mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-14 21:48:49 +00:00
4dc4226f99
- ACPICA update to upstream version 20140424. That includes a number of fixes and improvements related to things like GPE handling, table loading, headers, memory mapping and unmapping, DSDT/SSDT overriding, and the Unload() operator. The acpidump utility from upstream ACPICA is included too. From Bob Moore, Lv Zheng, David Box, David Binderman, and Colin Ian King. - Fixes and cleanups related to ACPI video and backlight interfaces from Hans de Goede. That includes blacklist entries for some new machines and using native backlight by default. - ACPI device enumeration changes to create platform devices rather than PNP devices for ACPI device objects with _HID by default. PNP devices will still be created for the ACPI device object with device IDs corresponding to real PNP devices, so that change should not break things left and right, and we're expecting to see more and more ACPI-enumerated platform devices in the future. From Zhang Rui and Rafael J Wysocki. - Updates for the ACPI LPSS (Low-Power Subsystem) driver allowing it to handle system suspend/resume on Asus T100 correctly. From Heikki Krogerus and Rafael J Wysocki. - PM core update introducing a mechanism to allow runtime-suspended devices to stay suspended over system suspend/resume transitions if certain additional conditions related to coordination within device hierarchy are met. Related PM documentation update and ACPI PM domain support for the new feature. From Rafael J Wysocki. - Fixes and improvements related to the "freeze" sleep state. They affect several places including cpuidle, PM core, ACPI core, and the ACPI battery driver. From Rafael J Wysocki and Zhang Rui. - Miscellaneous fixes and updates of the ACPI core from Aaron Lu, Bjørn Mork, Hanjun Guo, Lan Tianyu, and Rafael J Wysocki. - Fixes and cleanups for the ACPI processor and ACPI PAD (Processor Aggregator Device) drivers from Baoquan He, Manuel Schölling, Tony Camuso, and Toshi Kani. - System suspend/resume optimization in the ACPI battery driver from Lan Tianyu. - OPP (Operating Performance Points) subsystem updates from Chander Kashyap, Mark Brown, and Nishanth Menon. - cpufreq core fixes, updates and cleanups from Srivatsa S Bhat, Stratos Karafotis, and Viresh Kumar. - Updates, fixes and cleanups for the Tegra, powernow-k8, imx6q, s5pv210, nforce2, and powernv cpufreq drivers from Brian Norris, Jingoo Han, Paul Bolle, Philipp Zabel, Stratos Karafotis, and Viresh Kumar. - intel_pstate driver fixes and cleanups from Dirk Brandewie, Doug Smythies, and Stratos Karafotis. - Enabling the big.LITTLE cpufreq driver on arm64 from Mark Brown. - Fix for the cpuidle menu governor from Chander Kashyap. - New ARM clps711x cpuidle driver from Alexander Shiyan. - Hibernate core fixes and cleanups from Chen Gang, Dan Carpenter, Fabian Frederick, Pali Rohár, and Sebastian Capella. - Intel RAPL (Running Average Power Limit) driver updates from Jacob Pan. - PNP subsystem updates from Bjorn Helgaas and Fabian Frederick. - devfreq core updates from Chanwoo Choi and Paul Bolle. - devfreq updates for exynos4 and exynos5 from Chanwoo Choi and Bartlomiej Zolnierkiewicz. - turbostat tool fix from Jean Delvare. - cpupower tool updates from Prarit Bhargava, Ramkumar Ramachandra and Thomas Renninger. - New ACPI ec_access.c tool for poking at the EC in a safe way from Thomas Renninger. / -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAABCAAGBQJTjl16AAoJEILEb/54YlRxeKgP/RRQSV7lFtf582Dw/5M/iWOg qYeNtuYFLArEmJ7SpxHdKsU1ZRm3CahAS1j7grvQMQasUxTzoavMcSBNZefeaoNK d01LVNqcyKCZs3+izRezk5N1IY+AjdrOcqCdIk8rfgFnc6kOttYUrVcIzKuIKAvJ MsJ5s/uqP8G69FsAA3Ttdtr0HKiQhN4skSt424wntQRDeJNZPBs74mPKBGh8bxlO Zr/VCDibKQ2Z8jS7x+TzwZrOxgE1/9x0Cub6GAdTvAfS8A+utPwSkneUyopNqpQ+ tJ5rz5R+HpmPMerizBuU+5s+tvjDPtH4/OZvOPSpYraQSFLOwx3hAm+a5k7fOGmc XWjXnXWT0i0V3iQkwrspTNjX1RgywbsHbmXrcWn192HResvMQ9zk2gH2ch6m8JhN yTV5V51dOZicpPuaTCvIkJpsV33p6vRz+EdPBiXoEdua5KKtOg8EnQ470dNaMR92 3ZtWmIvSgGlyPyHlSHLfGXbPUwTYvDNV3aheIoXp9E6WY3WJN9J3WXm4EHKBNVaI H83kwuk1s92cgqh22H5Pcb0CmDcrbkUdP6hhsPS/aL80/EJMljRP2AYW1Y+l1LAf pzMLmekHFqQEDjFQltwGvFV/EjFeMHnqOgQONx9ygMaayCGGTYSDx3FbRDesf8t9 qhoFcTPSxoo0XjrGrR6b =tpdF -----END PGP SIGNATURE----- Merge tag 'pm+acpi-3.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm into next Pull ACPI and power management updates from Rafael Wysocki: "ACPICA is the leader this time (63 commits), followed by cpufreq (28 commits), devfreq (15 commits), system suspend/hibernation (12 commits), ACPI video and ACPI device enumeration (10 commits each). We have no major new features this time, but there are a few significant changes of how things work. The most visible one will probably be that we are now going to create platform devices rather than PNP devices by default for ACPI device objects with _HID. That was long overdue and will be really necessary to be able to use the same drivers for the same hardware blocks on ACPI and DT-based systems going forward. We're not expecting fallout from this one (as usual), but it's something to watch nevertheless. The second change having a chance to be visible is that ACPI video will now default to using native backlight rather than the ACPI backlight interface which should generally help systems with broken Win8 BIOSes. We're hoping that all problems with the native backlight handling that we had previously have been addressed and we are in a good enough shape to flip the default, but this change should be easy enough to revert if need be. In addition to that, the system suspend core has a new mechanism to allow runtime-suspended devices to stay suspended throughout system suspend/resume transitions if some extra conditions are met (generally, they are related to coordination within device hierarchy). However, enabling this feature requires cooperation from the bus type layer and for now it has only been implemented for the ACPI PM domain (used by ACPI-enumerated platform devices mostly today). Also, the acpidump utility that was previously shipped as a separate tool will now be provided by the upstream ACPICA along with the rest of ACPICA code, which will allow it to be more up to date and better supported, and we have one new cpuidle driver (ARM clps711x). The rest is improvements related to certain specific use cases, cleanups and fixes all over the place. Specifics: - ACPICA update to upstream version 20140424. That includes a number of fixes and improvements related to things like GPE handling, table loading, headers, memory mapping and unmapping, DSDT/SSDT overriding, and the Unload() operator. The acpidump utility from upstream ACPICA is included too. From Bob Moore, Lv Zheng, David Box, David Binderman, and Colin Ian King. - Fixes and cleanups related to ACPI video and backlight interfaces from Hans de Goede. That includes blacklist entries for some new machines and using native backlight by default. - ACPI device enumeration changes to create platform devices rather than PNP devices for ACPI device objects with _HID by default. PNP devices will still be created for the ACPI device object with device IDs corresponding to real PNP devices, so that change should not break things left and right, and we're expecting to see more and more ACPI-enumerated platform devices in the future. From Zhang Rui and Rafael J Wysocki. - Updates for the ACPI LPSS (Low-Power Subsystem) driver allowing it to handle system suspend/resume on Asus T100 correctly. From Heikki Krogerus and Rafael J Wysocki. - PM core update introducing a mechanism to allow runtime-suspended devices to stay suspended over system suspend/resume transitions if certain additional conditions related to coordination within device hierarchy are met. Related PM documentation update and ACPI PM domain support for the new feature. From Rafael J Wysocki. - Fixes and improvements related to the "freeze" sleep state. They affect several places including cpuidle, PM core, ACPI core, and the ACPI battery driver. From Rafael J Wysocki and Zhang Rui. - Miscellaneous fixes and updates of the ACPI core from Aaron Lu, Bjørn Mork, Hanjun Guo, Lan Tianyu, and Rafael J Wysocki. - Fixes and cleanups for the ACPI processor and ACPI PAD (Processor Aggregator Device) drivers from Baoquan He, Manuel Schölling, Tony Camuso, and Toshi Kani. - System suspend/resume optimization in the ACPI battery driver from Lan Tianyu. - OPP (Operating Performance Points) subsystem updates from Chander Kashyap, Mark Brown, and Nishanth Menon. - cpufreq core fixes, updates and cleanups from Srivatsa S Bhat, Stratos Karafotis, and Viresh Kumar. - Updates, fixes and cleanups for the Tegra, powernow-k8, imx6q, s5pv210, nforce2, and powernv cpufreq drivers from Brian Norris, Jingoo Han, Paul Bolle, Philipp Zabel, Stratos Karafotis, and Viresh Kumar. - intel_pstate driver fixes and cleanups from Dirk Brandewie, Doug Smythies, and Stratos Karafotis. - Enabling the big.LITTLE cpufreq driver on arm64 from Mark Brown. - Fix for the cpuidle menu governor from Chander Kashyap. - New ARM clps711x cpuidle driver from Alexander Shiyan. - Hibernate core fixes and cleanups from Chen Gang, Dan Carpenter, Fabian Frederick, Pali Rohár, and Sebastian Capella. - Intel RAPL (Running Average Power Limit) driver updates from Jacob Pan. - PNP subsystem updates from Bjorn Helgaas and Fabian Frederick. - devfreq core updates from Chanwoo Choi and Paul Bolle. - devfreq updates for exynos4 and exynos5 from Chanwoo Choi and Bartlomiej Zolnierkiewicz. - turbostat tool fix from Jean Delvare. - cpupower tool updates from Prarit Bhargava, Ramkumar Ramachandra and Thomas Renninger. - New ACPI ec_access.c tool for poking at the EC in a safe way from Thomas Renninger" * tag 'pm+acpi-3.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (187 commits) ACPICA: Namespace: Remove _PRP method support. intel_pstate: Improve initial busy calculation intel_pstate: add sample time scaling intel_pstate: Correct rounding in busy calculation intel_pstate: Remove C0 tracking PM / hibernate: fixed typo in comment ACPI: Fix x86 regression related to early mapping size limitation ACPICA: Tables: Add mechanism to control early table checksum verification. ACPI / scan: use platform bus type by default for _HID enumeration ACPI / scan: always register ACPI LPSS scan handler ACPI / scan: always register memory hotplug scan handler ACPI / scan: always register container scan handler ACPI / scan: Change the meaning of missing .attach() in scan handlers ACPI / scan: introduce platform_id device PNP type flag ACPI / scan: drop unsupported serial IDs from PNP ACPI scan handler ID list ACPI / scan: drop IDs that do not comply with the ACPI PNP ID rule ACPI / PNP: use device ID list for PNPACPI device enumeration ACPI / scan: .match() callback for ACPI scan handlers ACPI / battery: wakeup the system only when necessary power_supply: allow power supply devices registered w/o wakeup source ...
219 lines
5.8 KiB
C
219 lines
5.8 KiB
C
/*
|
|
* Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com
|
|
*
|
|
* EXYNOS - CPU frequency scaling support for EXYNOS series
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/err.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/of.h>
|
|
|
|
#include "exynos-cpufreq.h"
|
|
|
|
static struct exynos_dvfs_info *exynos_info;
|
|
static struct regulator *arm_regulator;
|
|
static unsigned int locking_frequency;
|
|
|
|
static int exynos_cpufreq_get_index(unsigned int freq)
|
|
{
|
|
struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
|
|
struct cpufreq_frequency_table *pos;
|
|
|
|
cpufreq_for_each_entry(pos, freq_table)
|
|
if (pos->frequency == freq)
|
|
break;
|
|
|
|
if (pos->frequency == CPUFREQ_TABLE_END)
|
|
return -EINVAL;
|
|
|
|
return pos - freq_table;
|
|
}
|
|
|
|
static int exynos_cpufreq_scale(unsigned int target_freq)
|
|
{
|
|
struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
|
|
unsigned int *volt_table = exynos_info->volt_table;
|
|
struct cpufreq_policy *policy = cpufreq_cpu_get(0);
|
|
unsigned int arm_volt, safe_arm_volt = 0;
|
|
unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
|
|
struct device *dev = exynos_info->dev;
|
|
unsigned int old_freq;
|
|
int index, old_index;
|
|
int ret = 0;
|
|
|
|
old_freq = policy->cur;
|
|
|
|
/*
|
|
* The policy max have been changed so that we cannot get proper
|
|
* old_index with cpufreq_frequency_table_target(). Thus, ignore
|
|
* policy and get the index from the raw frequency table.
|
|
*/
|
|
old_index = exynos_cpufreq_get_index(old_freq);
|
|
if (old_index < 0) {
|
|
ret = old_index;
|
|
goto out;
|
|
}
|
|
|
|
index = exynos_cpufreq_get_index(target_freq);
|
|
if (index < 0) {
|
|
ret = index;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* ARM clock source will be changed APLL to MPLL temporary
|
|
* To support this level, need to control regulator for
|
|
* required voltage level
|
|
*/
|
|
if (exynos_info->need_apll_change != NULL) {
|
|
if (exynos_info->need_apll_change(old_index, index) &&
|
|
(freq_table[index].frequency < mpll_freq_khz) &&
|
|
(freq_table[old_index].frequency < mpll_freq_khz))
|
|
safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
|
|
}
|
|
arm_volt = volt_table[index];
|
|
|
|
/* When the new frequency is higher than current frequency */
|
|
if ((target_freq > old_freq) && !safe_arm_volt) {
|
|
/* Firstly, voltage up to increase frequency */
|
|
ret = regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
|
|
if (ret) {
|
|
dev_err(dev, "failed to set cpu voltage to %d\n",
|
|
arm_volt);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (safe_arm_volt) {
|
|
ret = regulator_set_voltage(arm_regulator, safe_arm_volt,
|
|
safe_arm_volt);
|
|
if (ret) {
|
|
dev_err(dev, "failed to set cpu voltage to %d\n",
|
|
safe_arm_volt);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
exynos_info->set_freq(old_index, index);
|
|
|
|
/* When the new frequency is lower than current frequency */
|
|
if ((target_freq < old_freq) ||
|
|
((target_freq > old_freq) && safe_arm_volt)) {
|
|
/* down the voltage after frequency change */
|
|
ret = regulator_set_voltage(arm_regulator, arm_volt,
|
|
arm_volt);
|
|
if (ret) {
|
|
dev_err(dev, "failed to set cpu voltage to %d\n",
|
|
arm_volt);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
cpufreq_cpu_put(policy);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int exynos_target(struct cpufreq_policy *policy, unsigned int index)
|
|
{
|
|
return exynos_cpufreq_scale(exynos_info->freq_table[index].frequency);
|
|
}
|
|
|
|
static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
policy->clk = exynos_info->cpu_clk;
|
|
policy->suspend_freq = locking_frequency;
|
|
return cpufreq_generic_init(policy, exynos_info->freq_table, 100000);
|
|
}
|
|
|
|
static struct cpufreq_driver exynos_driver = {
|
|
.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
|
|
.verify = cpufreq_generic_frequency_table_verify,
|
|
.target_index = exynos_target,
|
|
.get = cpufreq_generic_get,
|
|
.init = exynos_cpufreq_cpu_init,
|
|
.name = "exynos_cpufreq",
|
|
.attr = cpufreq_generic_attr,
|
|
#ifdef CONFIG_ARM_EXYNOS_CPU_FREQ_BOOST_SW
|
|
.boost_supported = true,
|
|
#endif
|
|
#ifdef CONFIG_PM
|
|
.suspend = cpufreq_generic_suspend,
|
|
#endif
|
|
};
|
|
|
|
static int exynos_cpufreq_probe(struct platform_device *pdev)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
exynos_info = kzalloc(sizeof(*exynos_info), GFP_KERNEL);
|
|
if (!exynos_info)
|
|
return -ENOMEM;
|
|
|
|
exynos_info->dev = &pdev->dev;
|
|
|
|
if (of_machine_is_compatible("samsung,exynos4210")) {
|
|
exynos_info->type = EXYNOS_SOC_4210;
|
|
ret = exynos4210_cpufreq_init(exynos_info);
|
|
} else if (of_machine_is_compatible("samsung,exynos4212")) {
|
|
exynos_info->type = EXYNOS_SOC_4212;
|
|
ret = exynos4x12_cpufreq_init(exynos_info);
|
|
} else if (of_machine_is_compatible("samsung,exynos4412")) {
|
|
exynos_info->type = EXYNOS_SOC_4412;
|
|
ret = exynos4x12_cpufreq_init(exynos_info);
|
|
} else if (of_machine_is_compatible("samsung,exynos5250")) {
|
|
exynos_info->type = EXYNOS_SOC_5250;
|
|
ret = exynos5250_cpufreq_init(exynos_info);
|
|
} else {
|
|
pr_err("%s: Unknown SoC type\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (ret)
|
|
goto err_vdd_arm;
|
|
|
|
if (exynos_info->set_freq == NULL) {
|
|
dev_err(&pdev->dev, "No set_freq function (ERR)\n");
|
|
goto err_vdd_arm;
|
|
}
|
|
|
|
arm_regulator = regulator_get(NULL, "vdd_arm");
|
|
if (IS_ERR(arm_regulator)) {
|
|
dev_err(&pdev->dev, "failed to get resource vdd_arm\n");
|
|
goto err_vdd_arm;
|
|
}
|
|
|
|
/* Done here as we want to capture boot frequency */
|
|
locking_frequency = clk_get_rate(exynos_info->cpu_clk) / 1000;
|
|
|
|
if (!cpufreq_register_driver(&exynos_driver))
|
|
return 0;
|
|
|
|
dev_err(&pdev->dev, "failed to register cpufreq driver\n");
|
|
regulator_put(arm_regulator);
|
|
err_vdd_arm:
|
|
kfree(exynos_info);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static struct platform_driver exynos_cpufreq_platdrv = {
|
|
.driver = {
|
|
.name = "exynos-cpufreq",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
.probe = exynos_cpufreq_probe,
|
|
};
|
|
module_platform_driver(exynos_cpufreq_platdrv);
|