stream. */
|
|
return ntfs_prepare_nonresident_write(page, from, to);
|
|
}
|
|
/*
|
|
* Attribute is resident, implying it is not compressed, encrypted, or
|
|
* sparse.
|
|
*/
|
|
BUG_ON(page_has_buffers(page));
|
|
new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
|
|
/* If we do not need to resize the attribute allocation we are done. */
|
|
if (new_size <= i_size_read(vi))
|
|
goto done;
|
|
/* Map, pin, and lock the (base) mft record. */
|
|
if (!NInoAttr(ni))
|
|
base_ni = ni;
|
|
else
|
|
base_ni = ni->ext.base_ntfs_ino;
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
goto err_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (unlikely(!ctx)) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
m = ctx->mrec;
|
|
a = ctx->attr;
|
|
/* The total length of the attribute value. */
|
|
attr_len = le32_to_cpu(a->data.resident.value_length);
|
|
/* Fix an eventual previous failure of ntfs_commit_write(). */
|
|
i_size = i_size_read(vi);
|
|
if (unlikely(attr_len > i_size)) {
|
|
attr_len = i_size;
|
|
a->data.resident.value_length = cpu_to_le32(attr_len);
|
|
}
|
|
/* If we do not need to resize the attribute allocation we are done. */
|
|
if (new_size <= attr_len)
|
|
goto done_unm;
|
|
/* Check if new size is allowed in $AttrDef. */
|
|
err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
|
|
if (unlikely(err)) {
|
|
if (err == -ERANGE) {
|
|
ntfs_error(vol->sb, "Write would cause the inode "
|
|
"0x%lx to exceed the maximum size for "
|
|
"its attribute type (0x%x). Aborting "
|
|
"write.", vi->i_ino,
|
|
le32_to_cpu(ni->type));
|
|
} else {
|
|
ntfs_error(vol->sb, "Inode 0x%lx has unknown "
|
|
"attribute type 0x%x. Aborting "
|
|
"write.", vi->i_ino,
|
|
le32_to_cpu(ni->type));
|
|
err = -EIO;
|
|
}
|
|
goto err_out2;
|
|
}
|
|
/*
|
|
* Extend the attribute record to be able to store the new attribute
|
|
* size.
|
|
*/
|
|
if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
|
|
le16_to_cpu(a->data.resident.value_offset) +
|
|
new_size)) {
|
|
/* Not enough space in the mft record. */
|
|
ntfs_error(vol->sb, "Not enough space in the mft record for "
|
|
"the resized attribute value. This is not "
|
|
"supported yet. Aborting write.");
|
|
err = -EOPNOTSUPP;
|
|
goto err_out2;
|
|
}
|
|
/*
|
|
* We have enough space in the mft record to fit the write. This
|
|
* implies the attribute is smaller than the mft record and hence the
|
|
* attribute must be in a single page and hence page->index must be 0.
|
|
*/
|
|
BUG_ON(page->index);
|
|
/*
|
|
* If the beginning of the write is past the old size, enlarge the
|
|
* attribute value up to the beginning of the write and fill it with
|
|
* zeroes.
|
|
*/
|
|
if (from > attr_len) {
|
|
memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
|
|
attr_len, 0, from - attr_len);
|
|
a->data.resident.value_length = cpu_to_le32(from);
|
|
/* Zero the corresponding area in the page as well. */
|
|
if (PageUptodate(page)) {
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memset(kaddr + attr_len, 0, from - attr_len);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
flush_dcache_page(page);
|
|
}
|
|
}
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
done_unm:
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
/*
|
|
* Because resident attributes are handled by memcpy() to/from the
|
|
* corresponding MFT record, and because this form of i/o is byte
|
|
* aligned rather than block aligned, there is no need to bring the
|
|
* page uptodate here as in the non-resident case where we need to
|
|
* bring the buffers straddled by the write uptodate before
|
|
* generic_file_write() does the copying from userspace.
|
|
*
|
|
* We thus defer the uptodate bringing of the page region outside the
|
|
* region written to to ntfs_commit_write(), which makes the code
|
|
* simpler and saves one atomic kmap which is good.
|
|
*/
|
|
done:
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
err_out:
|
|
if (err == -ENOMEM)
|
|
ntfs_warning(vi->i_sb, "Error allocating memory required to "
|
|
"prepare the write.");
|
|
else {
|
|
ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
|
|
"with error %i.", err);
|
|
NVolSetErrors(vol);
|
|
make_bad_inode(vi);
|
|
}
|
|
err_out2:
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(base_ni);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_commit_nonresident_write -
|
|
*
|
|
*/
|
|
static int ntfs_commit_nonresident_write(struct page *page,
|
|
unsigned from, unsigned to)
|
|
{
|
|
s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
|
|
struct inode *vi = page->mapping->host;
|
|
struct buffer_head *bh, *head;
|
|
unsigned int block_start, block_end, blocksize;
|
|
BOOL partial;
|
|
|
|
ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
|
|
"0x%lx, from = %u, to = %u.", vi->i_ino,
|
|
NTFS_I(vi)->type, page->index, from, to);
|
|
blocksize = 1 << vi->i_blkbits;
|
|
|
|
// FIXME: We need a whole slew of special cases in here for compressed
|
|
// files for example...
|
|
// For now, we know ntfs_prepare_write() would have failed so we can't
|
|
// get here in any of the cases which we have to special case, so we
|
|
// are just a ripped off, unrolled generic_commit_write().
|
|
|
|
bh = head = page_buffers(page);
|
|
block_start = 0;
|
|
partial = FALSE;
|
|
do {
|
|
block_end = block_start + blocksize;
|
|
if (block_end <= from || block_start >= to) {
|
|
if (!buffer_uptodate(bh))
|
|
partial = TRUE;
|
|
} else {
|
|
set_buffer_uptodate(bh);
|
|
mark_buffer_dirty(bh);
|
|
}
|
|
} while (block_start = block_end, (bh = bh->b_this_page) != head);
|
|
/*
|
|
* If this is a partial write which happened to make all buffers
|
|
* uptodate then we can optimize away a bogus ->readpage() for the next
|
|
* read(). Here we 'discover' whether the page went uptodate as a
|
|
* result of this (potentially partial) write.
|
|
*/
|
|
if (!partial)
|
|
SetPageUptodate(page);
|
|
/*
|
|
* Not convinced about this at all. See disparity comment above. For
|
|
* now we know ntfs_prepare_write() would have failed in the write
|
|
* exceeds i_size case, so this will never trigger which is fine.
|
|
*/
|
|
if (pos > i_size_read(vi)) {
|
|
ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
|
|
"not supported yet. Sorry.");
|
|
return -EOPNOTSUPP;
|
|
// vi->i_size = pos;
|
|
// mark_inode_dirty(vi);
|
|
}
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ntfs_commit_write - commit the received data
|
|
*
|
|
* This is called from generic_file_write() with i_sem held on the inode
|
|
* (@page->mapping->host). The @page is locked but not kmap()ped. The source
|
|
* data has already been copied into the @page. ntfs_prepare_write() has been
|
|
* called before the data copied and it returned success so we can take the
|
|
* results of various BUG checks and some error handling for granted.
|
|
*
|
|
* Need to mark modified blocks dirty so they get written out later when
|
|
* ntfs_writepage() is invoked by the VM.
|
|
*
|
|
* Return 0 on success or -errno on error.
|
|
*
|
|
* Should be using generic_commit_write(). This marks buffers uptodate and
|
|
* dirty, sets the page uptodate if all buffers in the page are uptodate, and
|
|
* updates i_size if the end of io is beyond i_size. In that case, it also
|
|
* marks the inode dirty.
|
|
*
|
|
* Cannot use generic_commit_write() due to ntfs specialities but can look at
|
|
* it for implementation guidance.
|
|
*
|
|
* If things have gone as outlined in ntfs_prepare_write(), then we do not
|
|
* need to do any page content modifications here at all, except in the write
|
|
* to resident attribute case, where we need to do the uptodate bringing here
|
|
* which we combine with the copying into the mft record which means we save
|
|
* one atomic kmap.
|
|
*/
|
|
static int ntfs_commit_write(struct file *file, struct page *page,
|
|
unsigned from, unsigned to)
|
|
{
|
|
struct inode *vi = page->mapping->host;
|
|
ntfs_inode *base_ni, *ni = NTFS_I(vi);
|
|
char *kaddr, *kattr;
|
|
ntfs_attr_search_ctx *ctx;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
u32 attr_len;
|
|
int err;
|
|
|
|
ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
|
|
"0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
|
|
page->index, from, to);
|
|
/* If the attribute is not resident, deal with it elsewhere. */
|
|
if (NInoNonResident(ni)) {
|
|
/* Only unnamed $DATA attributes can be compressed/encrypted. */
|
|
if (ni->type == AT_DATA && !ni->name_len) {
|
|
/* Encrypted files need separate handling. */
|
|
if (NInoEncrypted(ni)) {
|
|
// We never get here at present!
|
|
BUG();
|
|
}
|
|
/* Compressed data streams are handled in compress.c. */
|
|
if (NInoCompressed(ni)) {
|
|
// TODO: Implement this!
|
|
// return ntfs_write_compressed_block(page);
|
|
// We never get here at present!
|
|
BUG();
|
|
}
|
|
}
|
|
/* Normal data stream. */
|
|
return ntfs_commit_nonresident_write(page, from, to);
|
|
}
|
|
/*
|
|
* Attribute is resident, implying it is not compressed, encrypted, or
|
|
* sparse.
|
|
*/
|
|
if (!NInoAttr(ni))
|
|
base_ni = ni;
|
|
else
|
|
base_ni = ni->ext.base_ntfs_ino;
|
|
/* Map, pin, and lock the mft record. */
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
goto err_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (unlikely(!ctx)) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
a = ctx->attr;
|
|
/* The total length of the attribute value. */
|
|
attr_len = le32_to_cpu(a->data.resident.value_length);
|
|
BUG_ON(from > attr_len);
|
|
kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
/* Copy the received data from the page to the mft record. */
|
|
memcpy(kattr + from, kaddr + from, to - from);
|
|
/* Update the attribute length if necessary. */
|
|
if (to > attr_len) {
|
|
attr_len = to;
|
|
a->data.resident.value_length = cpu_to_le32(attr_len);
|
|
}
|
|
/*
|
|
* If the page is not uptodate, bring the out of bounds area(s)
|
|
* uptodate by copying data from the mft record to the page.
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
if (from > 0)
|
|
memcpy(kaddr, kattr, from);
|
|
if (to < attr_len)
|
|
memcpy(kaddr + to, kattr + to, attr_len - to);
|
|
/* Zero the region outside the end of the attribute value. */
|
|
if (attr_len < PAGE_CACHE_SIZE)
|
|
memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
|
|
/*
|
|
* The probability of not having done any of the above is
|
|
* extremely small, so we just flush unconditionally.
|
|
*/
|
|
flush_dcache_page(page);
|
|
SetPageUptodate(page);
|
|
}
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
/* Update i_size if necessary. */
|
|
if (i_size_read(vi) < attr_len) {
|
|
unsigned long flags;
|
|
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
ni->allocated_size = ni->initialized_size = attr_len;
|
|
i_size_write(vi, attr_len);
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
}
|
|
/* Mark the mft record dirty, so it gets written back. */
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
err_out:
|
|
if (err == -ENOMEM) {
|
|
ntfs_warning(vi->i_sb, "Error allocating memory required to "
|
|
"commit the write.");
|
|
if (PageUptodate(page)) {
|
|
ntfs_warning(vi->i_sb, "Page is uptodate, setting "
|
|
"dirty so the write will be retried "
|
|
"later on by the VM.");
|
|
/*
|
|
* Put the page on mapping->dirty_pages, but leave its
|
|
* buffers' dirty state as-is.
|
|
*/
|
|
__set_page_dirty_nobuffers(page);
|
|
err = 0;
|
|
} else
|
|
ntfs_error(vi->i_sb, "Page is not uptodate. Written "
|
|
"data has been lost.");
|
|
} else {
|
|
ntfs_error(vi->i_sb, "Resident attribute commit write failed "
|
|
"with error %i.", err);
|
|
NVolSetErrors(ni->vol);
|
|
make_bad_inode(vi);
|
|
}
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(base_ni);
|
|
return err;
|
|
}
|
|
|
|
#endif /* NTFS_RW */
|
|
|
|
/**
|
|
* ntfs_aops - general address space operations for inodes and attributes
|
|
*/
|
|
struct address_space_operations ntfs_aops = {
|
|
.readpage = ntfs_readpage, /* Fill page with data. */
|
|
.sync_page = block_sync_page, /* Currently, just unplugs the
|
|
disk request queue. */
|
|
#ifdef NTFS_RW
|
|
.writepage = ntfs_writepage, /* Write dirty page to disk. */
|
|
.prepare_write = ntfs_prepare_write, /* Prepare page and buffers
|
|
ready to receive data. */
|
|
.commit_write = ntfs_commit_write, /* Commit received data. */
|
|
#endif /* NTFS_RW */
|
|
};
|
|
|
|
/**
|
|
* ntfs_mst_aops - general address space operations for mst protecteed inodes
|
|
* and attributes
|
|
*/
|
|
struct address_space_operations ntfs_mst_aops = {
|
|
.readpage = ntfs_readpage, /* Fill page with data. */
|
|
.sync_page = block_sync_page, /* Currently, just unplugs the
|
|
disk request queue. */
|
|
#ifdef NTFS_RW
|
|
.writepage = ntfs_writepage, /* Write dirty page to disk. */
|
|
.set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty
|
|
without touching the buffers
|
|
belonging to the page. */
|
|
#endif /* NTFS_RW */
|
|
};
|
|
|
|
#ifdef NTFS_RW
|
|
|
|
/**
|
|
* mark_ntfs_record_dirty - mark an ntfs record dirty
|
|
* @page: page containing the ntfs record to mark dirty
|
|
* @ofs: byte offset within @page at which the ntfs record begins
|
|
*
|
|
* Set the buffers and the page in which the ntfs record is located dirty.
|
|
*
|
|
* The latter also marks the vfs inode the ntfs record belongs to dirty
|
|
* (I_DIRTY_PAGES only).
|
|
*
|
|
* If the page does not have buffers, we create them and set them uptodate.
|
|
* The page may not be locked which is why we need to handle the buffers under
|
|
* the mapping->private_lock. Once the buffers are marked dirty we no longer
|
|
* need the lock since try_to_free_buffers() does not free dirty buffers.
|
|
*/
|
|
void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
|
|
struct address_space *mapping = page->mapping;
|
|
ntfs_inode *ni = NTFS_I(mapping->host);
|
|
struct buffer_head *bh, *head, *buffers_to_free = NULL;
|
|
unsigned int end, bh_size, bh_ofs;
|
|
|
|
BUG_ON(!PageUptodate(page));
|
|
end = ofs + ni->itype.index.block_size;
|
|
bh_size = 1 << VFS_I(ni)->i_blkbits;
|
|
spin_lock(&mapping->private_lock);
|
|
if (unlikely(!page_has_buffers(page))) {
|
|
spin_unlock(&mapping->private_lock);
|
|
bh = head = alloc_page_buffers(page, bh_size, 1);
|
|
spin_lock(&mapping->private_lock);
|
|
if (likely(!page_has_buffers(page))) {
|
|
struct buffer_head *tail;
|
|
|
|
do {
|
|
set_buffer_uptodate(bh);
|
|
tail = bh;
|
|
bh = bh->b_this_page;
|
|
} while (bh);
|
|
tail->b_this_page = head;
|
|
attach_page_buffers(page, head);
|
|
} else
|
|
buffers_to_free = bh;
|
|
}
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
bh_ofs = bh_offset(bh);
|
|
if (bh_ofs + bh_size <= ofs)
|
|
continue;
|
|
if (unlikely(bh_ofs >= end))
|
|
break;
|
|
set_buffer_dirty(bh);
|
|
} while ((bh = bh->b_this_page) != head);
|
|
spin_unlock(&mapping->private_lock);
|
|
__set_page_dirty_nobuffers(page);
|
|
if (unlikely(buffers_to_free)) {
|
|
do {
|
|
bh = buffers_to_free->b_this_page;
|
|
free_buffer_head(buffers_to_free);
|
|
buffers_to_free = bh;
|
|
} while (buffers_to_free);
|
|
}
|
|
}
|
|
|
|
#endif /* NTFS_RW */
|