mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-10 11:30:49 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
1392 lines
38 KiB
C
1392 lines
38 KiB
C
/*
|
|
* Aic94xx SAS/SATA driver hardware interface.
|
|
*
|
|
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
|
|
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
|
|
*
|
|
* This file is licensed under GPLv2.
|
|
*
|
|
* This file is part of the aic94xx driver.
|
|
*
|
|
* The aic94xx driver is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; version 2 of the
|
|
* License.
|
|
*
|
|
* The aic94xx driver is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with the aic94xx driver; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/module.h>
|
|
#include <linux/firmware.h>
|
|
|
|
#include "aic94xx.h"
|
|
#include "aic94xx_reg.h"
|
|
#include "aic94xx_hwi.h"
|
|
#include "aic94xx_seq.h"
|
|
#include "aic94xx_dump.h"
|
|
|
|
u32 MBAR0_SWB_SIZE;
|
|
|
|
/* ---------- Initialization ---------- */
|
|
|
|
static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
|
|
{
|
|
/* adapter came with a sas address */
|
|
if (asd_ha->hw_prof.sas_addr[0])
|
|
return 0;
|
|
|
|
return sas_request_addr(asd_ha->sas_ha.core.shost,
|
|
asd_ha->hw_prof.sas_addr);
|
|
}
|
|
|
|
static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ASD_MAX_PHYS; i++) {
|
|
if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
|
|
continue;
|
|
/* Set a phy's address only if it has none.
|
|
*/
|
|
ASD_DPRINTK("setting phy%d addr to %llx\n", i,
|
|
SAS_ADDR(asd_ha->hw_prof.sas_addr));
|
|
memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
|
|
asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
|
|
}
|
|
}
|
|
|
|
/* ---------- PHY initialization ---------- */
|
|
|
|
static void asd_init_phy_identify(struct asd_phy *phy)
|
|
{
|
|
phy->identify_frame = phy->id_frm_tok->vaddr;
|
|
|
|
memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
|
|
|
|
phy->identify_frame->dev_type = SAS_END_DEV;
|
|
if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
|
|
phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
|
|
if (phy->sas_phy.role & PHY_ROLE_TARGET)
|
|
phy->identify_frame->target_bits = phy->sas_phy.tproto;
|
|
memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
|
|
SAS_ADDR_SIZE);
|
|
phy->identify_frame->phy_id = phy->sas_phy.id;
|
|
}
|
|
|
|
static int asd_init_phy(struct asd_phy *phy)
|
|
{
|
|
struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
|
|
struct asd_sas_phy *sas_phy = &phy->sas_phy;
|
|
|
|
sas_phy->enabled = 1;
|
|
sas_phy->class = SAS;
|
|
sas_phy->iproto = SAS_PROTOCOL_ALL;
|
|
sas_phy->tproto = 0;
|
|
sas_phy->type = PHY_TYPE_PHYSICAL;
|
|
sas_phy->role = PHY_ROLE_INITIATOR;
|
|
sas_phy->oob_mode = OOB_NOT_CONNECTED;
|
|
sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
|
|
|
|
phy->id_frm_tok = asd_alloc_coherent(asd_ha,
|
|
sizeof(*phy->identify_frame),
|
|
GFP_KERNEL);
|
|
if (!phy->id_frm_tok) {
|
|
asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
|
|
return -ENOMEM;
|
|
} else
|
|
asd_init_phy_identify(phy);
|
|
|
|
memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void asd_init_ports(struct asd_ha_struct *asd_ha)
|
|
{
|
|
int i;
|
|
|
|
spin_lock_init(&asd_ha->asd_ports_lock);
|
|
for (i = 0; i < ASD_MAX_PHYS; i++) {
|
|
struct asd_port *asd_port = &asd_ha->asd_ports[i];
|
|
|
|
memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
|
|
memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
|
|
asd_port->phy_mask = 0;
|
|
asd_port->num_phys = 0;
|
|
}
|
|
}
|
|
|
|
static int asd_init_phys(struct asd_ha_struct *asd_ha)
|
|
{
|
|
u8 i;
|
|
u8 phy_mask = asd_ha->hw_prof.enabled_phys;
|
|
|
|
for (i = 0; i < ASD_MAX_PHYS; i++) {
|
|
struct asd_phy *phy = &asd_ha->phys[i];
|
|
|
|
phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
|
|
phy->asd_port = NULL;
|
|
|
|
phy->sas_phy.enabled = 0;
|
|
phy->sas_phy.id = i;
|
|
phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
|
|
phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
|
|
phy->sas_phy.ha = &asd_ha->sas_ha;
|
|
phy->sas_phy.lldd_phy = phy;
|
|
}
|
|
|
|
/* Now enable and initialize only the enabled phys. */
|
|
for_each_phy(phy_mask, phy_mask, i) {
|
|
int err = asd_init_phy(&asd_ha->phys[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ---------- Sliding windows ---------- */
|
|
|
|
static int asd_init_sw(struct asd_ha_struct *asd_ha)
|
|
{
|
|
struct pci_dev *pcidev = asd_ha->pcidev;
|
|
int err;
|
|
u32 v;
|
|
|
|
/* Unlock MBARs */
|
|
err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
|
|
if (err) {
|
|
asd_printk("couldn't access conf. space of %s\n",
|
|
pci_name(pcidev));
|
|
goto Err;
|
|
}
|
|
if (v)
|
|
err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
|
|
if (err) {
|
|
asd_printk("couldn't write to MBAR_KEY of %s\n",
|
|
pci_name(pcidev));
|
|
goto Err;
|
|
}
|
|
|
|
/* Set sliding windows A, B and C to point to proper internal
|
|
* memory regions.
|
|
*/
|
|
pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
|
|
pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
|
|
REG_BASE_ADDR_CSEQCIO);
|
|
pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
|
|
asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
|
|
asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
|
|
asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
|
|
MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
|
|
if (!asd_ha->iospace) {
|
|
/* MBAR1 will point to OCM (On Chip Memory) */
|
|
pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
|
|
asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
|
|
}
|
|
spin_lock_init(&asd_ha->iolock);
|
|
Err:
|
|
return err;
|
|
}
|
|
|
|
/* ---------- SCB initialization ---------- */
|
|
|
|
/**
|
|
* asd_init_scbs - manually allocate the first SCB.
|
|
* @asd_ha: pointer to host adapter structure
|
|
*
|
|
* This allocates the very first SCB which would be sent to the
|
|
* sequencer for execution. Its bus address is written to
|
|
* CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
|
|
* the _next_ scb to be DMA-ed to the host adapter is read from the last
|
|
* SCB DMA-ed to the host adapter, we have to always stay one step
|
|
* ahead of the sequencer and keep one SCB already allocated.
|
|
*/
|
|
static int asd_init_scbs(struct asd_ha_struct *asd_ha)
|
|
{
|
|
struct asd_seq_data *seq = &asd_ha->seq;
|
|
int bitmap_bytes;
|
|
|
|
/* allocate the index array and bitmap */
|
|
asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
|
|
asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
|
|
sizeof(void *), GFP_KERNEL);
|
|
if (!asd_ha->seq.tc_index_array)
|
|
return -ENOMEM;
|
|
|
|
bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
|
|
bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
|
|
asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
|
|
if (!asd_ha->seq.tc_index_bitmap)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&seq->tc_index_lock);
|
|
|
|
seq->next_scb.size = sizeof(struct scb);
|
|
seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
|
|
&seq->next_scb.dma_handle);
|
|
if (!seq->next_scb.vaddr) {
|
|
kfree(asd_ha->seq.tc_index_bitmap);
|
|
kfree(asd_ha->seq.tc_index_array);
|
|
asd_ha->seq.tc_index_bitmap = NULL;
|
|
asd_ha->seq.tc_index_array = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
seq->pending = 0;
|
|
spin_lock_init(&seq->pend_q_lock);
|
|
INIT_LIST_HEAD(&seq->pend_q);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
|
|
{
|
|
asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
|
|
asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
|
|
ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
|
|
asd_ha->hw_prof.max_scbs,
|
|
asd_ha->hw_prof.max_ddbs);
|
|
}
|
|
|
|
/* ---------- Done List initialization ---------- */
|
|
|
|
static void asd_dl_tasklet_handler(unsigned long);
|
|
|
|
static int asd_init_dl(struct asd_ha_struct *asd_ha)
|
|
{
|
|
asd_ha->seq.actual_dl
|
|
= asd_alloc_coherent(asd_ha,
|
|
ASD_DL_SIZE * sizeof(struct done_list_struct),
|
|
GFP_KERNEL);
|
|
if (!asd_ha->seq.actual_dl)
|
|
return -ENOMEM;
|
|
asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
|
|
asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
|
|
asd_ha->seq.dl_next = 0;
|
|
tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
|
|
(unsigned long) asd_ha);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ---------- EDB and ESCB init ---------- */
|
|
|
|
static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
|
|
{
|
|
struct asd_seq_data *seq = &asd_ha->seq;
|
|
int i;
|
|
|
|
seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
|
|
if (!seq->edb_arr)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < seq->num_edbs; i++) {
|
|
seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
|
|
gfp_flags);
|
|
if (!seq->edb_arr[i])
|
|
goto Err_unroll;
|
|
memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
|
|
}
|
|
|
|
ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
|
|
|
|
return 0;
|
|
|
|
Err_unroll:
|
|
for (i-- ; i >= 0; i--)
|
|
asd_free_coherent(asd_ha, seq->edb_arr[i]);
|
|
kfree(seq->edb_arr);
|
|
seq->edb_arr = NULL;
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
|
|
gfp_t gfp_flags)
|
|
{
|
|
struct asd_seq_data *seq = &asd_ha->seq;
|
|
struct asd_ascb *escb;
|
|
int i, escbs;
|
|
|
|
seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
|
|
gfp_flags);
|
|
if (!seq->escb_arr)
|
|
return -ENOMEM;
|
|
|
|
escbs = seq->num_escbs;
|
|
escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
|
|
if (!escb) {
|
|
asd_printk("couldn't allocate list of escbs\n");
|
|
goto Err;
|
|
}
|
|
seq->num_escbs -= escbs; /* subtract what was not allocated */
|
|
ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
|
|
|
|
for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
|
|
struct asd_ascb,
|
|
list)) {
|
|
seq->escb_arr[i] = escb;
|
|
escb->scb->header.opcode = EMPTY_SCB;
|
|
}
|
|
|
|
return 0;
|
|
Err:
|
|
kfree(seq->escb_arr);
|
|
seq->escb_arr = NULL;
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
|
|
{
|
|
struct asd_seq_data *seq = &asd_ha->seq;
|
|
int i, k, z = 0;
|
|
|
|
for (i = 0; i < seq->num_escbs; i++) {
|
|
struct asd_ascb *ascb = seq->escb_arr[i];
|
|
struct empty_scb *escb = &ascb->scb->escb;
|
|
|
|
ascb->edb_index = z;
|
|
|
|
escb->num_valid = ASD_EDBS_PER_SCB;
|
|
|
|
for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
|
|
struct sg_el *eb = &escb->eb[k];
|
|
struct asd_dma_tok *edb = seq->edb_arr[z++];
|
|
|
|
memset(eb, 0, sizeof(*eb));
|
|
eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
|
|
eb->size = cpu_to_le32(((u32) edb->size));
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* asd_init_escbs -- allocate and initialize empty scbs
|
|
* @asd_ha: pointer to host adapter structure
|
|
*
|
|
* An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
|
|
* They transport sense data, etc.
|
|
*/
|
|
static int asd_init_escbs(struct asd_ha_struct *asd_ha)
|
|
{
|
|
struct asd_seq_data *seq = &asd_ha->seq;
|
|
int err = 0;
|
|
|
|
/* Allocate two empty data buffers (edb) per sequencer. */
|
|
int edbs = 2*(1+asd_ha->hw_prof.num_phys);
|
|
|
|
seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
|
|
seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
|
|
|
|
err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
|
|
if (err) {
|
|
asd_printk("couldn't allocate edbs\n");
|
|
return err;
|
|
}
|
|
|
|
err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
|
|
if (err) {
|
|
asd_printk("couldn't allocate escbs\n");
|
|
return err;
|
|
}
|
|
|
|
asd_assign_edbs2escbs(asd_ha);
|
|
/* In order to insure that normal SCBs do not overfill sequencer
|
|
* memory and leave no space for escbs (halting condition),
|
|
* we increment pending here by the number of escbs. However,
|
|
* escbs are never pending.
|
|
*/
|
|
seq->pending = seq->num_escbs;
|
|
seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ---------- HW initialization ---------- */
|
|
|
|
/**
|
|
* asd_chip_hardrst -- hard reset the chip
|
|
* @asd_ha: pointer to host adapter structure
|
|
*
|
|
* This takes 16 cycles and is synchronous to CFCLK, which runs
|
|
* at 200 MHz, so this should take at most 80 nanoseconds.
|
|
*/
|
|
int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
|
|
{
|
|
int i;
|
|
int count = 100;
|
|
u32 reg;
|
|
|
|
for (i = 0 ; i < 4 ; i++) {
|
|
asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
|
|
}
|
|
|
|
do {
|
|
udelay(1);
|
|
reg = asd_read_reg_dword(asd_ha, CHIMINT);
|
|
if (reg & HARDRSTDET) {
|
|
asd_write_reg_dword(asd_ha, CHIMINT,
|
|
HARDRSTDET|PORRSTDET);
|
|
return 0;
|
|
}
|
|
} while (--count > 0);
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
/**
|
|
* asd_init_chip -- initialize the chip
|
|
* @asd_ha: pointer to host adapter structure
|
|
*
|
|
* Hard resets the chip, disables HA interrupts, downloads the sequnecer
|
|
* microcode and starts the sequencers. The caller has to explicitly
|
|
* enable HA interrupts with asd_enable_ints(asd_ha).
|
|
*/
|
|
static int asd_init_chip(struct asd_ha_struct *asd_ha)
|
|
{
|
|
int err;
|
|
|
|
err = asd_chip_hardrst(asd_ha);
|
|
if (err) {
|
|
asd_printk("couldn't hard reset %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
goto out;
|
|
}
|
|
|
|
asd_disable_ints(asd_ha);
|
|
|
|
err = asd_init_seqs(asd_ha);
|
|
if (err) {
|
|
asd_printk("couldn't init seqs for %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
goto out;
|
|
}
|
|
|
|
err = asd_start_seqs(asd_ha);
|
|
if (err) {
|
|
asd_printk("coudln't start seqs for %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
goto out;
|
|
}
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
|
|
|
|
static int max_devs = 0;
|
|
module_param_named(max_devs, max_devs, int, S_IRUGO);
|
|
MODULE_PARM_DESC(max_devs, "\n"
|
|
"\tMaximum number of SAS devices to support (not LUs).\n"
|
|
"\tDefault: 2176, Maximum: 65663.\n");
|
|
|
|
static int max_cmnds = 0;
|
|
module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
|
|
MODULE_PARM_DESC(max_cmnds, "\n"
|
|
"\tMaximum number of commands queuable.\n"
|
|
"\tDefault: 512, Maximum: 66047.\n");
|
|
|
|
static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
|
|
{
|
|
unsigned long dma_addr = OCM_BASE_ADDR;
|
|
u32 d;
|
|
|
|
dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
|
|
asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
|
|
d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
|
|
d |= 4;
|
|
asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
|
|
asd_ha->hw_prof.max_ddbs += MAX_DEVS;
|
|
}
|
|
|
|
static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
|
|
{
|
|
dma_addr_t dma_handle;
|
|
unsigned long dma_addr;
|
|
u32 d;
|
|
int size;
|
|
|
|
asd_extend_devctx_ocm(asd_ha);
|
|
|
|
asd_ha->hw_prof.ddb_ext = NULL;
|
|
if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
|
|
max_devs = asd_ha->hw_prof.max_ddbs;
|
|
return 0;
|
|
}
|
|
|
|
size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
|
|
|
|
asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
|
|
if (!asd_ha->hw_prof.ddb_ext) {
|
|
asd_printk("couldn't allocate memory for %d devices\n",
|
|
max_devs);
|
|
max_devs = asd_ha->hw_prof.max_ddbs;
|
|
return -ENOMEM;
|
|
}
|
|
dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
|
|
dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
|
|
dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
|
|
dma_handle = (dma_addr_t) dma_addr;
|
|
asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
|
|
d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
|
|
d &= ~4;
|
|
asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
|
|
|
|
asd_ha->hw_prof.max_ddbs = max_devs;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
|
|
{
|
|
dma_addr_t dma_handle;
|
|
unsigned long dma_addr;
|
|
u32 d;
|
|
int size;
|
|
|
|
asd_ha->hw_prof.scb_ext = NULL;
|
|
if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
|
|
max_cmnds = asd_ha->hw_prof.max_scbs;
|
|
return 0;
|
|
}
|
|
|
|
size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
|
|
|
|
asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
|
|
if (!asd_ha->hw_prof.scb_ext) {
|
|
asd_printk("couldn't allocate memory for %d commands\n",
|
|
max_cmnds);
|
|
max_cmnds = asd_ha->hw_prof.max_scbs;
|
|
return -ENOMEM;
|
|
}
|
|
dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
|
|
dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
|
|
dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
|
|
dma_handle = (dma_addr_t) dma_addr;
|
|
asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
|
|
d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
|
|
d &= ~1;
|
|
asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
|
|
|
|
asd_ha->hw_prof.max_scbs = max_cmnds;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* asd_init_ctxmem -- initialize context memory
|
|
* asd_ha: pointer to host adapter structure
|
|
*
|
|
* This function sets the maximum number of SCBs and
|
|
* DDBs which can be used by the sequencer. This is normally
|
|
* 512 and 128 respectively. If support for more SCBs or more DDBs
|
|
* is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
|
|
* initialized here to extend context memory to point to host memory,
|
|
* thus allowing unlimited support for SCBs and DDBs -- only limited
|
|
* by host memory.
|
|
*/
|
|
static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
|
|
{
|
|
int bitmap_bytes;
|
|
|
|
asd_get_max_scb_ddb(asd_ha);
|
|
asd_extend_devctx(asd_ha);
|
|
asd_extend_cmdctx(asd_ha);
|
|
|
|
/* The kernel wants bitmaps to be unsigned long sized. */
|
|
bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
|
|
bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
|
|
asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
|
|
if (!asd_ha->hw_prof.ddb_bitmap)
|
|
return -ENOMEM;
|
|
spin_lock_init(&asd_ha->hw_prof.ddb_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int asd_init_hw(struct asd_ha_struct *asd_ha)
|
|
{
|
|
int err;
|
|
u32 v;
|
|
|
|
err = asd_init_sw(asd_ha);
|
|
if (err)
|
|
return err;
|
|
|
|
err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
|
|
if (err) {
|
|
asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
return err;
|
|
}
|
|
pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
|
|
v | SC_TMR_DIS);
|
|
if (err) {
|
|
asd_printk("couldn't disable split completion timer of %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
return err;
|
|
}
|
|
|
|
err = asd_read_ocm(asd_ha);
|
|
if (err) {
|
|
asd_printk("couldn't read ocm(%d)\n", err);
|
|
/* While suspicios, it is not an error that we
|
|
* couldn't read the OCM. */
|
|
}
|
|
|
|
err = asd_read_flash(asd_ha);
|
|
if (err) {
|
|
asd_printk("couldn't read flash(%d)\n", err);
|
|
/* While suspicios, it is not an error that we
|
|
* couldn't read FLASH memory.
|
|
*/
|
|
}
|
|
|
|
asd_init_ctxmem(asd_ha);
|
|
|
|
if (asd_get_user_sas_addr(asd_ha)) {
|
|
asd_printk("No SAS Address provided for %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
err = -ENODEV;
|
|
goto Out;
|
|
}
|
|
|
|
asd_propagate_sas_addr(asd_ha);
|
|
|
|
err = asd_init_phys(asd_ha);
|
|
if (err) {
|
|
asd_printk("couldn't initialize phys for %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
goto Out;
|
|
}
|
|
|
|
asd_init_ports(asd_ha);
|
|
|
|
err = asd_init_scbs(asd_ha);
|
|
if (err) {
|
|
asd_printk("couldn't initialize scbs for %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
goto Out;
|
|
}
|
|
|
|
err = asd_init_dl(asd_ha);
|
|
if (err) {
|
|
asd_printk("couldn't initialize the done list:%d\n",
|
|
err);
|
|
goto Out;
|
|
}
|
|
|
|
err = asd_init_escbs(asd_ha);
|
|
if (err) {
|
|
asd_printk("couldn't initialize escbs\n");
|
|
goto Out;
|
|
}
|
|
|
|
err = asd_init_chip(asd_ha);
|
|
if (err) {
|
|
asd_printk("couldn't init the chip\n");
|
|
goto Out;
|
|
}
|
|
Out:
|
|
return err;
|
|
}
|
|
|
|
/* ---------- Chip reset ---------- */
|
|
|
|
/**
|
|
* asd_chip_reset -- reset the host adapter, etc
|
|
* @asd_ha: pointer to host adapter structure of interest
|
|
*
|
|
* Called from the ISR. Hard reset the chip. Let everything
|
|
* timeout. This should be no different than hot-unplugging the
|
|
* host adapter. Once everything times out we'll init the chip with
|
|
* a call to asd_init_chip() and enable interrupts with asd_enable_ints().
|
|
* XXX finish.
|
|
*/
|
|
static void asd_chip_reset(struct asd_ha_struct *asd_ha)
|
|
{
|
|
struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
|
|
|
|
ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
|
|
asd_chip_hardrst(asd_ha);
|
|
sas_ha->notify_ha_event(sas_ha, HAE_RESET);
|
|
}
|
|
|
|
/* ---------- Done List Routines ---------- */
|
|
|
|
static void asd_dl_tasklet_handler(unsigned long data)
|
|
{
|
|
struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
|
|
struct asd_seq_data *seq = &asd_ha->seq;
|
|
unsigned long flags;
|
|
|
|
while (1) {
|
|
struct done_list_struct *dl = &seq->dl[seq->dl_next];
|
|
struct asd_ascb *ascb;
|
|
|
|
if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
|
|
break;
|
|
|
|
/* find the aSCB */
|
|
spin_lock_irqsave(&seq->tc_index_lock, flags);
|
|
ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
|
|
spin_unlock_irqrestore(&seq->tc_index_lock, flags);
|
|
if (unlikely(!ascb)) {
|
|
ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
|
|
goto next_1;
|
|
} else if (ascb->scb->header.opcode == EMPTY_SCB) {
|
|
goto out;
|
|
} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
|
|
goto next_1;
|
|
}
|
|
spin_lock_irqsave(&seq->pend_q_lock, flags);
|
|
list_del_init(&ascb->list);
|
|
seq->pending--;
|
|
spin_unlock_irqrestore(&seq->pend_q_lock, flags);
|
|
out:
|
|
ascb->tasklet_complete(ascb, dl);
|
|
|
|
next_1:
|
|
seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
|
|
if (!seq->dl_next)
|
|
seq->dl_toggle ^= DL_TOGGLE_MASK;
|
|
}
|
|
}
|
|
|
|
/* ---------- Interrupt Service Routines ---------- */
|
|
|
|
/**
|
|
* asd_process_donelist_isr -- schedule processing of done list entries
|
|
* @asd_ha: pointer to host adapter structure
|
|
*/
|
|
static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
|
|
{
|
|
tasklet_schedule(&asd_ha->seq.dl_tasklet);
|
|
}
|
|
|
|
/**
|
|
* asd_com_sas_isr -- process device communication interrupt (COMINT)
|
|
* @asd_ha: pointer to host adapter structure
|
|
*/
|
|
static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
|
|
{
|
|
u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
|
|
|
|
/* clear COMSTAT int */
|
|
asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
|
|
|
|
if (comstat & CSBUFPERR) {
|
|
asd_printk("%s: command/status buffer dma parity error\n",
|
|
pci_name(asd_ha->pcidev));
|
|
} else if (comstat & CSERR) {
|
|
int i;
|
|
u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
|
|
dmaerr &= 0xFF;
|
|
asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
|
|
"CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
|
|
pci_name(asd_ha->pcidev),
|
|
dmaerr,
|
|
asd_read_reg_dword(asd_ha, CSDMAADR),
|
|
asd_read_reg_dword(asd_ha, CSDMAADR+4));
|
|
asd_printk("CSBUFFER:\n");
|
|
for (i = 0; i < 8; i++) {
|
|
asd_printk("%08x %08x %08x %08x\n",
|
|
asd_read_reg_dword(asd_ha, CSBUFFER),
|
|
asd_read_reg_dword(asd_ha, CSBUFFER+4),
|
|
asd_read_reg_dword(asd_ha, CSBUFFER+8),
|
|
asd_read_reg_dword(asd_ha, CSBUFFER+12));
|
|
}
|
|
asd_dump_seq_state(asd_ha, 0);
|
|
} else if (comstat & OVLYERR) {
|
|
u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
|
|
dmaerr = (dmaerr >> 8) & 0xFF;
|
|
asd_printk("%s: overlay dma error:0x%x\n",
|
|
pci_name(asd_ha->pcidev),
|
|
dmaerr);
|
|
}
|
|
asd_chip_reset(asd_ha);
|
|
}
|
|
|
|
static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
|
|
{
|
|
static const char *halt_code[256] = {
|
|
"UNEXPECTED_INTERRUPT0",
|
|
"UNEXPECTED_INTERRUPT1",
|
|
"UNEXPECTED_INTERRUPT2",
|
|
"UNEXPECTED_INTERRUPT3",
|
|
"UNEXPECTED_INTERRUPT4",
|
|
"UNEXPECTED_INTERRUPT5",
|
|
"UNEXPECTED_INTERRUPT6",
|
|
"UNEXPECTED_INTERRUPT7",
|
|
"UNEXPECTED_INTERRUPT8",
|
|
"UNEXPECTED_INTERRUPT9",
|
|
"UNEXPECTED_INTERRUPT10",
|
|
[11 ... 19] = "unknown[11,19]",
|
|
"NO_FREE_SCB_AVAILABLE",
|
|
"INVALID_SCB_OPCODE",
|
|
"INVALID_MBX_OPCODE",
|
|
"INVALID_ATA_STATE",
|
|
"ATA_QUEUE_FULL",
|
|
"ATA_TAG_TABLE_FAULT",
|
|
"ATA_TAG_MASK_FAULT",
|
|
"BAD_LINK_QUEUE_STATE",
|
|
"DMA2CHIM_QUEUE_ERROR",
|
|
"EMPTY_SCB_LIST_FULL",
|
|
"unknown[30]",
|
|
"IN_USE_SCB_ON_FREE_LIST",
|
|
"BAD_OPEN_WAIT_STATE",
|
|
"INVALID_STP_AFFILIATION",
|
|
"unknown[34]",
|
|
"EXEC_QUEUE_ERROR",
|
|
"TOO_MANY_EMPTIES_NEEDED",
|
|
"EMPTY_REQ_QUEUE_ERROR",
|
|
"Q_MONIRTT_MGMT_ERROR",
|
|
"TARGET_MODE_FLOW_ERROR",
|
|
"DEVICE_QUEUE_NOT_FOUND",
|
|
"START_IRTT_TIMER_ERROR",
|
|
"ABORT_TASK_ILLEGAL_REQ",
|
|
[43 ... 255] = "unknown[43,255]"
|
|
};
|
|
|
|
if (dchstatus & CSEQINT) {
|
|
u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
|
|
|
|
if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
|
|
asd_printk("%s: CSEQ arp2int:0x%x\n",
|
|
pci_name(asd_ha->pcidev),
|
|
arp2int);
|
|
} else if (arp2int & ARP2HALTC)
|
|
asd_printk("%s: CSEQ halted: %s\n",
|
|
pci_name(asd_ha->pcidev),
|
|
halt_code[(arp2int>>16)&0xFF]);
|
|
else
|
|
asd_printk("%s: CARP2INT:0x%x\n",
|
|
pci_name(asd_ha->pcidev),
|
|
arp2int);
|
|
}
|
|
if (dchstatus & LSEQINT_MASK) {
|
|
int lseq;
|
|
u8 lseq_mask = dchstatus & LSEQINT_MASK;
|
|
|
|
for_each_sequencer(lseq_mask, lseq_mask, lseq) {
|
|
u32 arp2int = asd_read_reg_dword(asd_ha,
|
|
LmARP2INT(lseq));
|
|
if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
|
|
| ARP2CIOPERR)) {
|
|
asd_printk("%s: LSEQ%d arp2int:0x%x\n",
|
|
pci_name(asd_ha->pcidev),
|
|
lseq, arp2int);
|
|
/* XXX we should only do lseq reset */
|
|
} else if (arp2int & ARP2HALTC)
|
|
asd_printk("%s: LSEQ%d halted: %s\n",
|
|
pci_name(asd_ha->pcidev),
|
|
lseq,halt_code[(arp2int>>16)&0xFF]);
|
|
else
|
|
asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
|
|
pci_name(asd_ha->pcidev), lseq,
|
|
arp2int);
|
|
}
|
|
}
|
|
asd_chip_reset(asd_ha);
|
|
}
|
|
|
|
/**
|
|
* asd_dch_sas_isr -- process device channel interrupt (DEVINT)
|
|
* @asd_ha: pointer to host adapter structure
|
|
*/
|
|
static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
|
|
{
|
|
u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
|
|
|
|
if (dchstatus & CFIFTOERR) {
|
|
asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
|
|
asd_chip_reset(asd_ha);
|
|
} else
|
|
asd_arp2_err(asd_ha, dchstatus);
|
|
}
|
|
|
|
/**
|
|
* ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
|
|
* @asd_ha: pointer to host adapter structure
|
|
*/
|
|
static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
|
|
{
|
|
u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
|
|
|
|
if (!(stat0r & ASIERR)) {
|
|
asd_printk("hmm, EXSI interrupted but no error?\n");
|
|
return;
|
|
}
|
|
|
|
if (stat0r & ASIFMTERR) {
|
|
asd_printk("ASI SEEPROM format error for %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
} else if (stat0r & ASISEECHKERR) {
|
|
u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
|
|
asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
|
|
stat1r & CHECKSUM_MASK,
|
|
pci_name(asd_ha->pcidev));
|
|
} else {
|
|
u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
|
|
|
|
if (!(statr & CPI2ASIMSTERR_MASK)) {
|
|
ASD_DPRINTK("hmm, ASIERR?\n");
|
|
return;
|
|
} else {
|
|
u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
|
|
u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
|
|
|
|
asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
|
|
"count: 0x%x, byteen: 0x%x, targerr: 0x%x "
|
|
"master id: 0x%x, master err: 0x%x\n",
|
|
pci_name(asd_ha->pcidev),
|
|
addr, data,
|
|
(statr & CPI2ASIBYTECNT_MASK) >> 16,
|
|
(statr & CPI2ASIBYTEEN_MASK) >> 12,
|
|
(statr & CPI2ASITARGERR_MASK) >> 8,
|
|
(statr & CPI2ASITARGMID_MASK) >> 4,
|
|
(statr & CPI2ASIMSTERR_MASK));
|
|
}
|
|
}
|
|
asd_chip_reset(asd_ha);
|
|
}
|
|
|
|
/**
|
|
* asd_hst_pcix_isr -- process host interface interrupts
|
|
* @asd_ha: pointer to host adapter structure
|
|
*
|
|
* Asserted on PCIX errors: target abort, etc.
|
|
*/
|
|
static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
|
|
{
|
|
u16 status;
|
|
u32 pcix_status;
|
|
u32 ecc_status;
|
|
|
|
pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
|
|
pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
|
|
pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
|
|
|
|
if (status & PCI_STATUS_DETECTED_PARITY)
|
|
asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
|
|
else if (status & PCI_STATUS_REC_MASTER_ABORT)
|
|
asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
|
|
else if (status & PCI_STATUS_REC_TARGET_ABORT)
|
|
asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
|
|
else if (status & PCI_STATUS_PARITY)
|
|
asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
|
|
else if (pcix_status & RCV_SCE) {
|
|
asd_printk("received split completion error for %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
|
|
/* XXX: Abort task? */
|
|
return;
|
|
} else if (pcix_status & UNEXP_SC) {
|
|
asd_printk("unexpected split completion for %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
|
|
/* ignore */
|
|
return;
|
|
} else if (pcix_status & SC_DISCARD)
|
|
asd_printk("split completion discarded for %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
else if (ecc_status & UNCOR_ECCERR)
|
|
asd_printk("uncorrectable ECC error for %s\n",
|
|
pci_name(asd_ha->pcidev));
|
|
asd_chip_reset(asd_ha);
|
|
}
|
|
|
|
/**
|
|
* asd_hw_isr -- host adapter interrupt service routine
|
|
* @irq: ignored
|
|
* @dev_id: pointer to host adapter structure
|
|
*
|
|
* The ISR processes done list entries and level 3 error handling.
|
|
*/
|
|
irqreturn_t asd_hw_isr(int irq, void *dev_id)
|
|
{
|
|
struct asd_ha_struct *asd_ha = dev_id;
|
|
u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
|
|
|
|
if (!chimint)
|
|
return IRQ_NONE;
|
|
|
|
asd_write_reg_dword(asd_ha, CHIMINT, chimint);
|
|
(void) asd_read_reg_dword(asd_ha, CHIMINT);
|
|
|
|
if (chimint & DLAVAIL)
|
|
asd_process_donelist_isr(asd_ha);
|
|
if (chimint & COMINT)
|
|
asd_com_sas_isr(asd_ha);
|
|
if (chimint & DEVINT)
|
|
asd_dch_sas_isr(asd_ha);
|
|
if (chimint & INITERR)
|
|
asd_rbi_exsi_isr(asd_ha);
|
|
if (chimint & HOSTERR)
|
|
asd_hst_pcix_isr(asd_ha);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* ---------- SCB handling ---------- */
|
|
|
|
static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
|
|
gfp_t gfp_flags)
|
|
{
|
|
extern struct kmem_cache *asd_ascb_cache;
|
|
struct asd_seq_data *seq = &asd_ha->seq;
|
|
struct asd_ascb *ascb;
|
|
unsigned long flags;
|
|
|
|
ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
|
|
|
|
if (ascb) {
|
|
ascb->dma_scb.size = sizeof(struct scb);
|
|
ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
|
|
gfp_flags,
|
|
&ascb->dma_scb.dma_handle);
|
|
if (!ascb->dma_scb.vaddr) {
|
|
kmem_cache_free(asd_ascb_cache, ascb);
|
|
return NULL;
|
|
}
|
|
memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
|
|
asd_init_ascb(asd_ha, ascb);
|
|
|
|
spin_lock_irqsave(&seq->tc_index_lock, flags);
|
|
ascb->tc_index = asd_tc_index_get(seq, ascb);
|
|
spin_unlock_irqrestore(&seq->tc_index_lock, flags);
|
|
if (ascb->tc_index == -1)
|
|
goto undo;
|
|
|
|
ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
|
|
}
|
|
|
|
return ascb;
|
|
undo:
|
|
dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
|
|
ascb->dma_scb.dma_handle);
|
|
kmem_cache_free(asd_ascb_cache, ascb);
|
|
ASD_DPRINTK("no index for ascb\n");
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* asd_ascb_alloc_list -- allocate a list of aSCBs
|
|
* @asd_ha: pointer to host adapter structure
|
|
* @num: pointer to integer number of aSCBs
|
|
* @gfp_flags: GFP_ flags.
|
|
*
|
|
* This is the only function which is used to allocate aSCBs.
|
|
* It can allocate one or many. If more than one, then they form
|
|
* a linked list in two ways: by their list field of the ascb struct
|
|
* and by the next_scb field of the scb_header.
|
|
*
|
|
* Returns NULL if no memory was available, else pointer to a list
|
|
* of ascbs. When this function returns, @num would be the number
|
|
* of SCBs which were not able to be allocated, 0 if all requested
|
|
* were able to be allocated.
|
|
*/
|
|
struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
|
|
*asd_ha, int *num,
|
|
gfp_t gfp_flags)
|
|
{
|
|
struct asd_ascb *first = NULL;
|
|
|
|
for ( ; *num > 0; --*num) {
|
|
struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
|
|
|
|
if (!ascb)
|
|
break;
|
|
else if (!first)
|
|
first = ascb;
|
|
else {
|
|
struct asd_ascb *last = list_entry(first->list.prev,
|
|
struct asd_ascb,
|
|
list);
|
|
list_add_tail(&ascb->list, &first->list);
|
|
last->scb->header.next_scb =
|
|
cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
|
|
}
|
|
}
|
|
|
|
return first;
|
|
}
|
|
|
|
/**
|
|
* asd_swap_head_scb -- swap the head scb
|
|
* @asd_ha: pointer to host adapter structure
|
|
* @ascb: pointer to the head of an ascb list
|
|
*
|
|
* The sequencer knows the DMA address of the next SCB to be DMAed to
|
|
* the host adapter, from initialization or from the last list DMAed.
|
|
* seq->next_scb keeps the address of this SCB. The sequencer will
|
|
* DMA to the host adapter this list of SCBs. But the head (first
|
|
* element) of this list is not known to the sequencer. Here we swap
|
|
* the head of the list with the known SCB (memcpy()).
|
|
* Only one memcpy() is required per list so it is in our interest
|
|
* to keep the list of SCB as long as possible so that the ratio
|
|
* of number of memcpy calls to the number of SCB DMA-ed is as small
|
|
* as possible.
|
|
*
|
|
* LOCKING: called with the pending list lock held.
|
|
*/
|
|
static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
|
|
struct asd_ascb *ascb)
|
|
{
|
|
struct asd_seq_data *seq = &asd_ha->seq;
|
|
struct asd_ascb *last = list_entry(ascb->list.prev,
|
|
struct asd_ascb,
|
|
list);
|
|
struct asd_dma_tok t = ascb->dma_scb;
|
|
|
|
memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
|
|
ascb->dma_scb = seq->next_scb;
|
|
ascb->scb = ascb->dma_scb.vaddr;
|
|
seq->next_scb = t;
|
|
last->scb->header.next_scb =
|
|
cpu_to_le64(((u64)seq->next_scb.dma_handle));
|
|
}
|
|
|
|
/**
|
|
* asd_start_timers -- (add and) start timers of SCBs
|
|
* @list: pointer to struct list_head of the scbs
|
|
* @to: timeout in jiffies
|
|
*
|
|
* If an SCB in the @list has no timer function, assign the default
|
|
* one, then start the timer of the SCB. This function is
|
|
* intended to be called from asd_post_ascb_list(), just prior to
|
|
* posting the SCBs to the sequencer.
|
|
*/
|
|
static void asd_start_scb_timers(struct list_head *list)
|
|
{
|
|
struct asd_ascb *ascb;
|
|
list_for_each_entry(ascb, list, list) {
|
|
if (!ascb->uldd_timer) {
|
|
ascb->timer.data = (unsigned long) ascb;
|
|
ascb->timer.function = asd_ascb_timedout;
|
|
ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
|
|
add_timer(&ascb->timer);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
|
|
* @asd_ha: pointer to a host adapter structure
|
|
* @ascb: pointer to the first aSCB in the list
|
|
* @num: number of aSCBs in the list (to be posted)
|
|
*
|
|
* See queueing comment in asd_post_escb_list().
|
|
*
|
|
* Additional note on queuing: In order to minimize the ratio of memcpy()
|
|
* to the number of ascbs sent, we try to batch-send as many ascbs as possible
|
|
* in one go.
|
|
* Two cases are possible:
|
|
* A) can_queue >= num,
|
|
* B) can_queue < num.
|
|
* Case A: we can send the whole batch at once. Increment "pending"
|
|
* in the beginning of this function, when it is checked, in order to
|
|
* eliminate races when this function is called by multiple processes.
|
|
* Case B: should never happen if the managing layer considers
|
|
* lldd_queue_size.
|
|
*/
|
|
int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
|
|
int num)
|
|
{
|
|
unsigned long flags;
|
|
LIST_HEAD(list);
|
|
int can_queue;
|
|
|
|
spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
|
|
can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
|
|
if (can_queue >= num)
|
|
asd_ha->seq.pending += num;
|
|
else
|
|
can_queue = 0;
|
|
|
|
if (!can_queue) {
|
|
spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
|
|
asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
|
|
return -SAS_QUEUE_FULL;
|
|
}
|
|
|
|
asd_swap_head_scb(asd_ha, ascb);
|
|
|
|
__list_add(&list, ascb->list.prev, &ascb->list);
|
|
|
|
asd_start_scb_timers(&list);
|
|
|
|
asd_ha->seq.scbpro += num;
|
|
list_splice_init(&list, asd_ha->seq.pend_q.prev);
|
|
asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
|
|
spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* asd_post_escb_list -- post a list of 1 or more empty scb
|
|
* @asd_ha: pointer to a host adapter structure
|
|
* @ascb: pointer to the first empty SCB in the list
|
|
* @num: number of aSCBs in the list (to be posted)
|
|
*
|
|
* This is essentially the same as asd_post_ascb_list, but we do not
|
|
* increment pending, add those to the pending list or get indexes.
|
|
* See asd_init_escbs() and asd_init_post_escbs().
|
|
*
|
|
* Since sending a list of ascbs is a superset of sending a single
|
|
* ascb, this function exists to generalize this. More specifically,
|
|
* when sending a list of those, we want to do only a _single_
|
|
* memcpy() at swap head, as opposed to for each ascb sent (in the
|
|
* case of sending them one by one). That is, we want to minimize the
|
|
* ratio of memcpy() operations to the number of ascbs sent. The same
|
|
* logic applies to asd_post_ascb_list().
|
|
*/
|
|
int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
|
|
int num)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
|
|
asd_swap_head_scb(asd_ha, ascb);
|
|
asd_ha->seq.scbpro += num;
|
|
asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
|
|
spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ---------- LED ---------- */
|
|
|
|
/**
|
|
* asd_turn_led -- turn on/off an LED
|
|
* @asd_ha: pointer to host adapter structure
|
|
* @phy_id: the PHY id whose LED we want to manupulate
|
|
* @op: 1 to turn on, 0 to turn off
|
|
*/
|
|
void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
|
|
{
|
|
if (phy_id < ASD_MAX_PHYS) {
|
|
u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
|
|
if (op)
|
|
v |= LEDPOL;
|
|
else
|
|
v &= ~LEDPOL;
|
|
asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* asd_control_led -- enable/disable an LED on the board
|
|
* @asd_ha: pointer to host adapter structure
|
|
* @phy_id: integer, the phy id
|
|
* @op: integer, 1 to enable, 0 to disable the LED
|
|
*
|
|
* First we output enable the LED, then we set the source
|
|
* to be an external module.
|
|
*/
|
|
void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
|
|
{
|
|
if (phy_id < ASD_MAX_PHYS) {
|
|
u32 v;
|
|
|
|
v = asd_read_reg_dword(asd_ha, GPIOOER);
|
|
if (op)
|
|
v |= (1 << phy_id);
|
|
else
|
|
v &= ~(1 << phy_id);
|
|
asd_write_reg_dword(asd_ha, GPIOOER, v);
|
|
|
|
v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
|
|
if (op)
|
|
v |= (1 << phy_id);
|
|
else
|
|
v &= ~(1 << phy_id);
|
|
asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
|
|
}
|
|
}
|
|
|
|
/* ---------- PHY enable ---------- */
|
|
|
|
static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
|
|
{
|
|
struct asd_phy *phy = &asd_ha->phys[phy_id];
|
|
|
|
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
|
|
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
|
|
HOTPLUG_DELAY_TIMEOUT);
|
|
|
|
/* Get defaults from manuf. sector */
|
|
/* XXX we need defaults for those in case MS is broken. */
|
|
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
|
|
phy->phy_desc->phy_control_0);
|
|
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
|
|
phy->phy_desc->phy_control_1);
|
|
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
|
|
phy->phy_desc->phy_control_2);
|
|
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
|
|
phy->phy_desc->phy_control_3);
|
|
|
|
asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
|
|
ASD_COMINIT_TIMEOUT);
|
|
|
|
asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
|
|
phy->id_frm_tok->dma_handle);
|
|
|
|
asd_control_led(asd_ha, phy_id, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
|
|
{
|
|
u8 phy_m;
|
|
u8 i;
|
|
int num = 0, k;
|
|
struct asd_ascb *ascb;
|
|
struct asd_ascb *ascb_list;
|
|
|
|
if (!phy_mask) {
|
|
asd_printk("%s called with phy_mask of 0!?\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
for_each_phy(phy_mask, phy_m, i) {
|
|
num++;
|
|
asd_enable_phy(asd_ha, i);
|
|
}
|
|
|
|
k = num;
|
|
ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
|
|
if (!ascb_list) {
|
|
asd_printk("no memory for control phy ascb list\n");
|
|
return -ENOMEM;
|
|
}
|
|
num -= k;
|
|
|
|
ascb = ascb_list;
|
|
for_each_phy(phy_mask, phy_m, i) {
|
|
asd_build_control_phy(ascb, i, ENABLE_PHY);
|
|
ascb = list_entry(ascb->list.next, struct asd_ascb, list);
|
|
}
|
|
ASD_DPRINTK("posting %d control phy scbs\n", num);
|
|
k = asd_post_ascb_list(asd_ha, ascb_list, num);
|
|
if (k)
|
|
asd_ascb_free_list(ascb_list);
|
|
|
|
return k;
|
|
}
|