mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 10:03:24 +00:00
46a82b2d55
One of the changes necessary for shared page tables is to standardize the pxx_page macros. pte_page and pmd_page have always returned the struct page associated with their entry, while pte_page_kernel and pmd_page_kernel have returned the kernel virtual address. pud_page and pgd_page, on the other hand, return the kernel virtual address. Shared page tables needs pud_page and pgd_page to return the actual page structures. There are very few actual users of these functions, so it is simple to standardize their usage. Since this is basic cleanup, I am submitting these changes as a standalone patch. Per Hugh Dickins' comments about it, I am also changing the pxx_page_kernel macros to pxx_page_vaddr to clarify their meaning. Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
848 lines
30 KiB
C
848 lines
30 KiB
C
#ifdef __KERNEL__
|
|
#ifndef _PPC_PGTABLE_H
|
|
#define _PPC_PGTABLE_H
|
|
|
|
#include <asm-generic/4level-fixup.h>
|
|
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#include <linux/sched.h>
|
|
#include <linux/threads.h>
|
|
#include <asm/processor.h> /* For TASK_SIZE */
|
|
#include <asm/mmu.h>
|
|
#include <asm/page.h>
|
|
#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
|
|
struct mm_struct;
|
|
|
|
extern unsigned long va_to_phys(unsigned long address);
|
|
extern pte_t *va_to_pte(unsigned long address);
|
|
extern unsigned long ioremap_bot, ioremap_base;
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
/*
|
|
* The PowerPC MMU uses a hash table containing PTEs, together with
|
|
* a set of 16 segment registers (on 32-bit implementations), to define
|
|
* the virtual to physical address mapping.
|
|
*
|
|
* We use the hash table as an extended TLB, i.e. a cache of currently
|
|
* active mappings. We maintain a two-level page table tree, much
|
|
* like that used by the i386, for the sake of the Linux memory
|
|
* management code. Low-level assembler code in hashtable.S
|
|
* (procedure hash_page) is responsible for extracting ptes from the
|
|
* tree and putting them into the hash table when necessary, and
|
|
* updating the accessed and modified bits in the page table tree.
|
|
*/
|
|
|
|
/*
|
|
* The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
|
|
* We also use the two level tables, but we can put the real bits in them
|
|
* needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0,
|
|
* Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has
|
|
* additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
|
|
* based upon user/super access. The TLB does not have accessed nor write
|
|
* protect. We assume that if the TLB get loaded with an entry it is
|
|
* accessed, and overload the changed bit for write protect. We use
|
|
* two bits in the software pte that are supposed to be set to zero in
|
|
* the TLB entry (24 and 25) for these indicators. Although the level 1
|
|
* descriptor contains the guarded and writethrough/copyback bits, we can
|
|
* set these at the page level since they get copied from the Mx_TWC
|
|
* register when the TLB entry is loaded. We will use bit 27 for guard, since
|
|
* that is where it exists in the MD_TWC, and bit 26 for writethrough.
|
|
* These will get masked from the level 2 descriptor at TLB load time, and
|
|
* copied to the MD_TWC before it gets loaded.
|
|
* Large page sizes added. We currently support two sizes, 4K and 8M.
|
|
* This also allows a TLB hander optimization because we can directly
|
|
* load the PMD into MD_TWC. The 8M pages are only used for kernel
|
|
* mapping of well known areas. The PMD (PGD) entries contain control
|
|
* flags in addition to the address, so care must be taken that the
|
|
* software no longer assumes these are only pointers.
|
|
*/
|
|
|
|
/*
|
|
* At present, all PowerPC 400-class processors share a similar TLB
|
|
* architecture. The instruction and data sides share a unified,
|
|
* 64-entry, fully-associative TLB which is maintained totally under
|
|
* software control. In addition, the instruction side has a
|
|
* hardware-managed, 4-entry, fully-associative TLB which serves as a
|
|
* first level to the shared TLB. These two TLBs are known as the UTLB
|
|
* and ITLB, respectively (see "mmu.h" for definitions).
|
|
*/
|
|
|
|
/*
|
|
* The normal case is that PTEs are 32-bits and we have a 1-page
|
|
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
|
|
*
|
|
* For any >32-bit physical address platform, we can use the following
|
|
* two level page table layout where the pgdir is 8KB and the MS 13 bits
|
|
* are an index to the second level table. The combined pgdir/pmd first
|
|
* level has 2048 entries and the second level has 512 64-bit PTE entries.
|
|
* -Matt
|
|
*/
|
|
/* PMD_SHIFT determines the size of the area mapped by the PTE pages */
|
|
#define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT)
|
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
|
#define PMD_MASK (~(PMD_SIZE-1))
|
|
|
|
/* PGDIR_SHIFT determines what a top-level page table entry can map */
|
|
#define PGDIR_SHIFT PMD_SHIFT
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
|
|
|
/*
|
|
* entries per page directory level: our page-table tree is two-level, so
|
|
* we don't really have any PMD directory.
|
|
*/
|
|
#define PTRS_PER_PTE (1 << PTE_SHIFT)
|
|
#define PTRS_PER_PMD 1
|
|
#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
|
|
|
|
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
|
|
#define FIRST_USER_ADDRESS 0
|
|
|
|
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
|
|
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
|
|
|
|
#define pte_ERROR(e) \
|
|
printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e))
|
|
#define pmd_ERROR(e) \
|
|
printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
|
|
#define pgd_ERROR(e) \
|
|
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
|
|
|
|
/*
|
|
* Just any arbitrary offset to the start of the vmalloc VM area: the
|
|
* current 64MB value just means that there will be a 64MB "hole" after the
|
|
* physical memory until the kernel virtual memory starts. That means that
|
|
* any out-of-bounds memory accesses will hopefully be caught.
|
|
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
|
|
* area for the same reason. ;)
|
|
*
|
|
* We no longer map larger than phys RAM with the BATs so we don't have
|
|
* to worry about the VMALLOC_OFFSET causing problems. We do have to worry
|
|
* about clashes between our early calls to ioremap() that start growing down
|
|
* from ioremap_base being run into the VM area allocations (growing upwards
|
|
* from VMALLOC_START). For this reason we have ioremap_bot to check when
|
|
* we actually run into our mappings setup in the early boot with the VM
|
|
* system. This really does become a problem for machines with good amounts
|
|
* of RAM. -- Cort
|
|
*/
|
|
#define VMALLOC_OFFSET (0x1000000) /* 16M */
|
|
#ifdef PPC_PIN_SIZE
|
|
#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
|
|
#else
|
|
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
|
|
#endif
|
|
#define VMALLOC_END ioremap_bot
|
|
|
|
/*
|
|
* Bits in a linux-style PTE. These match the bits in the
|
|
* (hardware-defined) PowerPC PTE as closely as possible.
|
|
*/
|
|
|
|
#if defined(CONFIG_40x)
|
|
|
|
/* There are several potential gotchas here. The 40x hardware TLBLO
|
|
field looks like this:
|
|
|
|
0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
|
RPN..................... 0 0 EX WR ZSEL....... W I M G
|
|
|
|
Where possible we make the Linux PTE bits match up with this
|
|
|
|
- bits 20 and 21 must be cleared, because we use 4k pages (40x can
|
|
support down to 1k pages), this is done in the TLBMiss exception
|
|
handler.
|
|
- We use only zones 0 (for kernel pages) and 1 (for user pages)
|
|
of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
|
|
miss handler. Bit 27 is PAGE_USER, thus selecting the correct
|
|
zone.
|
|
- PRESENT *must* be in the bottom two bits because swap cache
|
|
entries use the top 30 bits. Because 40x doesn't support SMP
|
|
anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
|
|
is cleared in the TLB miss handler before the TLB entry is loaded.
|
|
- All other bits of the PTE are loaded into TLBLO without
|
|
modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
|
|
software PTE bits. We actually use use bits 21, 24, 25, and
|
|
30 respectively for the software bits: ACCESSED, DIRTY, RW, and
|
|
PRESENT.
|
|
*/
|
|
|
|
/* Definitions for 40x embedded chips. */
|
|
#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
|
|
#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */
|
|
#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
|
|
#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
|
|
#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
|
|
#define _PAGE_USER 0x010 /* matches one of the zone permission bits */
|
|
#define _PAGE_RW 0x040 /* software: Writes permitted */
|
|
#define _PAGE_DIRTY 0x080 /* software: dirty page */
|
|
#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
|
|
#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
|
|
#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
|
|
|
|
#define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */
|
|
#define _PMD_BAD 0x802
|
|
#define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */
|
|
#define _PMD_SIZE_4M 0x0c0
|
|
#define _PMD_SIZE_16M 0x0e0
|
|
#define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4))
|
|
|
|
#elif defined(CONFIG_44x)
|
|
/*
|
|
* Definitions for PPC440
|
|
*
|
|
* Because of the 3 word TLB entries to support 36-bit addressing,
|
|
* the attribute are difficult to map in such a fashion that they
|
|
* are easily loaded during exception processing. I decided to
|
|
* organize the entry so the ERPN is the only portion in the
|
|
* upper word of the PTE and the attribute bits below are packed
|
|
* in as sensibly as they can be in the area below a 4KB page size
|
|
* oriented RPN. This at least makes it easy to load the RPN and
|
|
* ERPN fields in the TLB. -Matt
|
|
*
|
|
* Note that these bits preclude future use of a page size
|
|
* less than 4KB.
|
|
*
|
|
*
|
|
* PPC 440 core has following TLB attribute fields;
|
|
*
|
|
* TLB1:
|
|
* 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
|
* RPN................................. - - - - - - ERPN.......
|
|
*
|
|
* TLB2:
|
|
* 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
|
* - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR
|
|
*
|
|
* There are some constrains and options, to decide mapping software bits
|
|
* into TLB entry.
|
|
*
|
|
* - PRESENT *must* be in the bottom three bits because swap cache
|
|
* entries use the top 29 bits for TLB2.
|
|
*
|
|
* - FILE *must* be in the bottom three bits because swap cache
|
|
* entries use the top 29 bits for TLB2.
|
|
*
|
|
* - CACHE COHERENT bit (M) has no effect on PPC440 core, because it
|
|
* doesn't support SMP. So we can use this as software bit, like
|
|
* DIRTY.
|
|
*
|
|
* With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used
|
|
* for memory protection related functions (see PTE structure in
|
|
* include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the
|
|
* above bits. Note that the bit values are CPU specific, not architecture
|
|
* specific.
|
|
*
|
|
* The kernel PTE entry holds an arch-dependent swp_entry structure under
|
|
* certain situations. In other words, in such situations some portion of
|
|
* the PTE bits are used as a swp_entry. In the PPC implementation, the
|
|
* 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still
|
|
* hold protection values. That means the three protection bits are
|
|
* reserved for both PTE and SWAP entry at the most significant three
|
|
* LSBs.
|
|
*
|
|
* There are three protection bits available for SWAP entry:
|
|
* _PAGE_PRESENT
|
|
* _PAGE_FILE
|
|
* _PAGE_HASHPTE (if HW has)
|
|
*
|
|
* So those three bits have to be inside of 0-2nd LSB of PTE.
|
|
*
|
|
*/
|
|
|
|
#define _PAGE_PRESENT 0x00000001 /* S: PTE valid */
|
|
#define _PAGE_RW 0x00000002 /* S: Write permission */
|
|
#define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */
|
|
#define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */
|
|
#define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */
|
|
#define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */
|
|
#define _PAGE_USER 0x00000040 /* S: User page */
|
|
#define _PAGE_ENDIAN 0x00000080 /* H: E bit */
|
|
#define _PAGE_GUARDED 0x00000100 /* H: G bit */
|
|
#define _PAGE_DIRTY 0x00000200 /* S: Page dirty */
|
|
#define _PAGE_NO_CACHE 0x00000400 /* H: I bit */
|
|
#define _PAGE_WRITETHRU 0x00000800 /* H: W bit */
|
|
|
|
/* TODO: Add large page lowmem mapping support */
|
|
#define _PMD_PRESENT 0
|
|
#define _PMD_PRESENT_MASK (PAGE_MASK)
|
|
#define _PMD_BAD (~PAGE_MASK)
|
|
|
|
/* ERPN in a PTE never gets cleared, ignore it */
|
|
#define _PTE_NONE_MASK 0xffffffff00000000ULL
|
|
|
|
#elif defined(CONFIG_FSL_BOOKE)
|
|
/*
|
|
MMU Assist Register 3:
|
|
|
|
32 33 34 35 36 ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63
|
|
RPN...................... 0 0 U0 U1 U2 U3 UX SX UW SW UR SR
|
|
|
|
- PRESENT *must* be in the bottom three bits because swap cache
|
|
entries use the top 29 bits.
|
|
|
|
- FILE *must* be in the bottom three bits because swap cache
|
|
entries use the top 29 bits.
|
|
*/
|
|
|
|
/* Definitions for FSL Book-E Cores */
|
|
#define _PAGE_PRESENT 0x00001 /* S: PTE contains a translation */
|
|
#define _PAGE_USER 0x00002 /* S: User page (maps to UR) */
|
|
#define _PAGE_FILE 0x00002 /* S: when !present: nonlinear file mapping */
|
|
#define _PAGE_ACCESSED 0x00004 /* S: Page referenced */
|
|
#define _PAGE_HWWRITE 0x00008 /* H: Dirty & RW, set in exception */
|
|
#define _PAGE_RW 0x00010 /* S: Write permission */
|
|
#define _PAGE_HWEXEC 0x00020 /* H: UX permission */
|
|
|
|
#define _PAGE_ENDIAN 0x00040 /* H: E bit */
|
|
#define _PAGE_GUARDED 0x00080 /* H: G bit */
|
|
#define _PAGE_COHERENT 0x00100 /* H: M bit */
|
|
#define _PAGE_NO_CACHE 0x00200 /* H: I bit */
|
|
#define _PAGE_WRITETHRU 0x00400 /* H: W bit */
|
|
|
|
#ifdef CONFIG_PTE_64BIT
|
|
#define _PAGE_DIRTY 0x08000 /* S: Page dirty */
|
|
|
|
/* ERPN in a PTE never gets cleared, ignore it */
|
|
#define _PTE_NONE_MASK 0xffffffffffff0000ULL
|
|
#else
|
|
#define _PAGE_DIRTY 0x00800 /* S: Page dirty */
|
|
#endif
|
|
|
|
#define _PMD_PRESENT 0
|
|
#define _PMD_PRESENT_MASK (PAGE_MASK)
|
|
#define _PMD_BAD (~PAGE_MASK)
|
|
|
|
#elif defined(CONFIG_8xx)
|
|
/* Definitions for 8xx embedded chips. */
|
|
#define _PAGE_PRESENT 0x0001 /* Page is valid */
|
|
#define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */
|
|
#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */
|
|
#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */
|
|
|
|
/* These five software bits must be masked out when the entry is loaded
|
|
* into the TLB.
|
|
*/
|
|
#define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */
|
|
#define _PAGE_GUARDED 0x0010 /* software: guarded access */
|
|
#define _PAGE_DIRTY 0x0020 /* software: page changed */
|
|
#define _PAGE_RW 0x0040 /* software: user write access allowed */
|
|
#define _PAGE_ACCESSED 0x0080 /* software: page referenced */
|
|
|
|
/* Setting any bits in the nibble with the follow two controls will
|
|
* require a TLB exception handler change. It is assumed unused bits
|
|
* are always zero.
|
|
*/
|
|
#define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */
|
|
#define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */
|
|
|
|
#define _PMD_PRESENT 0x0001
|
|
#define _PMD_BAD 0x0ff0
|
|
#define _PMD_PAGE_MASK 0x000c
|
|
#define _PMD_PAGE_8M 0x000c
|
|
|
|
/*
|
|
* The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE
|
|
* for an address even if _PAGE_PRESENT is not set, as a performance
|
|
* optimization. This is a bug if you ever want to use swap unless
|
|
* _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific
|
|
* definitions for __swp_entry etc. below, which would be gross.
|
|
* -- paulus
|
|
*/
|
|
#define _PTE_NONE_MASK _PAGE_ACCESSED
|
|
|
|
#else /* CONFIG_6xx */
|
|
/* Definitions for 60x, 740/750, etc. */
|
|
#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
|
|
#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
|
|
#define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */
|
|
#define _PAGE_USER 0x004 /* usermode access allowed */
|
|
#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
|
|
#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
|
|
#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
|
|
#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
|
|
#define _PAGE_DIRTY 0x080 /* C: page changed */
|
|
#define _PAGE_ACCESSED 0x100 /* R: page referenced */
|
|
#define _PAGE_EXEC 0x200 /* software: i-cache coherency required */
|
|
#define _PAGE_RW 0x400 /* software: user write access allowed */
|
|
|
|
#define _PTE_NONE_MASK _PAGE_HASHPTE
|
|
|
|
#define _PMD_PRESENT 0
|
|
#define _PMD_PRESENT_MASK (PAGE_MASK)
|
|
#define _PMD_BAD (~PAGE_MASK)
|
|
#endif
|
|
|
|
/*
|
|
* Some bits are only used on some cpu families...
|
|
*/
|
|
#ifndef _PAGE_HASHPTE
|
|
#define _PAGE_HASHPTE 0
|
|
#endif
|
|
#ifndef _PTE_NONE_MASK
|
|
#define _PTE_NONE_MASK 0
|
|
#endif
|
|
#ifndef _PAGE_SHARED
|
|
#define _PAGE_SHARED 0
|
|
#endif
|
|
#ifndef _PAGE_HWWRITE
|
|
#define _PAGE_HWWRITE 0
|
|
#endif
|
|
#ifndef _PAGE_HWEXEC
|
|
#define _PAGE_HWEXEC 0
|
|
#endif
|
|
#ifndef _PAGE_EXEC
|
|
#define _PAGE_EXEC 0
|
|
#endif
|
|
#ifndef _PMD_PRESENT_MASK
|
|
#define _PMD_PRESENT_MASK _PMD_PRESENT
|
|
#endif
|
|
#ifndef _PMD_SIZE
|
|
#define _PMD_SIZE 0
|
|
#define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE()
|
|
#endif
|
|
|
|
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
|
|
|
|
/*
|
|
* Note: the _PAGE_COHERENT bit automatically gets set in the hardware
|
|
* PTE if CONFIG_SMP is defined (hash_page does this); there is no need
|
|
* to have it in the Linux PTE, and in fact the bit could be reused for
|
|
* another purpose. -- paulus.
|
|
*/
|
|
|
|
#ifdef CONFIG_44x
|
|
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED)
|
|
#else
|
|
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
|
|
#endif
|
|
#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
|
|
#define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE)
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU
|
|
/* On standard PPC MMU, no user access implies kernel read/write access,
|
|
* so to write-protect kernel memory we must turn on user access */
|
|
#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER)
|
|
#else
|
|
#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED)
|
|
#endif
|
|
|
|
#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
|
|
#define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC)
|
|
|
|
#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH)
|
|
/* We want the debuggers to be able to set breakpoints anywhere, so
|
|
* don't write protect the kernel text */
|
|
#define _PAGE_RAM_TEXT _PAGE_RAM
|
|
#else
|
|
#define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC)
|
|
#endif
|
|
|
|
#define PAGE_NONE __pgprot(_PAGE_BASE)
|
|
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
|
|
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
|
|
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
|
|
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
|
|
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
|
|
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
|
|
|
|
#define PAGE_KERNEL __pgprot(_PAGE_RAM)
|
|
#define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO)
|
|
|
|
/*
|
|
* The PowerPC can only do execute protection on a segment (256MB) basis,
|
|
* not on a page basis. So we consider execute permission the same as read.
|
|
* Also, write permissions imply read permissions.
|
|
* This is the closest we can get..
|
|
*/
|
|
#define __P000 PAGE_NONE
|
|
#define __P001 PAGE_READONLY_X
|
|
#define __P010 PAGE_COPY
|
|
#define __P011 PAGE_COPY_X
|
|
#define __P100 PAGE_READONLY
|
|
#define __P101 PAGE_READONLY_X
|
|
#define __P110 PAGE_COPY
|
|
#define __P111 PAGE_COPY_X
|
|
|
|
#define __S000 PAGE_NONE
|
|
#define __S001 PAGE_READONLY_X
|
|
#define __S010 PAGE_SHARED
|
|
#define __S011 PAGE_SHARED_X
|
|
#define __S100 PAGE_READONLY
|
|
#define __S101 PAGE_READONLY_X
|
|
#define __S110 PAGE_SHARED
|
|
#define __S111 PAGE_SHARED_X
|
|
|
|
#ifndef __ASSEMBLY__
|
|
/* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a
|
|
* kernel without large page PMD support */
|
|
extern unsigned long bad_call_to_PMD_PAGE_SIZE(void);
|
|
|
|
/*
|
|
* Conversions between PTE values and page frame numbers.
|
|
*/
|
|
|
|
/* in some case we want to additionaly adjust where the pfn is in the pte to
|
|
* allow room for more flags */
|
|
#if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
|
|
#define PFN_SHIFT_OFFSET (PAGE_SHIFT + 8)
|
|
#else
|
|
#define PFN_SHIFT_OFFSET (PAGE_SHIFT)
|
|
#endif
|
|
|
|
#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
|
|
#define pte_page(x) pfn_to_page(pte_pfn(x))
|
|
|
|
#define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\
|
|
pgprot_val(prot))
|
|
#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
|
|
|
|
/*
|
|
* ZERO_PAGE is a global shared page that is always zero: used
|
|
* for zero-mapped memory areas etc..
|
|
*/
|
|
extern unsigned long empty_zero_page[1024];
|
|
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
|
|
#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
|
|
#define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
|
|
|
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
|
#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
|
|
#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
|
|
#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
|
|
|
|
#ifndef __ASSEMBLY__
|
|
/*
|
|
* The "pgd_xxx()" functions here are trivial for a folded two-level
|
|
* setup: the pgd is never bad, and a pmd always exists (as it's folded
|
|
* into the pgd entry)
|
|
*/
|
|
static inline int pgd_none(pgd_t pgd) { return 0; }
|
|
static inline int pgd_bad(pgd_t pgd) { return 0; }
|
|
static inline int pgd_present(pgd_t pgd) { return 1; }
|
|
#define pgd_clear(xp) do { } while (0)
|
|
|
|
#define pgd_page_vaddr(pgd) \
|
|
((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
|
|
|
|
/*
|
|
* The following only work if pte_present() is true.
|
|
* Undefined behaviour if not..
|
|
*/
|
|
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
|
|
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
|
|
static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
|
|
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
|
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
|
static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
|
|
|
|
static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
|
|
static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
|
|
|
|
static inline pte_t pte_rdprotect(pte_t pte) {
|
|
pte_val(pte) &= ~_PAGE_USER; return pte; }
|
|
static inline pte_t pte_wrprotect(pte_t pte) {
|
|
pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
|
|
static inline pte_t pte_exprotect(pte_t pte) {
|
|
pte_val(pte) &= ~_PAGE_EXEC; return pte; }
|
|
static inline pte_t pte_mkclean(pte_t pte) {
|
|
pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
|
|
static inline pte_t pte_mkold(pte_t pte) {
|
|
pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
|
|
|
static inline pte_t pte_mkread(pte_t pte) {
|
|
pte_val(pte) |= _PAGE_USER; return pte; }
|
|
static inline pte_t pte_mkexec(pte_t pte) {
|
|
pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
|
|
static inline pte_t pte_mkwrite(pte_t pte) {
|
|
pte_val(pte) |= _PAGE_RW; return pte; }
|
|
static inline pte_t pte_mkdirty(pte_t pte) {
|
|
pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
|
static inline pte_t pte_mkyoung(pte_t pte) {
|
|
pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
|
|
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
|
{
|
|
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* When flushing the tlb entry for a page, we also need to flush the hash
|
|
* table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
|
|
*/
|
|
extern int flush_hash_pages(unsigned context, unsigned long va,
|
|
unsigned long pmdval, int count);
|
|
|
|
/* Add an HPTE to the hash table */
|
|
extern void add_hash_page(unsigned context, unsigned long va,
|
|
unsigned long pmdval);
|
|
|
|
/*
|
|
* Atomic PTE updates.
|
|
*
|
|
* pte_update clears and sets bit atomically, and returns
|
|
* the old pte value. In the 64-bit PTE case we lock around the
|
|
* low PTE word since we expect ALL flag bits to be there
|
|
*/
|
|
#ifndef CONFIG_PTE_64BIT
|
|
static inline unsigned long pte_update(pte_t *p, unsigned long clr,
|
|
unsigned long set)
|
|
{
|
|
unsigned long old, tmp;
|
|
|
|
__asm__ __volatile__("\
|
|
1: lwarx %0,0,%3\n\
|
|
andc %1,%0,%4\n\
|
|
or %1,%1,%5\n"
|
|
PPC405_ERR77(0,%3)
|
|
" stwcx. %1,0,%3\n\
|
|
bne- 1b"
|
|
: "=&r" (old), "=&r" (tmp), "=m" (*p)
|
|
: "r" (p), "r" (clr), "r" (set), "m" (*p)
|
|
: "cc" );
|
|
return old;
|
|
}
|
|
#else
|
|
static inline unsigned long long pte_update(pte_t *p, unsigned long clr,
|
|
unsigned long set)
|
|
{
|
|
unsigned long long old;
|
|
unsigned long tmp;
|
|
|
|
__asm__ __volatile__("\
|
|
1: lwarx %L0,0,%4\n\
|
|
lwzx %0,0,%3\n\
|
|
andc %1,%L0,%5\n\
|
|
or %1,%1,%6\n"
|
|
PPC405_ERR77(0,%3)
|
|
" stwcx. %1,0,%4\n\
|
|
bne- 1b"
|
|
: "=&r" (old), "=&r" (tmp), "=m" (*p)
|
|
: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
|
|
: "cc" );
|
|
return old;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* set_pte stores a linux PTE into the linux page table.
|
|
* On machines which use an MMU hash table we avoid changing the
|
|
* _PAGE_HASHPTE bit.
|
|
*/
|
|
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
#if _PAGE_HASHPTE != 0
|
|
pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE);
|
|
#else
|
|
*ptep = pte;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* 2.6 calles this without flushing the TLB entry, this is wrong
|
|
* for our hash-based implementation, we fix that up here
|
|
*/
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
|
|
{
|
|
unsigned long old;
|
|
old = pte_update(ptep, _PAGE_ACCESSED, 0);
|
|
#if _PAGE_HASHPTE != 0
|
|
if (old & _PAGE_HASHPTE) {
|
|
unsigned long ptephys = __pa(ptep) & PAGE_MASK;
|
|
flush_hash_pages(context, addr, ptephys, 1);
|
|
}
|
|
#endif
|
|
return (old & _PAGE_ACCESSED) != 0;
|
|
}
|
|
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
|
|
__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
|
|
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
|
|
static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
|
static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
|
|
{
|
|
unsigned long bits = pte_val(entry) &
|
|
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW);
|
|
pte_update(ptep, 0, bits);
|
|
}
|
|
|
|
#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
|
|
do { \
|
|
__ptep_set_access_flags(__ptep, __entry, __dirty); \
|
|
flush_tlb_page_nohash(__vma, __address); \
|
|
} while(0)
|
|
|
|
/*
|
|
* Macro to mark a page protection value as "uncacheable".
|
|
*/
|
|
#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
|
|
|
|
struct file;
|
|
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot);
|
|
#define __HAVE_PHYS_MEM_ACCESS_PROT
|
|
|
|
#define __HAVE_ARCH_PTE_SAME
|
|
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
|
|
|
|
/*
|
|
* Note that on Book E processors, the pmd contains the kernel virtual
|
|
* (lowmem) address of the pte page. The physical address is less useful
|
|
* because everything runs with translation enabled (even the TLB miss
|
|
* handler). On everything else the pmd contains the physical address
|
|
* of the pte page. -- paulus
|
|
*/
|
|
#ifndef CONFIG_BOOKE
|
|
#define pmd_page_vaddr(pmd) \
|
|
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
|
|
#define pmd_page(pmd) \
|
|
(mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
|
|
#else
|
|
#define pmd_page_vaddr(pmd) \
|
|
((unsigned long) (pmd_val(pmd) & PAGE_MASK))
|
|
#define pmd_page(pmd) \
|
|
(mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT))
|
|
#endif
|
|
|
|
/* to find an entry in a kernel page-table-directory */
|
|
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
|
|
|
|
/* to find an entry in a page-table-directory */
|
|
#define pgd_index(address) ((address) >> PGDIR_SHIFT)
|
|
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
|
|
|
|
/* Find an entry in the second-level page table.. */
|
|
static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
|
|
{
|
|
return (pmd_t *) dir;
|
|
}
|
|
|
|
/* Find an entry in the third-level page table.. */
|
|
#define pte_index(address) \
|
|
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
|
#define pte_offset_kernel(dir, addr) \
|
|
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
|
|
#define pte_offset_map(dir, addr) \
|
|
((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
|
|
#define pte_offset_map_nested(dir, addr) \
|
|
((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
|
|
|
|
#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
|
|
#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
|
|
|
|
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
|
|
|
|
extern void paging_init(void);
|
|
|
|
/*
|
|
* Encode and decode a swap entry.
|
|
* Note that the bits we use in a PTE for representing a swap entry
|
|
* must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
|
|
*_PAGE_HASHPTE bit (if used). -- paulus
|
|
*/
|
|
#define __swp_type(entry) ((entry).val & 0x1f)
|
|
#define __swp_offset(entry) ((entry).val >> 5)
|
|
#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
|
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
|
|
|
|
/* Encode and decode a nonlinear file mapping entry */
|
|
#define PTE_FILE_MAX_BITS 29
|
|
#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
|
|
#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
|
|
|
|
/* CONFIG_APUS */
|
|
/* For virtual address to physical address conversion */
|
|
extern void cache_clear(__u32 addr, int length);
|
|
extern void cache_push(__u32 addr, int length);
|
|
extern int mm_end_of_chunk (unsigned long addr, int len);
|
|
extern unsigned long iopa(unsigned long addr);
|
|
extern unsigned long mm_ptov(unsigned long addr) __attribute_const__;
|
|
|
|
/* Values for nocacheflag and cmode */
|
|
/* These are not used by the APUS kernel_map, but prevents
|
|
compilation errors. */
|
|
#define KERNELMAP_FULL_CACHING 0
|
|
#define KERNELMAP_NOCACHE_SER 1
|
|
#define KERNELMAP_NOCACHE_NONSER 2
|
|
#define KERNELMAP_NO_COPYBACK 3
|
|
|
|
/*
|
|
* Map some physical address range into the kernel address space.
|
|
*/
|
|
extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
|
|
int nocacheflag, unsigned long *memavailp );
|
|
|
|
/*
|
|
* Set cache mode of (kernel space) address range.
|
|
*/
|
|
extern void kernel_set_cachemode (unsigned long address, unsigned long size,
|
|
unsigned int cmode);
|
|
|
|
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
|
|
#define kern_addr_valid(addr) (1)
|
|
|
|
#ifdef CONFIG_PHYS_64BIT
|
|
extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
|
|
unsigned long paddr, unsigned long size, pgprot_t prot);
|
|
|
|
static inline int io_remap_pfn_range(struct vm_area_struct *vma,
|
|
unsigned long vaddr,
|
|
unsigned long pfn,
|
|
unsigned long size,
|
|
pgprot_t prot)
|
|
{
|
|
phys_addr_t paddr64 = fixup_bigphys_addr(pfn << PAGE_SHIFT, size);
|
|
return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot);
|
|
}
|
|
#else
|
|
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
|
|
remap_pfn_range(vma, vaddr, pfn, size, prot)
|
|
#endif
|
|
|
|
#define MK_IOSPACE_PFN(space, pfn) (pfn)
|
|
#define GET_IOSPACE(pfn) 0
|
|
#define GET_PFN(pfn) (pfn)
|
|
|
|
/*
|
|
* No page table caches to initialise
|
|
*/
|
|
#define pgtable_cache_init() do { } while (0)
|
|
|
|
extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
|
|
pmd_t **pmdp);
|
|
|
|
#include <asm-generic/pgtable.h>
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* _PPC_PGTABLE_H */
|
|
#endif /* __KERNEL__ */
|