linux/arch/x86/kernel/cpu/common.c
Linus Torvalds d70b3ef54c Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Ingo Molnar:
 "There were so many changes in the x86/asm, x86/apic and x86/mm topics
  in this cycle that the topical separation of -tip broke down somewhat -
  so the result is a more traditional architecture pull request,
  collected into the 'x86/core' topic.

  The topics were still maintained separately as far as possible, so
  bisectability and conceptual separation should still be pretty good -
  but there were a handful of merge points to avoid excessive
  dependencies (and conflicts) that would have been poorly tested in the
  end.

  The next cycle will hopefully be much more quiet (or at least will
  have fewer dependencies).

  The main changes in this cycle were:

   * x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
     Gleixner)

     - This is the second and most intrusive part of changes to the x86
       interrupt handling - full conversion to hierarchical interrupt
       domains:

          [IOAPIC domain]   -----
                                 |
          [MSI domain]      --------[Remapping domain] ----- [ Vector domain ]
                                 |   (optional)          |
          [HPET MSI domain] -----                        |
                                                         |
          [DMAR domain]     -----------------------------
                                                         |
          [Legacy domain]   -----------------------------

       This now reflects the actual hardware and allowed us to distangle
       the domain specific code from the underlying parent domain, which
       can be optional in the case of interrupt remapping.  It's a clear
       separation of functionality and removes quite some duct tape
       constructs which plugged the remap code between ioapic/msi/hpet
       and the vector management.

     - Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
       injection into guests (Feng Wu)

   * x86/asm changes:

     - Tons of cleanups and small speedups, micro-optimizations.  This
       is in preparation to move a good chunk of the low level entry
       code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
       Brian Gerst)

     - Moved all system entry related code to a new home under
       arch/x86/entry/ (Ingo Molnar)

     - Removal of the fragile and ugly CFI dwarf debuginfo annotations.
       Conversion to C will reintroduce many of them - but meanwhile
       they are only getting in the way, and the upstream kernel does
       not rely on them (Ingo Molnar)

     - NOP handling refinements. (Borislav Petkov)

   * x86/mm changes:

     - Big PAT and MTRR rework: making the code more robust and
       preparing to phase out exposing direct MTRR interfaces to drivers -
       in favor of using PAT driven interfaces (Toshi Kani, Luis R
       Rodriguez, Borislav Petkov)

     - New ioremap_wt()/set_memory_wt() interfaces to support
       Write-Through cached memory mappings.  This is especially
       important for good performance on NVDIMM hardware (Toshi Kani)

   * x86/ras changes:

     - Add support for deferred errors on AMD (Aravind Gopalakrishnan)

       This is an important RAS feature which adds hardware support for
       poisoned data.  That means roughly that the hardware marks data
       which it has detected as corrupted but wasn't able to correct, as
       poisoned data and raises an APIC interrupt to signal that in the
       form of a deferred error.  It is the OS's responsibility then to
       take proper recovery action and thus prolonge system lifetime as
       far as possible.

     - Add support for Intel "Local MCE"s: upcoming CPUs will support
       CPU-local MCE interrupts, as opposed to the traditional system-
       wide broadcasted MCE interrupts (Ashok Raj)

     - Misc cleanups (Borislav Petkov)

   * x86/platform changes:

     - Intel Atom SoC updates

  ... and lots of other cleanups, fixlets and other changes - see the
  shortlog and the Git log for details"

* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
  x86/hpet: Use proper hpet device number for MSI allocation
  x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
  x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
  x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
  x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
  genirq: Prevent crash in irq_move_irq()
  genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
  iommu, x86: Properly handle posted interrupts for IOMMU hotplug
  iommu, x86: Provide irq_remapping_cap() interface
  iommu, x86: Setup Posted-Interrupts capability for Intel iommu
  iommu, x86: Add cap_pi_support() to detect VT-d PI capability
  iommu, x86: Avoid migrating VT-d posted interrupts
  iommu, x86: Save the mode (posted or remapped) of an IRTE
  iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
  iommu: dmar: Provide helper to copy shared irte fields
  iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
  iommu: Add new member capability to struct irq_remap_ops
  x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
  x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
  x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
  ...
2015-06-22 17:59:09 -07:00

1491 lines
35 KiB
C

#include <linux/bootmem.h>
#include <linux/linkage.h>
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/kgdb.h>
#include <linux/smp.h>
#include <linux/io.h>
#include <asm/stackprotector.h>
#include <asm/perf_event.h>
#include <asm/mmu_context.h>
#include <asm/archrandom.h>
#include <asm/hypervisor.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/debugreg.h>
#include <asm/sections.h>
#include <asm/vsyscall.h>
#include <linux/topology.h>
#include <linux/cpumask.h>
#include <asm/pgtable.h>
#include <linux/atomic.h>
#include <asm/proto.h>
#include <asm/setup.h>
#include <asm/apic.h>
#include <asm/desc.h>
#include <asm/fpu/internal.h>
#include <asm/mtrr.h>
#include <linux/numa.h>
#include <asm/asm.h>
#include <asm/cpu.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include <asm/pat.h>
#include <asm/microcode.h>
#include <asm/microcode_intel.h>
#ifdef CONFIG_X86_LOCAL_APIC
#include <asm/uv/uv.h>
#endif
#include "cpu.h"
/* all of these masks are initialized in setup_cpu_local_masks() */
cpumask_var_t cpu_initialized_mask;
cpumask_var_t cpu_callout_mask;
cpumask_var_t cpu_callin_mask;
/* representing cpus for which sibling maps can be computed */
cpumask_var_t cpu_sibling_setup_mask;
/* correctly size the local cpu masks */
void __init setup_cpu_local_masks(void)
{
alloc_bootmem_cpumask_var(&cpu_initialized_mask);
alloc_bootmem_cpumask_var(&cpu_callin_mask);
alloc_bootmem_cpumask_var(&cpu_callout_mask);
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
}
static void default_init(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_64
cpu_detect_cache_sizes(c);
#else
/* Not much we can do here... */
/* Check if at least it has cpuid */
if (c->cpuid_level == -1) {
/* No cpuid. It must be an ancient CPU */
if (c->x86 == 4)
strcpy(c->x86_model_id, "486");
else if (c->x86 == 3)
strcpy(c->x86_model_id, "386");
}
#endif
}
static const struct cpu_dev default_cpu = {
.c_init = default_init,
.c_vendor = "Unknown",
.c_x86_vendor = X86_VENDOR_UNKNOWN,
};
static const struct cpu_dev *this_cpu = &default_cpu;
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
#ifdef CONFIG_X86_64
/*
* We need valid kernel segments for data and code in long mode too
* IRET will check the segment types kkeil 2000/10/28
* Also sysret mandates a special GDT layout
*
* TLS descriptors are currently at a different place compared to i386.
* Hopefully nobody expects them at a fixed place (Wine?)
*/
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
#else
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
/*
* Segments used for calling PnP BIOS have byte granularity.
* They code segments and data segments have fixed 64k limits,
* the transfer segment sizes are set at run time.
*/
/* 32-bit code */
[GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
/* 16-bit code */
[GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
/* 16-bit data */
[GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
/* 16-bit data */
[GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
/* 16-bit data */
[GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
/*
* The APM segments have byte granularity and their bases
* are set at run time. All have 64k limits.
*/
/* 32-bit code */
[GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
/* 16-bit code */
[GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
/* data */
[GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
[GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
[GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
GDT_STACK_CANARY_INIT
#endif
} };
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
static int __init x86_mpx_setup(char *s)
{
/* require an exact match without trailing characters */
if (strlen(s))
return 0;
/* do not emit a message if the feature is not present */
if (!boot_cpu_has(X86_FEATURE_MPX))
return 1;
setup_clear_cpu_cap(X86_FEATURE_MPX);
pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
return 1;
}
__setup("nompx", x86_mpx_setup);
#ifdef CONFIG_X86_32
static int cachesize_override = -1;
static int disable_x86_serial_nr = 1;
static int __init cachesize_setup(char *str)
{
get_option(&str, &cachesize_override);
return 1;
}
__setup("cachesize=", cachesize_setup);
static int __init x86_sep_setup(char *s)
{
setup_clear_cpu_cap(X86_FEATURE_SEP);
return 1;
}
__setup("nosep", x86_sep_setup);
/* Standard macro to see if a specific flag is changeable */
static inline int flag_is_changeable_p(u32 flag)
{
u32 f1, f2;
/*
* Cyrix and IDT cpus allow disabling of CPUID
* so the code below may return different results
* when it is executed before and after enabling
* the CPUID. Add "volatile" to not allow gcc to
* optimize the subsequent calls to this function.
*/
asm volatile ("pushfl \n\t"
"pushfl \n\t"
"popl %0 \n\t"
"movl %0, %1 \n\t"
"xorl %2, %0 \n\t"
"pushl %0 \n\t"
"popfl \n\t"
"pushfl \n\t"
"popl %0 \n\t"
"popfl \n\t"
: "=&r" (f1), "=&r" (f2)
: "ir" (flag));
return ((f1^f2) & flag) != 0;
}
/* Probe for the CPUID instruction */
int have_cpuid_p(void)
{
return flag_is_changeable_p(X86_EFLAGS_ID);
}
static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
{
unsigned long lo, hi;
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
return;
/* Disable processor serial number: */
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
lo |= 0x200000;
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
printk(KERN_NOTICE "CPU serial number disabled.\n");
clear_cpu_cap(c, X86_FEATURE_PN);
/* Disabling the serial number may affect the cpuid level */
c->cpuid_level = cpuid_eax(0);
}
static int __init x86_serial_nr_setup(char *s)
{
disable_x86_serial_nr = 0;
return 1;
}
__setup("serialnumber", x86_serial_nr_setup);
#else
static inline int flag_is_changeable_p(u32 flag)
{
return 1;
}
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
{
}
#endif
static __init int setup_disable_smep(char *arg)
{
setup_clear_cpu_cap(X86_FEATURE_SMEP);
return 1;
}
__setup("nosmep", setup_disable_smep);
static __always_inline void setup_smep(struct cpuinfo_x86 *c)
{
if (cpu_has(c, X86_FEATURE_SMEP))
cr4_set_bits(X86_CR4_SMEP);
}
static __init int setup_disable_smap(char *arg)
{
setup_clear_cpu_cap(X86_FEATURE_SMAP);
return 1;
}
__setup("nosmap", setup_disable_smap);
static __always_inline void setup_smap(struct cpuinfo_x86 *c)
{
unsigned long eflags;
/* This should have been cleared long ago */
raw_local_save_flags(eflags);
BUG_ON(eflags & X86_EFLAGS_AC);
if (cpu_has(c, X86_FEATURE_SMAP)) {
#ifdef CONFIG_X86_SMAP
cr4_set_bits(X86_CR4_SMAP);
#else
cr4_clear_bits(X86_CR4_SMAP);
#endif
}
}
/*
* Some CPU features depend on higher CPUID levels, which may not always
* be available due to CPUID level capping or broken virtualization
* software. Add those features to this table to auto-disable them.
*/
struct cpuid_dependent_feature {
u32 feature;
u32 level;
};
static const struct cpuid_dependent_feature
cpuid_dependent_features[] = {
{ X86_FEATURE_MWAIT, 0x00000005 },
{ X86_FEATURE_DCA, 0x00000009 },
{ X86_FEATURE_XSAVE, 0x0000000d },
{ 0, 0 }
};
static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
{
const struct cpuid_dependent_feature *df;
for (df = cpuid_dependent_features; df->feature; df++) {
if (!cpu_has(c, df->feature))
continue;
/*
* Note: cpuid_level is set to -1 if unavailable, but
* extended_extended_level is set to 0 if unavailable
* and the legitimate extended levels are all negative
* when signed; hence the weird messing around with
* signs here...
*/
if (!((s32)df->level < 0 ?
(u32)df->level > (u32)c->extended_cpuid_level :
(s32)df->level > (s32)c->cpuid_level))
continue;
clear_cpu_cap(c, df->feature);
if (!warn)
continue;
printk(KERN_WARNING
"CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
x86_cap_flag(df->feature), df->level);
}
}
/*
* Naming convention should be: <Name> [(<Codename>)]
* This table only is used unless init_<vendor>() below doesn't set it;
* in particular, if CPUID levels 0x80000002..4 are supported, this
* isn't used
*/
/* Look up CPU names by table lookup. */
static const char *table_lookup_model(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
const struct legacy_cpu_model_info *info;
if (c->x86_model >= 16)
return NULL; /* Range check */
if (!this_cpu)
return NULL;
info = this_cpu->legacy_models;
while (info->family) {
if (info->family == c->x86)
return info->model_names[c->x86_model];
info++;
}
#endif
return NULL; /* Not found */
}
__u32 cpu_caps_cleared[NCAPINTS];
__u32 cpu_caps_set[NCAPINTS];
void load_percpu_segment(int cpu)
{
#ifdef CONFIG_X86_32
loadsegment(fs, __KERNEL_PERCPU);
#else
loadsegment(gs, 0);
wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
#endif
load_stack_canary_segment();
}
/*
* Current gdt points %fs at the "master" per-cpu area: after this,
* it's on the real one.
*/
void switch_to_new_gdt(int cpu)
{
struct desc_ptr gdt_descr;
gdt_descr.address = (long)get_cpu_gdt_table(cpu);
gdt_descr.size = GDT_SIZE - 1;
load_gdt(&gdt_descr);
/* Reload the per-cpu base */
load_percpu_segment(cpu);
}
static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
static void get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
char *p, *q, *s;
if (c->extended_cpuid_level < 0x80000004)
return;
v = (unsigned int *)c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
/* Trim whitespace */
p = q = s = &c->x86_model_id[0];
while (*p == ' ')
p++;
while (*p) {
/* Note the last non-whitespace index */
if (!isspace(*p))
s = q;
*q++ = *p++;
}
*(s + 1) = '\0';
}
void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
{
unsigned int n, dummy, ebx, ecx, edx, l2size;
n = c->extended_cpuid_level;
if (n >= 0x80000005) {
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
c->x86_cache_size = (ecx>>24) + (edx>>24);
#ifdef CONFIG_X86_64
/* On K8 L1 TLB is inclusive, so don't count it */
c->x86_tlbsize = 0;
#endif
}
if (n < 0x80000006) /* Some chips just has a large L1. */
return;
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
l2size = ecx >> 16;
#ifdef CONFIG_X86_64
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
#else
/* do processor-specific cache resizing */
if (this_cpu->legacy_cache_size)
l2size = this_cpu->legacy_cache_size(c, l2size);
/* Allow user to override all this if necessary. */
if (cachesize_override != -1)
l2size = cachesize_override;
if (l2size == 0)
return; /* Again, no L2 cache is possible */
#endif
c->x86_cache_size = l2size;
}
u16 __read_mostly tlb_lli_4k[NR_INFO];
u16 __read_mostly tlb_lli_2m[NR_INFO];
u16 __read_mostly tlb_lli_4m[NR_INFO];
u16 __read_mostly tlb_lld_4k[NR_INFO];
u16 __read_mostly tlb_lld_2m[NR_INFO];
u16 __read_mostly tlb_lld_4m[NR_INFO];
u16 __read_mostly tlb_lld_1g[NR_INFO];
static void cpu_detect_tlb(struct cpuinfo_x86 *c)
{
if (this_cpu->c_detect_tlb)
this_cpu->c_detect_tlb(c);
pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
tlb_lli_4m[ENTRIES]);
pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
}
void detect_ht(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
u32 eax, ebx, ecx, edx;
int index_msb, core_bits;
static bool printed;
if (!cpu_has(c, X86_FEATURE_HT))
return;
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
goto out;
if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
return;
cpuid(1, &eax, &ebx, &ecx, &edx);
smp_num_siblings = (ebx & 0xff0000) >> 16;
if (smp_num_siblings == 1) {
printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
goto out;
}
if (smp_num_siblings <= 1)
goto out;
index_msb = get_count_order(smp_num_siblings);
c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
index_msb = get_count_order(smp_num_siblings);
core_bits = get_count_order(c->x86_max_cores);
c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
((1 << core_bits) - 1);
out:
if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
c->phys_proc_id);
printk(KERN_INFO "CPU: Processor Core ID: %d\n",
c->cpu_core_id);
printed = 1;
}
#endif
}
static void get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
int i;
for (i = 0; i < X86_VENDOR_NUM; i++) {
if (!cpu_devs[i])
break;
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
(cpu_devs[i]->c_ident[1] &&
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
this_cpu = cpu_devs[i];
c->x86_vendor = this_cpu->c_x86_vendor;
return;
}
}
printk_once(KERN_ERR
"CPU: vendor_id '%s' unknown, using generic init.\n" \
"CPU: Your system may be unstable.\n", v);
c->x86_vendor = X86_VENDOR_UNKNOWN;
this_cpu = &default_cpu;
}
void cpu_detect(struct cpuinfo_x86 *c)
{
/* Get vendor name */
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
(unsigned int *)&c->x86_vendor_id[0],
(unsigned int *)&c->x86_vendor_id[8],
(unsigned int *)&c->x86_vendor_id[4]);
c->x86 = 4;
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
u32 junk, tfms, cap0, misc;
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
c->x86 = (tfms >> 8) & 0xf;
c->x86_model = (tfms >> 4) & 0xf;
c->x86_mask = tfms & 0xf;
if (c->x86 == 0xf)
c->x86 += (tfms >> 20) & 0xff;
if (c->x86 >= 0x6)
c->x86_model += ((tfms >> 16) & 0xf) << 4;
if (cap0 & (1<<19)) {
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
c->x86_cache_alignment = c->x86_clflush_size;
}
}
}
void get_cpu_cap(struct cpuinfo_x86 *c)
{
u32 tfms, xlvl;
u32 ebx;
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
u32 capability, excap;
cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
c->x86_capability[0] = capability;
c->x86_capability[4] = excap;
}
/* Additional Intel-defined flags: level 0x00000007 */
if (c->cpuid_level >= 0x00000007) {
u32 eax, ebx, ecx, edx;
cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
c->x86_capability[9] = ebx;
}
/* Extended state features: level 0x0000000d */
if (c->cpuid_level >= 0x0000000d) {
u32 eax, ebx, ecx, edx;
cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
c->x86_capability[10] = eax;
}
/* Additional Intel-defined flags: level 0x0000000F */
if (c->cpuid_level >= 0x0000000F) {
u32 eax, ebx, ecx, edx;
/* QoS sub-leaf, EAX=0Fh, ECX=0 */
cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
c->x86_capability[11] = edx;
if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
/* will be overridden if occupancy monitoring exists */
c->x86_cache_max_rmid = ebx;
/* QoS sub-leaf, EAX=0Fh, ECX=1 */
cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
c->x86_capability[12] = edx;
if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
c->x86_cache_max_rmid = ecx;
c->x86_cache_occ_scale = ebx;
}
} else {
c->x86_cache_max_rmid = -1;
c->x86_cache_occ_scale = -1;
}
}
/* AMD-defined flags: level 0x80000001 */
xlvl = cpuid_eax(0x80000000);
c->extended_cpuid_level = xlvl;
if ((xlvl & 0xffff0000) == 0x80000000) {
if (xlvl >= 0x80000001) {
c->x86_capability[1] = cpuid_edx(0x80000001);
c->x86_capability[6] = cpuid_ecx(0x80000001);
}
}
if (c->extended_cpuid_level >= 0x80000008) {
u32 eax = cpuid_eax(0x80000008);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
}
#ifdef CONFIG_X86_32
else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
c->x86_phys_bits = 36;
#endif
if (c->extended_cpuid_level >= 0x80000007)
c->x86_power = cpuid_edx(0x80000007);
init_scattered_cpuid_features(c);
}
static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
int i;
/*
* First of all, decide if this is a 486 or higher
* It's a 486 if we can modify the AC flag
*/
if (flag_is_changeable_p(X86_EFLAGS_AC))
c->x86 = 4;
else
c->x86 = 3;
for (i = 0; i < X86_VENDOR_NUM; i++)
if (cpu_devs[i] && cpu_devs[i]->c_identify) {
c->x86_vendor_id[0] = 0;
cpu_devs[i]->c_identify(c);
if (c->x86_vendor_id[0]) {
get_cpu_vendor(c);
break;
}
}
#endif
}
/*
* Do minimum CPU detection early.
* Fields really needed: vendor, cpuid_level, family, model, mask,
* cache alignment.
* The others are not touched to avoid unwanted side effects.
*
* WARNING: this function is only called on the BP. Don't add code here
* that is supposed to run on all CPUs.
*/
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_64
c->x86_clflush_size = 64;
c->x86_phys_bits = 36;
c->x86_virt_bits = 48;
#else
c->x86_clflush_size = 32;
c->x86_phys_bits = 32;
c->x86_virt_bits = 32;
#endif
c->x86_cache_alignment = c->x86_clflush_size;
memset(&c->x86_capability, 0, sizeof c->x86_capability);
c->extended_cpuid_level = 0;
if (!have_cpuid_p())
identify_cpu_without_cpuid(c);
/* cyrix could have cpuid enabled via c_identify()*/
if (!have_cpuid_p())
return;
cpu_detect(c);
get_cpu_vendor(c);
get_cpu_cap(c);
fpu__init_system(c);
if (this_cpu->c_early_init)
this_cpu->c_early_init(c);
c->cpu_index = 0;
filter_cpuid_features(c, false);
if (this_cpu->c_bsp_init)
this_cpu->c_bsp_init(c);
setup_force_cpu_cap(X86_FEATURE_ALWAYS);
}
void __init early_cpu_init(void)
{
const struct cpu_dev *const *cdev;
int count = 0;
#ifdef CONFIG_PROCESSOR_SELECT
printk(KERN_INFO "KERNEL supported cpus:\n");
#endif
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
const struct cpu_dev *cpudev = *cdev;
if (count >= X86_VENDOR_NUM)
break;
cpu_devs[count] = cpudev;
count++;
#ifdef CONFIG_PROCESSOR_SELECT
{
unsigned int j;
for (j = 0; j < 2; j++) {
if (!cpudev->c_ident[j])
continue;
printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
cpudev->c_ident[j]);
}
}
#endif
}
early_identify_cpu(&boot_cpu_data);
}
/*
* The NOPL instruction is supposed to exist on all CPUs of family >= 6;
* unfortunately, that's not true in practice because of early VIA
* chips and (more importantly) broken virtualizers that are not easy
* to detect. In the latter case it doesn't even *fail* reliably, so
* probing for it doesn't even work. Disable it completely on 32-bit
* unless we can find a reliable way to detect all the broken cases.
* Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
*/
static void detect_nopl(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
clear_cpu_cap(c, X86_FEATURE_NOPL);
#else
set_cpu_cap(c, X86_FEATURE_NOPL);
#endif
}
static void generic_identify(struct cpuinfo_x86 *c)
{
c->extended_cpuid_level = 0;
if (!have_cpuid_p())
identify_cpu_without_cpuid(c);
/* cyrix could have cpuid enabled via c_identify()*/
if (!have_cpuid_p())
return;
cpu_detect(c);
get_cpu_vendor(c);
get_cpu_cap(c);
if (c->cpuid_level >= 0x00000001) {
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
#ifdef CONFIG_X86_32
# ifdef CONFIG_SMP
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
# else
c->apicid = c->initial_apicid;
# endif
#endif
c->phys_proc_id = c->initial_apicid;
}
get_model_name(c); /* Default name */
detect_nopl(c);
}
static void x86_init_cache_qos(struct cpuinfo_x86 *c)
{
/*
* The heavy lifting of max_rmid and cache_occ_scale are handled
* in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
* in case CQM bits really aren't there in this CPU.
*/
if (c != &boot_cpu_data) {
boot_cpu_data.x86_cache_max_rmid =
min(boot_cpu_data.x86_cache_max_rmid,
c->x86_cache_max_rmid);
}
}
/*
* This does the hard work of actually picking apart the CPU stuff...
*/
static void identify_cpu(struct cpuinfo_x86 *c)
{
int i;
c->loops_per_jiffy = loops_per_jiffy;
c->x86_cache_size = -1;
c->x86_vendor = X86_VENDOR_UNKNOWN;
c->x86_model = c->x86_mask = 0; /* So far unknown... */
c->x86_vendor_id[0] = '\0'; /* Unset */
c->x86_model_id[0] = '\0'; /* Unset */
c->x86_max_cores = 1;
c->x86_coreid_bits = 0;
#ifdef CONFIG_X86_64
c->x86_clflush_size = 64;
c->x86_phys_bits = 36;
c->x86_virt_bits = 48;
#else
c->cpuid_level = -1; /* CPUID not detected */
c->x86_clflush_size = 32;
c->x86_phys_bits = 32;
c->x86_virt_bits = 32;
#endif
c->x86_cache_alignment = c->x86_clflush_size;
memset(&c->x86_capability, 0, sizeof c->x86_capability);
generic_identify(c);
if (this_cpu->c_identify)
this_cpu->c_identify(c);
/* Clear/Set all flags overriden by options, after probe */
for (i = 0; i < NCAPINTS; i++) {
c->x86_capability[i] &= ~cpu_caps_cleared[i];
c->x86_capability[i] |= cpu_caps_set[i];
}
#ifdef CONFIG_X86_64
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
#endif
/*
* Vendor-specific initialization. In this section we
* canonicalize the feature flags, meaning if there are
* features a certain CPU supports which CPUID doesn't
* tell us, CPUID claiming incorrect flags, or other bugs,
* we handle them here.
*
* At the end of this section, c->x86_capability better
* indicate the features this CPU genuinely supports!
*/
if (this_cpu->c_init)
this_cpu->c_init(c);
/* Disable the PN if appropriate */
squash_the_stupid_serial_number(c);
/* Set up SMEP/SMAP */
setup_smep(c);
setup_smap(c);
/*
* The vendor-specific functions might have changed features.
* Now we do "generic changes."
*/
/* Filter out anything that depends on CPUID levels we don't have */
filter_cpuid_features(c, true);
/* If the model name is still unset, do table lookup. */
if (!c->x86_model_id[0]) {
const char *p;
p = table_lookup_model(c);
if (p)
strcpy(c->x86_model_id, p);
else
/* Last resort... */
sprintf(c->x86_model_id, "%02x/%02x",
c->x86, c->x86_model);
}
#ifdef CONFIG_X86_64
detect_ht(c);
#endif
init_hypervisor(c);
x86_init_rdrand(c);
x86_init_cache_qos(c);
/*
* Clear/Set all flags overriden by options, need do it
* before following smp all cpus cap AND.
*/
for (i = 0; i < NCAPINTS; i++) {
c->x86_capability[i] &= ~cpu_caps_cleared[i];
c->x86_capability[i] |= cpu_caps_set[i];
}
/*
* On SMP, boot_cpu_data holds the common feature set between
* all CPUs; so make sure that we indicate which features are
* common between the CPUs. The first time this routine gets
* executed, c == &boot_cpu_data.
*/
if (c != &boot_cpu_data) {
/* AND the already accumulated flags with these */
for (i = 0; i < NCAPINTS; i++)
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
/* OR, i.e. replicate the bug flags */
for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
}
/* Init Machine Check Exception if available. */
mcheck_cpu_init(c);
select_idle_routine(c);
#ifdef CONFIG_NUMA
numa_add_cpu(smp_processor_id());
#endif
}
/*
* Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
* on 32-bit kernels:
*/
#ifdef CONFIG_X86_32
void enable_sep_cpu(void)
{
struct tss_struct *tss;
int cpu;
cpu = get_cpu();
tss = &per_cpu(cpu_tss, cpu);
if (!boot_cpu_has(X86_FEATURE_SEP))
goto out;
/*
* We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
* see the big comment in struct x86_hw_tss's definition.
*/
tss->x86_tss.ss1 = __KERNEL_CS;
wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
wrmsr(MSR_IA32_SYSENTER_ESP,
(unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
0);
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
out:
put_cpu();
}
#endif
void __init identify_boot_cpu(void)
{
identify_cpu(&boot_cpu_data);
init_amd_e400_c1e_mask();
#ifdef CONFIG_X86_32
sysenter_setup();
enable_sep_cpu();
#endif
cpu_detect_tlb(&boot_cpu_data);
}
void identify_secondary_cpu(struct cpuinfo_x86 *c)
{
BUG_ON(c == &boot_cpu_data);
identify_cpu(c);
#ifdef CONFIG_X86_32
enable_sep_cpu();
#endif
mtrr_ap_init();
}
struct msr_range {
unsigned min;
unsigned max;
};
static const struct msr_range msr_range_array[] = {
{ 0x00000000, 0x00000418},
{ 0xc0000000, 0xc000040b},
{ 0xc0010000, 0xc0010142},
{ 0xc0011000, 0xc001103b},
};
static void __print_cpu_msr(void)
{
unsigned index_min, index_max;
unsigned index;
u64 val;
int i;
for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
index_min = msr_range_array[i].min;
index_max = msr_range_array[i].max;
for (index = index_min; index < index_max; index++) {
if (rdmsrl_safe(index, &val))
continue;
printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
}
}
}
static int show_msr;
static __init int setup_show_msr(char *arg)
{
int num;
get_option(&arg, &num);
if (num > 0)
show_msr = num;
return 1;
}
__setup("show_msr=", setup_show_msr);
static __init int setup_noclflush(char *arg)
{
setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
return 1;
}
__setup("noclflush", setup_noclflush);
void print_cpu_info(struct cpuinfo_x86 *c)
{
const char *vendor = NULL;
if (c->x86_vendor < X86_VENDOR_NUM) {
vendor = this_cpu->c_vendor;
} else {
if (c->cpuid_level >= 0)
vendor = c->x86_vendor_id;
}
if (vendor && !strstr(c->x86_model_id, vendor))
printk(KERN_CONT "%s ", vendor);
if (c->x86_model_id[0])
printk(KERN_CONT "%s", c->x86_model_id);
else
printk(KERN_CONT "%d86", c->x86);
printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
if (c->x86_mask || c->cpuid_level >= 0)
printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
else
printk(KERN_CONT ")\n");
print_cpu_msr(c);
}
void print_cpu_msr(struct cpuinfo_x86 *c)
{
if (c->cpu_index < show_msr)
__print_cpu_msr();
}
static __init int setup_disablecpuid(char *arg)
{
int bit;
if (get_option(&arg, &bit) && bit < NCAPINTS*32)
setup_clear_cpu_cap(bit);
else
return 0;
return 1;
}
__setup("clearcpuid=", setup_disablecpuid);
#ifdef CONFIG_X86_64
struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
(unsigned long) debug_idt_table };
DEFINE_PER_CPU_FIRST(union irq_stack_union,
irq_stack_union) __aligned(PAGE_SIZE) __visible;
/*
* The following percpu variables are hot. Align current_task to
* cacheline size such that they fall in the same cacheline.
*/
DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
&init_task;
EXPORT_PER_CPU_SYMBOL(current_task);
DEFINE_PER_CPU(char *, irq_stack_ptr) =
init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
EXPORT_PER_CPU_SYMBOL(__preempt_count);
/*
* Special IST stacks which the CPU switches to when it calls
* an IST-marked descriptor entry. Up to 7 stacks (hardware
* limit), all of them are 4K, except the debug stack which
* is 8K.
*/
static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
[0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
[DEBUG_STACK - 1] = DEBUG_STKSZ
};
static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
/* May not be marked __init: used by software suspend */
void syscall_init(void)
{
/*
* LSTAR and STAR live in a bit strange symbiosis.
* They both write to the same internal register. STAR allows to
* set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
*/
wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
wrmsrl(MSR_LSTAR, entry_SYSCALL_64);
#ifdef CONFIG_IA32_EMULATION
wrmsrl(MSR_CSTAR, entry_SYSCALL_compat);
/*
* This only works on Intel CPUs.
* On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
* This does not cause SYSENTER to jump to the wrong location, because
* AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
*/
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
#else
wrmsrl(MSR_CSTAR, ignore_sysret);
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
#endif
/* Flags to clear on syscall */
wrmsrl(MSR_SYSCALL_MASK,
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
}
/*
* Copies of the original ist values from the tss are only accessed during
* debugging, no special alignment required.
*/
DEFINE_PER_CPU(struct orig_ist, orig_ist);
static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
DEFINE_PER_CPU(int, debug_stack_usage);
int is_debug_stack(unsigned long addr)
{
return __this_cpu_read(debug_stack_usage) ||
(addr <= __this_cpu_read(debug_stack_addr) &&
addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
}
NOKPROBE_SYMBOL(is_debug_stack);
DEFINE_PER_CPU(u32, debug_idt_ctr);
void debug_stack_set_zero(void)
{
this_cpu_inc(debug_idt_ctr);
load_current_idt();
}
NOKPROBE_SYMBOL(debug_stack_set_zero);
void debug_stack_reset(void)
{
if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
return;
if (this_cpu_dec_return(debug_idt_ctr) == 0)
load_current_idt();
}
NOKPROBE_SYMBOL(debug_stack_reset);
#else /* CONFIG_X86_64 */
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
EXPORT_PER_CPU_SYMBOL(current_task);
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
EXPORT_PER_CPU_SYMBOL(__preempt_count);
/*
* On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
* the top of the kernel stack. Use an extra percpu variable to track the
* top of the kernel stack directly.
*/
DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
(unsigned long)&init_thread_union + THREAD_SIZE;
EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
#ifdef CONFIG_CC_STACKPROTECTOR
DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
#endif
#endif /* CONFIG_X86_64 */
/*
* Clear all 6 debug registers:
*/
static void clear_all_debug_regs(void)
{
int i;
for (i = 0; i < 8; i++) {
/* Ignore db4, db5 */
if ((i == 4) || (i == 5))
continue;
set_debugreg(0, i);
}
}
#ifdef CONFIG_KGDB
/*
* Restore debug regs if using kgdbwait and you have a kernel debugger
* connection established.
*/
static void dbg_restore_debug_regs(void)
{
if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
arch_kgdb_ops.correct_hw_break();
}
#else /* ! CONFIG_KGDB */
#define dbg_restore_debug_regs()
#endif /* ! CONFIG_KGDB */
static void wait_for_master_cpu(int cpu)
{
#ifdef CONFIG_SMP
/*
* wait for ACK from master CPU before continuing
* with AP initialization
*/
WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
while (!cpumask_test_cpu(cpu, cpu_callout_mask))
cpu_relax();
#endif
}
/*
* cpu_init() initializes state that is per-CPU. Some data is already
* initialized (naturally) in the bootstrap process, such as the GDT
* and IDT. We reload them nevertheless, this function acts as a
* 'CPU state barrier', nothing should get across.
* A lot of state is already set up in PDA init for 64 bit
*/
#ifdef CONFIG_X86_64
void cpu_init(void)
{
struct orig_ist *oist;
struct task_struct *me;
struct tss_struct *t;
unsigned long v;
int cpu = stack_smp_processor_id();
int i;
wait_for_master_cpu(cpu);
/*
* Initialize the CR4 shadow before doing anything that could
* try to read it.
*/
cr4_init_shadow();
/*
* Load microcode on this cpu if a valid microcode is available.
* This is early microcode loading procedure.
*/
load_ucode_ap();
t = &per_cpu(cpu_tss, cpu);
oist = &per_cpu(orig_ist, cpu);
#ifdef CONFIG_NUMA
if (this_cpu_read(numa_node) == 0 &&
early_cpu_to_node(cpu) != NUMA_NO_NODE)
set_numa_node(early_cpu_to_node(cpu));
#endif
me = current;
pr_debug("Initializing CPU#%d\n", cpu);
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
/*
* Initialize the per-CPU GDT with the boot GDT,
* and set up the GDT descriptor:
*/
switch_to_new_gdt(cpu);
loadsegment(fs, 0);
load_current_idt();
memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
syscall_init();
wrmsrl(MSR_FS_BASE, 0);
wrmsrl(MSR_KERNEL_GS_BASE, 0);
barrier();
x86_configure_nx();
x2apic_setup();
/*
* set up and load the per-CPU TSS
*/
if (!oist->ist[0]) {
char *estacks = per_cpu(exception_stacks, cpu);
for (v = 0; v < N_EXCEPTION_STACKS; v++) {
estacks += exception_stack_sizes[v];
oist->ist[v] = t->x86_tss.ist[v] =
(unsigned long)estacks;
if (v == DEBUG_STACK-1)
per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
}
}
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
/*
* <= is required because the CPU will access up to
* 8 bits beyond the end of the IO permission bitmap.
*/
for (i = 0; i <= IO_BITMAP_LONGS; i++)
t->io_bitmap[i] = ~0UL;
atomic_inc(&init_mm.mm_count);
me->active_mm = &init_mm;
BUG_ON(me->mm);
enter_lazy_tlb(&init_mm, me);
load_sp0(t, &current->thread);
set_tss_desc(cpu, t);
load_TR_desc();
load_LDT(&init_mm.context);
clear_all_debug_regs();
dbg_restore_debug_regs();
fpu__init_cpu();
if (is_uv_system())
uv_cpu_init();
}
#else
void cpu_init(void)
{
int cpu = smp_processor_id();
struct task_struct *curr = current;
struct tss_struct *t = &per_cpu(cpu_tss, cpu);
struct thread_struct *thread = &curr->thread;
wait_for_master_cpu(cpu);
/*
* Initialize the CR4 shadow before doing anything that could
* try to read it.
*/
cr4_init_shadow();
show_ucode_info_early();
printk(KERN_INFO "Initializing CPU#%d\n", cpu);
if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
load_current_idt();
switch_to_new_gdt(cpu);
/*
* Set up and load the per-CPU TSS and LDT
*/
atomic_inc(&init_mm.mm_count);
curr->active_mm = &init_mm;
BUG_ON(curr->mm);
enter_lazy_tlb(&init_mm, curr);
load_sp0(t, thread);
set_tss_desc(cpu, t);
load_TR_desc();
load_LDT(&init_mm.context);
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
#ifdef CONFIG_DOUBLEFAULT
/* Set up doublefault TSS pointer in the GDT */
__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
#endif
clear_all_debug_regs();
dbg_restore_debug_regs();
fpu__init_cpu();
}
#endif
#ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
void warn_pre_alternatives(void)
{
WARN(1, "You're using static_cpu_has before alternatives have run!\n");
}
EXPORT_SYMBOL_GPL(warn_pre_alternatives);
#endif
inline bool __static_cpu_has_safe(u16 bit)
{
return boot_cpu_has(bit);
}
EXPORT_SYMBOL_GPL(__static_cpu_has_safe);