mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 12:22:42 +00:00
feac470e36
We need to splice COW blocks we've completed in xfs_end_io_direct_write into the data fork before converting unwritten extents. Otherwise xfs_bmapi_write might first allocate blocks for any holes in the data fork, which isn't only not needed but also harmful as it might cause reserved block underruns in the transaction. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
1704 lines
46 KiB
C
1704 lines
46 KiB
C
/*
|
||
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
||
* All Rights Reserved.
|
||
*
|
||
* This program is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU General Public License as
|
||
* published by the Free Software Foundation.
|
||
*
|
||
* This program is distributed in the hope that it would be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; if not, write the Free Software Foundation,
|
||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
*/
|
||
#include "xfs.h"
|
||
#include "xfs_shared.h"
|
||
#include "xfs_format.h"
|
||
#include "xfs_log_format.h"
|
||
#include "xfs_trans_resv.h"
|
||
#include "xfs_mount.h"
|
||
#include "xfs_inode.h"
|
||
#include "xfs_trans.h"
|
||
#include "xfs_inode_item.h"
|
||
#include "xfs_alloc.h"
|
||
#include "xfs_error.h"
|
||
#include "xfs_iomap.h"
|
||
#include "xfs_trace.h"
|
||
#include "xfs_bmap.h"
|
||
#include "xfs_bmap_util.h"
|
||
#include "xfs_bmap_btree.h"
|
||
#include "xfs_reflink.h"
|
||
#include <linux/gfp.h>
|
||
#include <linux/mpage.h>
|
||
#include <linux/pagevec.h>
|
||
#include <linux/writeback.h>
|
||
|
||
/* flags for direct write completions */
|
||
#define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
|
||
#define XFS_DIO_FLAG_APPEND (1 << 1)
|
||
#define XFS_DIO_FLAG_COW (1 << 2)
|
||
|
||
/*
|
||
* structure owned by writepages passed to individual writepage calls
|
||
*/
|
||
struct xfs_writepage_ctx {
|
||
struct xfs_bmbt_irec imap;
|
||
bool imap_valid;
|
||
unsigned int io_type;
|
||
struct xfs_ioend *ioend;
|
||
sector_t last_block;
|
||
};
|
||
|
||
void
|
||
xfs_count_page_state(
|
||
struct page *page,
|
||
int *delalloc,
|
||
int *unwritten)
|
||
{
|
||
struct buffer_head *bh, *head;
|
||
|
||
*delalloc = *unwritten = 0;
|
||
|
||
bh = head = page_buffers(page);
|
||
do {
|
||
if (buffer_unwritten(bh))
|
||
(*unwritten) = 1;
|
||
else if (buffer_delay(bh))
|
||
(*delalloc) = 1;
|
||
} while ((bh = bh->b_this_page) != head);
|
||
}
|
||
|
||
struct block_device *
|
||
xfs_find_bdev_for_inode(
|
||
struct inode *inode)
|
||
{
|
||
struct xfs_inode *ip = XFS_I(inode);
|
||
struct xfs_mount *mp = ip->i_mount;
|
||
|
||
if (XFS_IS_REALTIME_INODE(ip))
|
||
return mp->m_rtdev_targp->bt_bdev;
|
||
else
|
||
return mp->m_ddev_targp->bt_bdev;
|
||
}
|
||
|
||
/*
|
||
* We're now finished for good with this page. Update the page state via the
|
||
* associated buffer_heads, paying attention to the start and end offsets that
|
||
* we need to process on the page.
|
||
*
|
||
* Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
|
||
* buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
|
||
* the page at all, as we may be racing with memory reclaim and it can free both
|
||
* the bufferhead chain and the page as it will see the page as clean and
|
||
* unused.
|
||
*/
|
||
static void
|
||
xfs_finish_page_writeback(
|
||
struct inode *inode,
|
||
struct bio_vec *bvec,
|
||
int error)
|
||
{
|
||
unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
|
||
struct buffer_head *head, *bh, *next;
|
||
unsigned int off = 0;
|
||
unsigned int bsize;
|
||
|
||
ASSERT(bvec->bv_offset < PAGE_SIZE);
|
||
ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
|
||
ASSERT(end < PAGE_SIZE);
|
||
ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
|
||
|
||
bh = head = page_buffers(bvec->bv_page);
|
||
|
||
bsize = bh->b_size;
|
||
do {
|
||
next = bh->b_this_page;
|
||
if (off < bvec->bv_offset)
|
||
goto next_bh;
|
||
if (off > end)
|
||
break;
|
||
bh->b_end_io(bh, !error);
|
||
next_bh:
|
||
off += bsize;
|
||
} while ((bh = next) != head);
|
||
}
|
||
|
||
/*
|
||
* We're now finished for good with this ioend structure. Update the page
|
||
* state, release holds on bios, and finally free up memory. Do not use the
|
||
* ioend after this.
|
||
*/
|
||
STATIC void
|
||
xfs_destroy_ioend(
|
||
struct xfs_ioend *ioend,
|
||
int error)
|
||
{
|
||
struct inode *inode = ioend->io_inode;
|
||
struct bio *last = ioend->io_bio;
|
||
struct bio *bio, *next;
|
||
|
||
for (bio = &ioend->io_inline_bio; bio; bio = next) {
|
||
struct bio_vec *bvec;
|
||
int i;
|
||
|
||
/*
|
||
* For the last bio, bi_private points to the ioend, so we
|
||
* need to explicitly end the iteration here.
|
||
*/
|
||
if (bio == last)
|
||
next = NULL;
|
||
else
|
||
next = bio->bi_private;
|
||
|
||
/* walk each page on bio, ending page IO on them */
|
||
bio_for_each_segment_all(bvec, bio, i)
|
||
xfs_finish_page_writeback(inode, bvec, error);
|
||
|
||
bio_put(bio);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Fast and loose check if this write could update the on-disk inode size.
|
||
*/
|
||
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
|
||
{
|
||
return ioend->io_offset + ioend->io_size >
|
||
XFS_I(ioend->io_inode)->i_d.di_size;
|
||
}
|
||
|
||
STATIC int
|
||
xfs_setfilesize_trans_alloc(
|
||
struct xfs_ioend *ioend)
|
||
{
|
||
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
|
||
struct xfs_trans *tp;
|
||
int error;
|
||
|
||
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
|
||
if (error)
|
||
return error;
|
||
|
||
ioend->io_append_trans = tp;
|
||
|
||
/*
|
||
* We may pass freeze protection with a transaction. So tell lockdep
|
||
* we released it.
|
||
*/
|
||
__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
|
||
/*
|
||
* We hand off the transaction to the completion thread now, so
|
||
* clear the flag here.
|
||
*/
|
||
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Update on-disk file size now that data has been written to disk.
|
||
*/
|
||
STATIC int
|
||
__xfs_setfilesize(
|
||
struct xfs_inode *ip,
|
||
struct xfs_trans *tp,
|
||
xfs_off_t offset,
|
||
size_t size)
|
||
{
|
||
xfs_fsize_t isize;
|
||
|
||
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
||
isize = xfs_new_eof(ip, offset + size);
|
||
if (!isize) {
|
||
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
||
xfs_trans_cancel(tp);
|
||
return 0;
|
||
}
|
||
|
||
trace_xfs_setfilesize(ip, offset, size);
|
||
|
||
ip->i_d.di_size = isize;
|
||
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
||
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
||
|
||
return xfs_trans_commit(tp);
|
||
}
|
||
|
||
int
|
||
xfs_setfilesize(
|
||
struct xfs_inode *ip,
|
||
xfs_off_t offset,
|
||
size_t size)
|
||
{
|
||
struct xfs_mount *mp = ip->i_mount;
|
||
struct xfs_trans *tp;
|
||
int error;
|
||
|
||
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
|
||
if (error)
|
||
return error;
|
||
|
||
return __xfs_setfilesize(ip, tp, offset, size);
|
||
}
|
||
|
||
STATIC int
|
||
xfs_setfilesize_ioend(
|
||
struct xfs_ioend *ioend,
|
||
int error)
|
||
{
|
||
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
||
struct xfs_trans *tp = ioend->io_append_trans;
|
||
|
||
/*
|
||
* The transaction may have been allocated in the I/O submission thread,
|
||
* thus we need to mark ourselves as being in a transaction manually.
|
||
* Similarly for freeze protection.
|
||
*/
|
||
current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
||
__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
|
||
|
||
/* we abort the update if there was an IO error */
|
||
if (error) {
|
||
xfs_trans_cancel(tp);
|
||
return error;
|
||
}
|
||
|
||
return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
|
||
}
|
||
|
||
/*
|
||
* IO write completion.
|
||
*/
|
||
STATIC void
|
||
xfs_end_io(
|
||
struct work_struct *work)
|
||
{
|
||
struct xfs_ioend *ioend =
|
||
container_of(work, struct xfs_ioend, io_work);
|
||
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
||
int error = ioend->io_bio->bi_error;
|
||
|
||
/*
|
||
* Set an error if the mount has shut down and proceed with end I/O
|
||
* processing so it can perform whatever cleanups are necessary.
|
||
*/
|
||
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
||
error = -EIO;
|
||
|
||
/*
|
||
* For a CoW extent, we need to move the mapping from the CoW fork
|
||
* to the data fork. If instead an error happened, just dump the
|
||
* new blocks.
|
||
*/
|
||
if (ioend->io_type == XFS_IO_COW) {
|
||
if (error)
|
||
goto done;
|
||
if (ioend->io_bio->bi_error) {
|
||
error = xfs_reflink_cancel_cow_range(ip,
|
||
ioend->io_offset, ioend->io_size);
|
||
goto done;
|
||
}
|
||
error = xfs_reflink_end_cow(ip, ioend->io_offset,
|
||
ioend->io_size);
|
||
if (error)
|
||
goto done;
|
||
}
|
||
|
||
/*
|
||
* For unwritten extents we need to issue transactions to convert a
|
||
* range to normal written extens after the data I/O has finished.
|
||
* Detecting and handling completion IO errors is done individually
|
||
* for each case as different cleanup operations need to be performed
|
||
* on error.
|
||
*/
|
||
if (ioend->io_type == XFS_IO_UNWRITTEN) {
|
||
if (error)
|
||
goto done;
|
||
error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
|
||
ioend->io_size);
|
||
} else if (ioend->io_append_trans) {
|
||
error = xfs_setfilesize_ioend(ioend, error);
|
||
} else {
|
||
ASSERT(!xfs_ioend_is_append(ioend) ||
|
||
ioend->io_type == XFS_IO_COW);
|
||
}
|
||
|
||
done:
|
||
xfs_destroy_ioend(ioend, error);
|
||
}
|
||
|
||
STATIC void
|
||
xfs_end_bio(
|
||
struct bio *bio)
|
||
{
|
||
struct xfs_ioend *ioend = bio->bi_private;
|
||
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
|
||
|
||
if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
|
||
queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
|
||
else if (ioend->io_append_trans)
|
||
queue_work(mp->m_data_workqueue, &ioend->io_work);
|
||
else
|
||
xfs_destroy_ioend(ioend, bio->bi_error);
|
||
}
|
||
|
||
STATIC int
|
||
xfs_map_blocks(
|
||
struct inode *inode,
|
||
loff_t offset,
|
||
struct xfs_bmbt_irec *imap,
|
||
int type)
|
||
{
|
||
struct xfs_inode *ip = XFS_I(inode);
|
||
struct xfs_mount *mp = ip->i_mount;
|
||
ssize_t count = 1 << inode->i_blkbits;
|
||
xfs_fileoff_t offset_fsb, end_fsb;
|
||
int error = 0;
|
||
int bmapi_flags = XFS_BMAPI_ENTIRE;
|
||
int nimaps = 1;
|
||
|
||
if (XFS_FORCED_SHUTDOWN(mp))
|
||
return -EIO;
|
||
|
||
ASSERT(type != XFS_IO_COW);
|
||
if (type == XFS_IO_UNWRITTEN)
|
||
bmapi_flags |= XFS_BMAPI_IGSTATE;
|
||
|
||
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
||
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
||
(ip->i_df.if_flags & XFS_IFEXTENTS));
|
||
ASSERT(offset <= mp->m_super->s_maxbytes);
|
||
|
||
if (offset + count > mp->m_super->s_maxbytes)
|
||
count = mp->m_super->s_maxbytes - offset;
|
||
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
|
||
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
||
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
|
||
imap, &nimaps, bmapi_flags);
|
||
/*
|
||
* Truncate an overwrite extent if there's a pending CoW
|
||
* reservation before the end of this extent. This forces us
|
||
* to come back to writepage to take care of the CoW.
|
||
*/
|
||
if (nimaps && type == XFS_IO_OVERWRITE)
|
||
xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
|
||
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
||
|
||
if (error)
|
||
return error;
|
||
|
||
if (type == XFS_IO_DELALLOC &&
|
||
(!nimaps || isnullstartblock(imap->br_startblock))) {
|
||
error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
|
||
imap);
|
||
if (!error)
|
||
trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
|
||
return error;
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
if (type == XFS_IO_UNWRITTEN) {
|
||
ASSERT(nimaps);
|
||
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
||
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
||
}
|
||
#endif
|
||
if (nimaps)
|
||
trace_xfs_map_blocks_found(ip, offset, count, type, imap);
|
||
return 0;
|
||
}
|
||
|
||
STATIC bool
|
||
xfs_imap_valid(
|
||
struct inode *inode,
|
||
struct xfs_bmbt_irec *imap,
|
||
xfs_off_t offset)
|
||
{
|
||
offset >>= inode->i_blkbits;
|
||
|
||
return offset >= imap->br_startoff &&
|
||
offset < imap->br_startoff + imap->br_blockcount;
|
||
}
|
||
|
||
STATIC void
|
||
xfs_start_buffer_writeback(
|
||
struct buffer_head *bh)
|
||
{
|
||
ASSERT(buffer_mapped(bh));
|
||
ASSERT(buffer_locked(bh));
|
||
ASSERT(!buffer_delay(bh));
|
||
ASSERT(!buffer_unwritten(bh));
|
||
|
||
mark_buffer_async_write(bh);
|
||
set_buffer_uptodate(bh);
|
||
clear_buffer_dirty(bh);
|
||
}
|
||
|
||
STATIC void
|
||
xfs_start_page_writeback(
|
||
struct page *page,
|
||
int clear_dirty)
|
||
{
|
||
ASSERT(PageLocked(page));
|
||
ASSERT(!PageWriteback(page));
|
||
|
||
/*
|
||
* if the page was not fully cleaned, we need to ensure that the higher
|
||
* layers come back to it correctly. That means we need to keep the page
|
||
* dirty, and for WB_SYNC_ALL writeback we need to ensure the
|
||
* PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
|
||
* write this page in this writeback sweep will be made.
|
||
*/
|
||
if (clear_dirty) {
|
||
clear_page_dirty_for_io(page);
|
||
set_page_writeback(page);
|
||
} else
|
||
set_page_writeback_keepwrite(page);
|
||
|
||
unlock_page(page);
|
||
}
|
||
|
||
static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
|
||
{
|
||
return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
|
||
}
|
||
|
||
/*
|
||
* Submit the bio for an ioend. We are passed an ioend with a bio attached to
|
||
* it, and we submit that bio. The ioend may be used for multiple bio
|
||
* submissions, so we only want to allocate an append transaction for the ioend
|
||
* once. In the case of multiple bio submission, each bio will take an IO
|
||
* reference to the ioend to ensure that the ioend completion is only done once
|
||
* all bios have been submitted and the ioend is really done.
|
||
*
|
||
* If @fail is non-zero, it means that we have a situation where some part of
|
||
* the submission process has failed after we have marked paged for writeback
|
||
* and unlocked them. In this situation, we need to fail the bio and ioend
|
||
* rather than submit it to IO. This typically only happens on a filesystem
|
||
* shutdown.
|
||
*/
|
||
STATIC int
|
||
xfs_submit_ioend(
|
||
struct writeback_control *wbc,
|
||
struct xfs_ioend *ioend,
|
||
int status)
|
||
{
|
||
/* Reserve log space if we might write beyond the on-disk inode size. */
|
||
if (!status &&
|
||
ioend->io_type != XFS_IO_UNWRITTEN &&
|
||
xfs_ioend_is_append(ioend) &&
|
||
!ioend->io_append_trans)
|
||
status = xfs_setfilesize_trans_alloc(ioend);
|
||
|
||
ioend->io_bio->bi_private = ioend;
|
||
ioend->io_bio->bi_end_io = xfs_end_bio;
|
||
bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
|
||
(wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
|
||
/*
|
||
* If we are failing the IO now, just mark the ioend with an
|
||
* error and finish it. This will run IO completion immediately
|
||
* as there is only one reference to the ioend at this point in
|
||
* time.
|
||
*/
|
||
if (status) {
|
||
ioend->io_bio->bi_error = status;
|
||
bio_endio(ioend->io_bio);
|
||
return status;
|
||
}
|
||
|
||
submit_bio(ioend->io_bio);
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
xfs_init_bio_from_bh(
|
||
struct bio *bio,
|
||
struct buffer_head *bh)
|
||
{
|
||
bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
|
||
bio->bi_bdev = bh->b_bdev;
|
||
}
|
||
|
||
static struct xfs_ioend *
|
||
xfs_alloc_ioend(
|
||
struct inode *inode,
|
||
unsigned int type,
|
||
xfs_off_t offset,
|
||
struct buffer_head *bh)
|
||
{
|
||
struct xfs_ioend *ioend;
|
||
struct bio *bio;
|
||
|
||
bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
|
||
xfs_init_bio_from_bh(bio, bh);
|
||
|
||
ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
|
||
INIT_LIST_HEAD(&ioend->io_list);
|
||
ioend->io_type = type;
|
||
ioend->io_inode = inode;
|
||
ioend->io_size = 0;
|
||
ioend->io_offset = offset;
|
||
INIT_WORK(&ioend->io_work, xfs_end_io);
|
||
ioend->io_append_trans = NULL;
|
||
ioend->io_bio = bio;
|
||
return ioend;
|
||
}
|
||
|
||
/*
|
||
* Allocate a new bio, and chain the old bio to the new one.
|
||
*
|
||
* Note that we have to do perform the chaining in this unintuitive order
|
||
* so that the bi_private linkage is set up in the right direction for the
|
||
* traversal in xfs_destroy_ioend().
|
||
*/
|
||
static void
|
||
xfs_chain_bio(
|
||
struct xfs_ioend *ioend,
|
||
struct writeback_control *wbc,
|
||
struct buffer_head *bh)
|
||
{
|
||
struct bio *new;
|
||
|
||
new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
|
||
xfs_init_bio_from_bh(new, bh);
|
||
|
||
bio_chain(ioend->io_bio, new);
|
||
bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
|
||
bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
|
||
(wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
|
||
submit_bio(ioend->io_bio);
|
||
ioend->io_bio = new;
|
||
}
|
||
|
||
/*
|
||
* Test to see if we've been building up a completion structure for
|
||
* earlier buffers -- if so, we try to append to this ioend if we
|
||
* can, otherwise we finish off any current ioend and start another.
|
||
* Return the ioend we finished off so that the caller can submit it
|
||
* once it has finished processing the dirty page.
|
||
*/
|
||
STATIC void
|
||
xfs_add_to_ioend(
|
||
struct inode *inode,
|
||
struct buffer_head *bh,
|
||
xfs_off_t offset,
|
||
struct xfs_writepage_ctx *wpc,
|
||
struct writeback_control *wbc,
|
||
struct list_head *iolist)
|
||
{
|
||
if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
|
||
bh->b_blocknr != wpc->last_block + 1 ||
|
||
offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
|
||
if (wpc->ioend)
|
||
list_add(&wpc->ioend->io_list, iolist);
|
||
wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
|
||
}
|
||
|
||
/*
|
||
* If the buffer doesn't fit into the bio we need to allocate a new
|
||
* one. This shouldn't happen more than once for a given buffer.
|
||
*/
|
||
while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
|
||
xfs_chain_bio(wpc->ioend, wbc, bh);
|
||
|
||
wpc->ioend->io_size += bh->b_size;
|
||
wpc->last_block = bh->b_blocknr;
|
||
xfs_start_buffer_writeback(bh);
|
||
}
|
||
|
||
STATIC void
|
||
xfs_map_buffer(
|
||
struct inode *inode,
|
||
struct buffer_head *bh,
|
||
struct xfs_bmbt_irec *imap,
|
||
xfs_off_t offset)
|
||
{
|
||
sector_t bn;
|
||
struct xfs_mount *m = XFS_I(inode)->i_mount;
|
||
xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
|
||
xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
|
||
|
||
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
||
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
||
|
||
bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
|
||
((offset - iomap_offset) >> inode->i_blkbits);
|
||
|
||
ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
|
||
|
||
bh->b_blocknr = bn;
|
||
set_buffer_mapped(bh);
|
||
}
|
||
|
||
STATIC void
|
||
xfs_map_at_offset(
|
||
struct inode *inode,
|
||
struct buffer_head *bh,
|
||
struct xfs_bmbt_irec *imap,
|
||
xfs_off_t offset)
|
||
{
|
||
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
||
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
||
|
||
xfs_map_buffer(inode, bh, imap, offset);
|
||
set_buffer_mapped(bh);
|
||
clear_buffer_delay(bh);
|
||
clear_buffer_unwritten(bh);
|
||
}
|
||
|
||
/*
|
||
* Test if a given page contains at least one buffer of a given @type.
|
||
* If @check_all_buffers is true, then we walk all the buffers in the page to
|
||
* try to find one of the type passed in. If it is not set, then the caller only
|
||
* needs to check the first buffer on the page for a match.
|
||
*/
|
||
STATIC bool
|
||
xfs_check_page_type(
|
||
struct page *page,
|
||
unsigned int type,
|
||
bool check_all_buffers)
|
||
{
|
||
struct buffer_head *bh;
|
||
struct buffer_head *head;
|
||
|
||
if (PageWriteback(page))
|
||
return false;
|
||
if (!page->mapping)
|
||
return false;
|
||
if (!page_has_buffers(page))
|
||
return false;
|
||
|
||
bh = head = page_buffers(page);
|
||
do {
|
||
if (buffer_unwritten(bh)) {
|
||
if (type == XFS_IO_UNWRITTEN)
|
||
return true;
|
||
} else if (buffer_delay(bh)) {
|
||
if (type == XFS_IO_DELALLOC)
|
||
return true;
|
||
} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
|
||
if (type == XFS_IO_OVERWRITE)
|
||
return true;
|
||
}
|
||
|
||
/* If we are only checking the first buffer, we are done now. */
|
||
if (!check_all_buffers)
|
||
break;
|
||
} while ((bh = bh->b_this_page) != head);
|
||
|
||
return false;
|
||
}
|
||
|
||
STATIC void
|
||
xfs_vm_invalidatepage(
|
||
struct page *page,
|
||
unsigned int offset,
|
||
unsigned int length)
|
||
{
|
||
trace_xfs_invalidatepage(page->mapping->host, page, offset,
|
||
length);
|
||
block_invalidatepage(page, offset, length);
|
||
}
|
||
|
||
/*
|
||
* If the page has delalloc buffers on it, we need to punch them out before we
|
||
* invalidate the page. If we don't, we leave a stale delalloc mapping on the
|
||
* inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
|
||
* is done on that same region - the delalloc extent is returned when none is
|
||
* supposed to be there.
|
||
*
|
||
* We prevent this by truncating away the delalloc regions on the page before
|
||
* invalidating it. Because they are delalloc, we can do this without needing a
|
||
* transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
|
||
* truncation without a transaction as there is no space left for block
|
||
* reservation (typically why we see a ENOSPC in writeback).
|
||
*
|
||
* This is not a performance critical path, so for now just do the punching a
|
||
* buffer head at a time.
|
||
*/
|
||
STATIC void
|
||
xfs_aops_discard_page(
|
||
struct page *page)
|
||
{
|
||
struct inode *inode = page->mapping->host;
|
||
struct xfs_inode *ip = XFS_I(inode);
|
||
struct buffer_head *bh, *head;
|
||
loff_t offset = page_offset(page);
|
||
|
||
if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
|
||
goto out_invalidate;
|
||
|
||
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
||
goto out_invalidate;
|
||
|
||
xfs_alert(ip->i_mount,
|
||
"page discard on page %p, inode 0x%llx, offset %llu.",
|
||
page, ip->i_ino, offset);
|
||
|
||
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
||
bh = head = page_buffers(page);
|
||
do {
|
||
int error;
|
||
xfs_fileoff_t start_fsb;
|
||
|
||
if (!buffer_delay(bh))
|
||
goto next_buffer;
|
||
|
||
start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
|
||
error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
|
||
if (error) {
|
||
/* something screwed, just bail */
|
||
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
||
xfs_alert(ip->i_mount,
|
||
"page discard unable to remove delalloc mapping.");
|
||
}
|
||
break;
|
||
}
|
||
next_buffer:
|
||
offset += 1 << inode->i_blkbits;
|
||
|
||
} while ((bh = bh->b_this_page) != head);
|
||
|
||
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
||
out_invalidate:
|
||
xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
|
||
return;
|
||
}
|
||
|
||
static int
|
||
xfs_map_cow(
|
||
struct xfs_writepage_ctx *wpc,
|
||
struct inode *inode,
|
||
loff_t offset,
|
||
unsigned int *new_type)
|
||
{
|
||
struct xfs_inode *ip = XFS_I(inode);
|
||
struct xfs_bmbt_irec imap;
|
||
bool is_cow = false, need_alloc = false;
|
||
int error;
|
||
|
||
/*
|
||
* If we already have a valid COW mapping keep using it.
|
||
*/
|
||
if (wpc->io_type == XFS_IO_COW) {
|
||
wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
|
||
if (wpc->imap_valid) {
|
||
*new_type = XFS_IO_COW;
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Else we need to check if there is a COW mapping at this offset.
|
||
*/
|
||
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
||
is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap, &need_alloc);
|
||
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
||
|
||
if (!is_cow)
|
||
return 0;
|
||
|
||
/*
|
||
* And if the COW mapping has a delayed extent here we need to
|
||
* allocate real space for it now.
|
||
*/
|
||
if (need_alloc) {
|
||
error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
|
||
&imap);
|
||
if (error)
|
||
return error;
|
||
}
|
||
|
||
wpc->io_type = *new_type = XFS_IO_COW;
|
||
wpc->imap_valid = true;
|
||
wpc->imap = imap;
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* We implement an immediate ioend submission policy here to avoid needing to
|
||
* chain multiple ioends and hence nest mempool allocations which can violate
|
||
* forward progress guarantees we need to provide. The current ioend we are
|
||
* adding buffers to is cached on the writepage context, and if the new buffer
|
||
* does not append to the cached ioend it will create a new ioend and cache that
|
||
* instead.
|
||
*
|
||
* If a new ioend is created and cached, the old ioend is returned and queued
|
||
* locally for submission once the entire page is processed or an error has been
|
||
* detected. While ioends are submitted immediately after they are completed,
|
||
* batching optimisations are provided by higher level block plugging.
|
||
*
|
||
* At the end of a writeback pass, there will be a cached ioend remaining on the
|
||
* writepage context that the caller will need to submit.
|
||
*/
|
||
static int
|
||
xfs_writepage_map(
|
||
struct xfs_writepage_ctx *wpc,
|
||
struct writeback_control *wbc,
|
||
struct inode *inode,
|
||
struct page *page,
|
||
loff_t offset,
|
||
__uint64_t end_offset)
|
||
{
|
||
LIST_HEAD(submit_list);
|
||
struct xfs_ioend *ioend, *next;
|
||
struct buffer_head *bh, *head;
|
||
ssize_t len = 1 << inode->i_blkbits;
|
||
int error = 0;
|
||
int count = 0;
|
||
int uptodate = 1;
|
||
unsigned int new_type;
|
||
|
||
bh = head = page_buffers(page);
|
||
offset = page_offset(page);
|
||
do {
|
||
if (offset >= end_offset)
|
||
break;
|
||
if (!buffer_uptodate(bh))
|
||
uptodate = 0;
|
||
|
||
/*
|
||
* set_page_dirty dirties all buffers in a page, independent
|
||
* of their state. The dirty state however is entirely
|
||
* meaningless for holes (!mapped && uptodate), so skip
|
||
* buffers covering holes here.
|
||
*/
|
||
if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
|
||
wpc->imap_valid = false;
|
||
continue;
|
||
}
|
||
|
||
if (buffer_unwritten(bh))
|
||
new_type = XFS_IO_UNWRITTEN;
|
||
else if (buffer_delay(bh))
|
||
new_type = XFS_IO_DELALLOC;
|
||
else if (buffer_uptodate(bh))
|
||
new_type = XFS_IO_OVERWRITE;
|
||
else {
|
||
if (PageUptodate(page))
|
||
ASSERT(buffer_mapped(bh));
|
||
/*
|
||
* This buffer is not uptodate and will not be
|
||
* written to disk. Ensure that we will put any
|
||
* subsequent writeable buffers into a new
|
||
* ioend.
|
||
*/
|
||
wpc->imap_valid = false;
|
||
continue;
|
||
}
|
||
|
||
if (xfs_is_reflink_inode(XFS_I(inode))) {
|
||
error = xfs_map_cow(wpc, inode, offset, &new_type);
|
||
if (error)
|
||
goto out;
|
||
}
|
||
|
||
if (wpc->io_type != new_type) {
|
||
wpc->io_type = new_type;
|
||
wpc->imap_valid = false;
|
||
}
|
||
|
||
if (wpc->imap_valid)
|
||
wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
|
||
offset);
|
||
if (!wpc->imap_valid) {
|
||
error = xfs_map_blocks(inode, offset, &wpc->imap,
|
||
wpc->io_type);
|
||
if (error)
|
||
goto out;
|
||
wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
|
||
offset);
|
||
}
|
||
if (wpc->imap_valid) {
|
||
lock_buffer(bh);
|
||
if (wpc->io_type != XFS_IO_OVERWRITE)
|
||
xfs_map_at_offset(inode, bh, &wpc->imap, offset);
|
||
xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
|
||
count++;
|
||
}
|
||
|
||
} while (offset += len, ((bh = bh->b_this_page) != head));
|
||
|
||
if (uptodate && bh == head)
|
||
SetPageUptodate(page);
|
||
|
||
ASSERT(wpc->ioend || list_empty(&submit_list));
|
||
|
||
out:
|
||
/*
|
||
* On error, we have to fail the ioend here because we have locked
|
||
* buffers in the ioend. If we don't do this, we'll deadlock
|
||
* invalidating the page as that tries to lock the buffers on the page.
|
||
* Also, because we may have set pages under writeback, we have to make
|
||
* sure we run IO completion to mark the error state of the IO
|
||
* appropriately, so we can't cancel the ioend directly here. That means
|
||
* we have to mark this page as under writeback if we included any
|
||
* buffers from it in the ioend chain so that completion treats it
|
||
* correctly.
|
||
*
|
||
* If we didn't include the page in the ioend, the on error we can
|
||
* simply discard and unlock it as there are no other users of the page
|
||
* or it's buffers right now. The caller will still need to trigger
|
||
* submission of outstanding ioends on the writepage context so they are
|
||
* treated correctly on error.
|
||
*/
|
||
if (count) {
|
||
xfs_start_page_writeback(page, !error);
|
||
|
||
/*
|
||
* Preserve the original error if there was one, otherwise catch
|
||
* submission errors here and propagate into subsequent ioend
|
||
* submissions.
|
||
*/
|
||
list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
|
||
int error2;
|
||
|
||
list_del_init(&ioend->io_list);
|
||
error2 = xfs_submit_ioend(wbc, ioend, error);
|
||
if (error2 && !error)
|
||
error = error2;
|
||
}
|
||
} else if (error) {
|
||
xfs_aops_discard_page(page);
|
||
ClearPageUptodate(page);
|
||
unlock_page(page);
|
||
} else {
|
||
/*
|
||
* We can end up here with no error and nothing to write if we
|
||
* race with a partial page truncate on a sub-page block sized
|
||
* filesystem. In that case we need to mark the page clean.
|
||
*/
|
||
xfs_start_page_writeback(page, 1);
|
||
end_page_writeback(page);
|
||
}
|
||
|
||
mapping_set_error(page->mapping, error);
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
* Write out a dirty page.
|
||
*
|
||
* For delalloc space on the page we need to allocate space and flush it.
|
||
* For unwritten space on the page we need to start the conversion to
|
||
* regular allocated space.
|
||
* For any other dirty buffer heads on the page we should flush them.
|
||
*/
|
||
STATIC int
|
||
xfs_do_writepage(
|
||
struct page *page,
|
||
struct writeback_control *wbc,
|
||
void *data)
|
||
{
|
||
struct xfs_writepage_ctx *wpc = data;
|
||
struct inode *inode = page->mapping->host;
|
||
loff_t offset;
|
||
__uint64_t end_offset;
|
||
pgoff_t end_index;
|
||
|
||
trace_xfs_writepage(inode, page, 0, 0);
|
||
|
||
ASSERT(page_has_buffers(page));
|
||
|
||
/*
|
||
* Refuse to write the page out if we are called from reclaim context.
|
||
*
|
||
* This avoids stack overflows when called from deeply used stacks in
|
||
* random callers for direct reclaim or memcg reclaim. We explicitly
|
||
* allow reclaim from kswapd as the stack usage there is relatively low.
|
||
*
|
||
* This should never happen except in the case of a VM regression so
|
||
* warn about it.
|
||
*/
|
||
if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
|
||
PF_MEMALLOC))
|
||
goto redirty;
|
||
|
||
/*
|
||
* Given that we do not allow direct reclaim to call us, we should
|
||
* never be called while in a filesystem transaction.
|
||
*/
|
||
if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
|
||
goto redirty;
|
||
|
||
/*
|
||
* Is this page beyond the end of the file?
|
||
*
|
||
* The page index is less than the end_index, adjust the end_offset
|
||
* to the highest offset that this page should represent.
|
||
* -----------------------------------------------------
|
||
* | file mapping | <EOF> |
|
||
* -----------------------------------------------------
|
||
* | Page ... | Page N-2 | Page N-1 | Page N | |
|
||
* ^--------------------------------^----------|--------
|
||
* | desired writeback range | see else |
|
||
* ---------------------------------^------------------|
|
||
*/
|
||
offset = i_size_read(inode);
|
||
end_index = offset >> PAGE_SHIFT;
|
||
if (page->index < end_index)
|
||
end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
|
||
else {
|
||
/*
|
||
* Check whether the page to write out is beyond or straddles
|
||
* i_size or not.
|
||
* -------------------------------------------------------
|
||
* | file mapping | <EOF> |
|
||
* -------------------------------------------------------
|
||
* | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
|
||
* ^--------------------------------^-----------|---------
|
||
* | | Straddles |
|
||
* ---------------------------------^-----------|--------|
|
||
*/
|
||
unsigned offset_into_page = offset & (PAGE_SIZE - 1);
|
||
|
||
/*
|
||
* Skip the page if it is fully outside i_size, e.g. due to a
|
||
* truncate operation that is in progress. We must redirty the
|
||
* page so that reclaim stops reclaiming it. Otherwise
|
||
* xfs_vm_releasepage() is called on it and gets confused.
|
||
*
|
||
* Note that the end_index is unsigned long, it would overflow
|
||
* if the given offset is greater than 16TB on 32-bit system
|
||
* and if we do check the page is fully outside i_size or not
|
||
* via "if (page->index >= end_index + 1)" as "end_index + 1"
|
||
* will be evaluated to 0. Hence this page will be redirtied
|
||
* and be written out repeatedly which would result in an
|
||
* infinite loop, the user program that perform this operation
|
||
* will hang. Instead, we can verify this situation by checking
|
||
* if the page to write is totally beyond the i_size or if it's
|
||
* offset is just equal to the EOF.
|
||
*/
|
||
if (page->index > end_index ||
|
||
(page->index == end_index && offset_into_page == 0))
|
||
goto redirty;
|
||
|
||
/*
|
||
* The page straddles i_size. It must be zeroed out on each
|
||
* and every writepage invocation because it may be mmapped.
|
||
* "A file is mapped in multiples of the page size. For a file
|
||
* that is not a multiple of the page size, the remaining
|
||
* memory is zeroed when mapped, and writes to that region are
|
||
* not written out to the file."
|
||
*/
|
||
zero_user_segment(page, offset_into_page, PAGE_SIZE);
|
||
|
||
/* Adjust the end_offset to the end of file */
|
||
end_offset = offset;
|
||
}
|
||
|
||
return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
|
||
|
||
redirty:
|
||
redirty_page_for_writepage(wbc, page);
|
||
unlock_page(page);
|
||
return 0;
|
||
}
|
||
|
||
STATIC int
|
||
xfs_vm_writepage(
|
||
struct page *page,
|
||
struct writeback_control *wbc)
|
||
{
|
||
struct xfs_writepage_ctx wpc = {
|
||
.io_type = XFS_IO_INVALID,
|
||
};
|
||
int ret;
|
||
|
||
ret = xfs_do_writepage(page, wbc, &wpc);
|
||
if (wpc.ioend)
|
||
ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
|
||
return ret;
|
||
}
|
||
|
||
STATIC int
|
||
xfs_vm_writepages(
|
||
struct address_space *mapping,
|
||
struct writeback_control *wbc)
|
||
{
|
||
struct xfs_writepage_ctx wpc = {
|
||
.io_type = XFS_IO_INVALID,
|
||
};
|
||
int ret;
|
||
|
||
xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
|
||
if (dax_mapping(mapping))
|
||
return dax_writeback_mapping_range(mapping,
|
||
xfs_find_bdev_for_inode(mapping->host), wbc);
|
||
|
||
ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
|
||
if (wpc.ioend)
|
||
ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* Called to move a page into cleanable state - and from there
|
||
* to be released. The page should already be clean. We always
|
||
* have buffer heads in this call.
|
||
*
|
||
* Returns 1 if the page is ok to release, 0 otherwise.
|
||
*/
|
||
STATIC int
|
||
xfs_vm_releasepage(
|
||
struct page *page,
|
||
gfp_t gfp_mask)
|
||
{
|
||
int delalloc, unwritten;
|
||
|
||
trace_xfs_releasepage(page->mapping->host, page, 0, 0);
|
||
|
||
/*
|
||
* mm accommodates an old ext3 case where clean pages might not have had
|
||
* the dirty bit cleared. Thus, it can send actual dirty pages to
|
||
* ->releasepage() via shrink_active_list(). Conversely,
|
||
* block_invalidatepage() can send pages that are still marked dirty
|
||
* but otherwise have invalidated buffers.
|
||
*
|
||
* We've historically freed buffers on the latter. Instead, quietly
|
||
* filter out all dirty pages to avoid spurious buffer state warnings.
|
||
* This can likely be removed once shrink_active_list() is fixed.
|
||
*/
|
||
if (PageDirty(page))
|
||
return 0;
|
||
|
||
xfs_count_page_state(page, &delalloc, &unwritten);
|
||
|
||
if (WARN_ON_ONCE(delalloc))
|
||
return 0;
|
||
if (WARN_ON_ONCE(unwritten))
|
||
return 0;
|
||
|
||
return try_to_free_buffers(page);
|
||
}
|
||
|
||
/*
|
||
* When we map a DIO buffer, we may need to pass flags to
|
||
* xfs_end_io_direct_write to tell it what kind of write IO we are doing.
|
||
*
|
||
* Note that for DIO, an IO to the highest supported file block offset (i.e.
|
||
* 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
|
||
* bit variable. Hence if we see this overflow, we have to assume that the IO is
|
||
* extending the file size. We won't know for sure until IO completion is run
|
||
* and the actual max write offset is communicated to the IO completion
|
||
* routine.
|
||
*/
|
||
static void
|
||
xfs_map_direct(
|
||
struct inode *inode,
|
||
struct buffer_head *bh_result,
|
||
struct xfs_bmbt_irec *imap,
|
||
xfs_off_t offset,
|
||
bool is_cow)
|
||
{
|
||
uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
|
||
xfs_off_t size = bh_result->b_size;
|
||
|
||
trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
|
||
ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : is_cow ? XFS_IO_COW :
|
||
XFS_IO_OVERWRITE, imap);
|
||
|
||
if (ISUNWRITTEN(imap)) {
|
||
*flags |= XFS_DIO_FLAG_UNWRITTEN;
|
||
set_buffer_defer_completion(bh_result);
|
||
} else if (is_cow) {
|
||
*flags |= XFS_DIO_FLAG_COW;
|
||
set_buffer_defer_completion(bh_result);
|
||
}
|
||
if (offset + size > i_size_read(inode) || offset + size < 0) {
|
||
*flags |= XFS_DIO_FLAG_APPEND;
|
||
set_buffer_defer_completion(bh_result);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* If this is O_DIRECT or the mpage code calling tell them how large the mapping
|
||
* is, so that we can avoid repeated get_blocks calls.
|
||
*
|
||
* If the mapping spans EOF, then we have to break the mapping up as the mapping
|
||
* for blocks beyond EOF must be marked new so that sub block regions can be
|
||
* correctly zeroed. We can't do this for mappings within EOF unless the mapping
|
||
* was just allocated or is unwritten, otherwise the callers would overwrite
|
||
* existing data with zeros. Hence we have to split the mapping into a range up
|
||
* to and including EOF, and a second mapping for beyond EOF.
|
||
*/
|
||
static void
|
||
xfs_map_trim_size(
|
||
struct inode *inode,
|
||
sector_t iblock,
|
||
struct buffer_head *bh_result,
|
||
struct xfs_bmbt_irec *imap,
|
||
xfs_off_t offset,
|
||
ssize_t size)
|
||
{
|
||
xfs_off_t mapping_size;
|
||
|
||
mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
|
||
mapping_size <<= inode->i_blkbits;
|
||
|
||
ASSERT(mapping_size > 0);
|
||
if (mapping_size > size)
|
||
mapping_size = size;
|
||
if (offset < i_size_read(inode) &&
|
||
offset + mapping_size >= i_size_read(inode)) {
|
||
/* limit mapping to block that spans EOF */
|
||
mapping_size = roundup_64(i_size_read(inode) - offset,
|
||
1 << inode->i_blkbits);
|
||
}
|
||
if (mapping_size > LONG_MAX)
|
||
mapping_size = LONG_MAX;
|
||
|
||
bh_result->b_size = mapping_size;
|
||
}
|
||
|
||
/* Bounce unaligned directio writes to the page cache. */
|
||
static int
|
||
xfs_bounce_unaligned_dio_write(
|
||
struct xfs_inode *ip,
|
||
xfs_fileoff_t offset_fsb,
|
||
struct xfs_bmbt_irec *imap)
|
||
{
|
||
struct xfs_bmbt_irec irec;
|
||
xfs_fileoff_t delta;
|
||
bool shared;
|
||
bool x;
|
||
int error;
|
||
|
||
irec = *imap;
|
||
if (offset_fsb > irec.br_startoff) {
|
||
delta = offset_fsb - irec.br_startoff;
|
||
irec.br_blockcount -= delta;
|
||
irec.br_startblock += delta;
|
||
irec.br_startoff = offset_fsb;
|
||
}
|
||
error = xfs_reflink_trim_around_shared(ip, &irec, &shared, &x);
|
||
if (error)
|
||
return error;
|
||
|
||
/*
|
||
* We're here because we're trying to do a directio write to a
|
||
* region that isn't aligned to a filesystem block. If any part
|
||
* of the extent is shared, fall back to buffered mode to handle
|
||
* the RMW. This is done by returning -EREMCHG ("remote addr
|
||
* changed"), which is caught further up the call stack.
|
||
*/
|
||
if (shared) {
|
||
trace_xfs_reflink_bounce_dio_write(ip, imap);
|
||
return -EREMCHG;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
STATIC int
|
||
__xfs_get_blocks(
|
||
struct inode *inode,
|
||
sector_t iblock,
|
||
struct buffer_head *bh_result,
|
||
int create,
|
||
bool direct,
|
||
bool dax_fault)
|
||
{
|
||
struct xfs_inode *ip = XFS_I(inode);
|
||
struct xfs_mount *mp = ip->i_mount;
|
||
xfs_fileoff_t offset_fsb, end_fsb;
|
||
int error = 0;
|
||
int lockmode = 0;
|
||
struct xfs_bmbt_irec imap;
|
||
int nimaps = 1;
|
||
xfs_off_t offset;
|
||
ssize_t size;
|
||
int new = 0;
|
||
bool is_cow = false;
|
||
bool need_alloc = false;
|
||
|
||
BUG_ON(create && !direct);
|
||
|
||
if (XFS_FORCED_SHUTDOWN(mp))
|
||
return -EIO;
|
||
|
||
offset = (xfs_off_t)iblock << inode->i_blkbits;
|
||
ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
|
||
size = bh_result->b_size;
|
||
|
||
if (!create && offset >= i_size_read(inode))
|
||
return 0;
|
||
|
||
/*
|
||
* Direct I/O is usually done on preallocated files, so try getting
|
||
* a block mapping without an exclusive lock first.
|
||
*/
|
||
lockmode = xfs_ilock_data_map_shared(ip);
|
||
|
||
ASSERT(offset <= mp->m_super->s_maxbytes);
|
||
if (offset + size > mp->m_super->s_maxbytes)
|
||
size = mp->m_super->s_maxbytes - offset;
|
||
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
|
||
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
||
|
||
if (create && direct && xfs_is_reflink_inode(ip))
|
||
is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap,
|
||
&need_alloc);
|
||
if (!is_cow) {
|
||
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
|
||
&imap, &nimaps, XFS_BMAPI_ENTIRE);
|
||
/*
|
||
* Truncate an overwrite extent if there's a pending CoW
|
||
* reservation before the end of this extent. This
|
||
* forces us to come back to get_blocks to take care of
|
||
* the CoW.
|
||
*/
|
||
if (create && direct && nimaps &&
|
||
imap.br_startblock != HOLESTARTBLOCK &&
|
||
imap.br_startblock != DELAYSTARTBLOCK &&
|
||
!ISUNWRITTEN(&imap))
|
||
xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb,
|
||
&imap);
|
||
}
|
||
ASSERT(!need_alloc);
|
||
if (error)
|
||
goto out_unlock;
|
||
|
||
/* for DAX, we convert unwritten extents directly */
|
||
if (create &&
|
||
(!nimaps ||
|
||
(imap.br_startblock == HOLESTARTBLOCK ||
|
||
imap.br_startblock == DELAYSTARTBLOCK) ||
|
||
(IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
|
||
/*
|
||
* xfs_iomap_write_direct() expects the shared lock. It
|
||
* is unlocked on return.
|
||
*/
|
||
if (lockmode == XFS_ILOCK_EXCL)
|
||
xfs_ilock_demote(ip, lockmode);
|
||
|
||
error = xfs_iomap_write_direct(ip, offset, size,
|
||
&imap, nimaps);
|
||
if (error)
|
||
return error;
|
||
new = 1;
|
||
|
||
trace_xfs_get_blocks_alloc(ip, offset, size,
|
||
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
|
||
: XFS_IO_DELALLOC, &imap);
|
||
} else if (nimaps) {
|
||
trace_xfs_get_blocks_found(ip, offset, size,
|
||
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
|
||
: XFS_IO_OVERWRITE, &imap);
|
||
xfs_iunlock(ip, lockmode);
|
||
} else {
|
||
trace_xfs_get_blocks_notfound(ip, offset, size);
|
||
goto out_unlock;
|
||
}
|
||
|
||
if (IS_DAX(inode) && create) {
|
||
ASSERT(!ISUNWRITTEN(&imap));
|
||
/* zeroing is not needed at a higher layer */
|
||
new = 0;
|
||
}
|
||
|
||
/* trim mapping down to size requested */
|
||
xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
|
||
|
||
/*
|
||
* For unwritten extents do not report a disk address in the buffered
|
||
* read case (treat as if we're reading into a hole).
|
||
*/
|
||
if (imap.br_startblock != HOLESTARTBLOCK &&
|
||
imap.br_startblock != DELAYSTARTBLOCK &&
|
||
(create || !ISUNWRITTEN(&imap))) {
|
||
if (create && direct && !is_cow) {
|
||
error = xfs_bounce_unaligned_dio_write(ip, offset_fsb,
|
||
&imap);
|
||
if (error)
|
||
return error;
|
||
}
|
||
|
||
xfs_map_buffer(inode, bh_result, &imap, offset);
|
||
if (ISUNWRITTEN(&imap))
|
||
set_buffer_unwritten(bh_result);
|
||
/* direct IO needs special help */
|
||
if (create) {
|
||
if (dax_fault)
|
||
ASSERT(!ISUNWRITTEN(&imap));
|
||
else
|
||
xfs_map_direct(inode, bh_result, &imap, offset,
|
||
is_cow);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* If this is a realtime file, data may be on a different device.
|
||
* to that pointed to from the buffer_head b_bdev currently.
|
||
*/
|
||
bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
|
||
|
||
/*
|
||
* If we previously allocated a block out beyond eof and we are now
|
||
* coming back to use it then we will need to flag it as new even if it
|
||
* has a disk address.
|
||
*
|
||
* With sub-block writes into unwritten extents we also need to mark
|
||
* the buffer as new so that the unwritten parts of the buffer gets
|
||
* correctly zeroed.
|
||
*/
|
||
if (create &&
|
||
((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
|
||
(offset >= i_size_read(inode)) ||
|
||
(new || ISUNWRITTEN(&imap))))
|
||
set_buffer_new(bh_result);
|
||
|
||
BUG_ON(direct && imap.br_startblock == DELAYSTARTBLOCK);
|
||
|
||
return 0;
|
||
|
||
out_unlock:
|
||
xfs_iunlock(ip, lockmode);
|
||
return error;
|
||
}
|
||
|
||
int
|
||
xfs_get_blocks(
|
||
struct inode *inode,
|
||
sector_t iblock,
|
||
struct buffer_head *bh_result,
|
||
int create)
|
||
{
|
||
return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
|
||
}
|
||
|
||
int
|
||
xfs_get_blocks_direct(
|
||
struct inode *inode,
|
||
sector_t iblock,
|
||
struct buffer_head *bh_result,
|
||
int create)
|
||
{
|
||
return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
|
||
}
|
||
|
||
int
|
||
xfs_get_blocks_dax_fault(
|
||
struct inode *inode,
|
||
sector_t iblock,
|
||
struct buffer_head *bh_result,
|
||
int create)
|
||
{
|
||
return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
|
||
}
|
||
|
||
/*
|
||
* Complete a direct I/O write request.
|
||
*
|
||
* xfs_map_direct passes us some flags in the private data to tell us what to
|
||
* do. If no flags are set, then the write IO is an overwrite wholly within
|
||
* the existing allocated file size and so there is nothing for us to do.
|
||
*
|
||
* Note that in this case the completion can be called in interrupt context,
|
||
* whereas if we have flags set we will always be called in task context
|
||
* (i.e. from a workqueue).
|
||
*/
|
||
int
|
||
xfs_end_io_direct_write(
|
||
struct kiocb *iocb,
|
||
loff_t offset,
|
||
ssize_t size,
|
||
void *private)
|
||
{
|
||
struct inode *inode = file_inode(iocb->ki_filp);
|
||
struct xfs_inode *ip = XFS_I(inode);
|
||
uintptr_t flags = (uintptr_t)private;
|
||
int error = 0;
|
||
|
||
trace_xfs_end_io_direct_write(ip, offset, size);
|
||
|
||
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
||
return -EIO;
|
||
|
||
if (size <= 0)
|
||
return size;
|
||
|
||
/*
|
||
* The flags tell us whether we are doing unwritten extent conversions
|
||
* or an append transaction that updates the on-disk file size. These
|
||
* cases are the only cases where we should *potentially* be needing
|
||
* to update the VFS inode size.
|
||
*/
|
||
if (flags == 0) {
|
||
ASSERT(offset + size <= i_size_read(inode));
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* We need to update the in-core inode size here so that we don't end up
|
||
* with the on-disk inode size being outside the in-core inode size. We
|
||
* have no other method of updating EOF for AIO, so always do it here
|
||
* if necessary.
|
||
*
|
||
* We need to lock the test/set EOF update as we can be racing with
|
||
* other IO completions here to update the EOF. Failing to serialise
|
||
* here can result in EOF moving backwards and Bad Things Happen when
|
||
* that occurs.
|
||
*/
|
||
spin_lock(&ip->i_flags_lock);
|
||
if (offset + size > i_size_read(inode))
|
||
i_size_write(inode, offset + size);
|
||
spin_unlock(&ip->i_flags_lock);
|
||
|
||
if (flags & XFS_DIO_FLAG_COW)
|
||
error = xfs_reflink_end_cow(ip, offset, size);
|
||
if (flags & XFS_DIO_FLAG_UNWRITTEN) {
|
||
trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
|
||
|
||
error = xfs_iomap_write_unwritten(ip, offset, size);
|
||
}
|
||
if (flags & XFS_DIO_FLAG_APPEND) {
|
||
trace_xfs_end_io_direct_write_append(ip, offset, size);
|
||
|
||
error = xfs_setfilesize(ip, offset, size);
|
||
}
|
||
|
||
return error;
|
||
}
|
||
|
||
STATIC ssize_t
|
||
xfs_vm_direct_IO(
|
||
struct kiocb *iocb,
|
||
struct iov_iter *iter)
|
||
{
|
||
/*
|
||
* We just need the method present so that open/fcntl allow direct I/O.
|
||
*/
|
||
return -EINVAL;
|
||
}
|
||
|
||
STATIC sector_t
|
||
xfs_vm_bmap(
|
||
struct address_space *mapping,
|
||
sector_t block)
|
||
{
|
||
struct inode *inode = (struct inode *)mapping->host;
|
||
struct xfs_inode *ip = XFS_I(inode);
|
||
|
||
trace_xfs_vm_bmap(XFS_I(inode));
|
||
xfs_ilock(ip, XFS_IOLOCK_SHARED);
|
||
|
||
/*
|
||
* The swap code (ab-)uses ->bmap to get a block mapping and then
|
||
* bypasseѕ the file system for actual I/O. We really can't allow
|
||
* that on reflinks inodes, so we have to skip out here. And yes,
|
||
* 0 is the magic code for a bmap error..
|
||
*/
|
||
if (xfs_is_reflink_inode(ip)) {
|
||
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
||
return 0;
|
||
}
|
||
filemap_write_and_wait(mapping);
|
||
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
||
return generic_block_bmap(mapping, block, xfs_get_blocks);
|
||
}
|
||
|
||
STATIC int
|
||
xfs_vm_readpage(
|
||
struct file *unused,
|
||
struct page *page)
|
||
{
|
||
trace_xfs_vm_readpage(page->mapping->host, 1);
|
||
return mpage_readpage(page, xfs_get_blocks);
|
||
}
|
||
|
||
STATIC int
|
||
xfs_vm_readpages(
|
||
struct file *unused,
|
||
struct address_space *mapping,
|
||
struct list_head *pages,
|
||
unsigned nr_pages)
|
||
{
|
||
trace_xfs_vm_readpages(mapping->host, nr_pages);
|
||
return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
|
||
}
|
||
|
||
/*
|
||
* This is basically a copy of __set_page_dirty_buffers() with one
|
||
* small tweak: buffers beyond EOF do not get marked dirty. If we mark them
|
||
* dirty, we'll never be able to clean them because we don't write buffers
|
||
* beyond EOF, and that means we can't invalidate pages that span EOF
|
||
* that have been marked dirty. Further, the dirty state can leak into
|
||
* the file interior if the file is extended, resulting in all sorts of
|
||
* bad things happening as the state does not match the underlying data.
|
||
*
|
||
* XXX: this really indicates that bufferheads in XFS need to die. Warts like
|
||
* this only exist because of bufferheads and how the generic code manages them.
|
||
*/
|
||
STATIC int
|
||
xfs_vm_set_page_dirty(
|
||
struct page *page)
|
||
{
|
||
struct address_space *mapping = page->mapping;
|
||
struct inode *inode = mapping->host;
|
||
loff_t end_offset;
|
||
loff_t offset;
|
||
int newly_dirty;
|
||
|
||
if (unlikely(!mapping))
|
||
return !TestSetPageDirty(page);
|
||
|
||
end_offset = i_size_read(inode);
|
||
offset = page_offset(page);
|
||
|
||
spin_lock(&mapping->private_lock);
|
||
if (page_has_buffers(page)) {
|
||
struct buffer_head *head = page_buffers(page);
|
||
struct buffer_head *bh = head;
|
||
|
||
do {
|
||
if (offset < end_offset)
|
||
set_buffer_dirty(bh);
|
||
bh = bh->b_this_page;
|
||
offset += 1 << inode->i_blkbits;
|
||
} while (bh != head);
|
||
}
|
||
/*
|
||
* Lock out page->mem_cgroup migration to keep PageDirty
|
||
* synchronized with per-memcg dirty page counters.
|
||
*/
|
||
lock_page_memcg(page);
|
||
newly_dirty = !TestSetPageDirty(page);
|
||
spin_unlock(&mapping->private_lock);
|
||
|
||
if (newly_dirty) {
|
||
/* sigh - __set_page_dirty() is static, so copy it here, too */
|
||
unsigned long flags;
|
||
|
||
spin_lock_irqsave(&mapping->tree_lock, flags);
|
||
if (page->mapping) { /* Race with truncate? */
|
||
WARN_ON_ONCE(!PageUptodate(page));
|
||
account_page_dirtied(page, mapping);
|
||
radix_tree_tag_set(&mapping->page_tree,
|
||
page_index(page), PAGECACHE_TAG_DIRTY);
|
||
}
|
||
spin_unlock_irqrestore(&mapping->tree_lock, flags);
|
||
}
|
||
unlock_page_memcg(page);
|
||
if (newly_dirty)
|
||
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
||
return newly_dirty;
|
||
}
|
||
|
||
const struct address_space_operations xfs_address_space_operations = {
|
||
.readpage = xfs_vm_readpage,
|
||
.readpages = xfs_vm_readpages,
|
||
.writepage = xfs_vm_writepage,
|
||
.writepages = xfs_vm_writepages,
|
||
.set_page_dirty = xfs_vm_set_page_dirty,
|
||
.releasepage = xfs_vm_releasepage,
|
||
.invalidatepage = xfs_vm_invalidatepage,
|
||
.bmap = xfs_vm_bmap,
|
||
.direct_IO = xfs_vm_direct_IO,
|
||
.migratepage = buffer_migrate_page,
|
||
.is_partially_uptodate = block_is_partially_uptodate,
|
||
.error_remove_page = generic_error_remove_page,
|
||
};
|