mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-22 09:22:37 +00:00
44ebd037c5
The length of the scatter gather list a driver can enqueue is limited by the bus' sg_tablesize to 62 entries. Each entry will be described by at least one transfer request block (TRB). If the entry's buffer crosses a 64KB boundary, then that entry will have to be described by two or more TRBs. So even if the USB device driver respects sg_tablesize, the whole scatter list may take more than 62 TRBs to describe, and won't fit on the ring. Don't assume that an empty ring means there is enough room on the transfer ring. The old code would unconditionally queue this too-large transfer, and over write the beginning of the transfer. This would mean the cycle bit was unchanged in those overwritten transfers, causing the hardware to think it didn't own the TRBs, and the host would seem to hang. Now drivers may see submit_urb() fail with -ENOMEM if the transfers are too big to fit on the ring. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de> |
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
class | ||
core | ||
early | ||
gadget | ||
host | ||
image | ||
misc | ||
mon | ||
musb | ||
otg | ||
serial | ||
storage | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-skeleton.c |
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("khubd"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.