Aaro Koskinen 7ceb1892c0 video: omap: delete support for early fbmem allocation
Commit 1e434f9318efc3dddc0c0b8d2071712668154c2b (OMAPFB: remove early mem
alloc from old omapfb) deleted the support for early fbmem allocation
from the platform code, but some code still remains in the driver side.
Delete this code now, as it repotedly causes build issues on !MMU.

The patch was tested on Amstrad E3 and Nokia 770 and framebuffer
functionality is not affected.

Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
2014-05-16 11:56:12 +03:00

794 lines
18 KiB
C

/*
* OMAP1 internal LCD controller
*
* Copyright (C) 2004 Nokia Corporation
* Author: Imre Deak <imre.deak@nokia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <linux/clk.h>
#include <linux/gfp.h>
#include <mach/lcdc.h>
#include <linux/omap-dma.h>
#include <asm/mach-types.h>
#include "omapfb.h"
#include "lcdc.h"
#define MODULE_NAME "lcdc"
#define MAX_PALETTE_SIZE PAGE_SIZE
enum lcdc_load_mode {
OMAP_LCDC_LOAD_PALETTE,
OMAP_LCDC_LOAD_FRAME,
OMAP_LCDC_LOAD_PALETTE_AND_FRAME
};
static struct omap_lcd_controller {
enum omapfb_update_mode update_mode;
int ext_mode;
unsigned long frame_offset;
int screen_width;
int xres;
int yres;
enum omapfb_color_format color_mode;
int bpp;
void *palette_virt;
dma_addr_t palette_phys;
int palette_code;
int palette_size;
unsigned int irq_mask;
struct completion last_frame_complete;
struct completion palette_load_complete;
struct clk *lcd_ck;
struct omapfb_device *fbdev;
void (*dma_callback)(void *data);
void *dma_callback_data;
dma_addr_t vram_phys;
void *vram_virt;
unsigned long vram_size;
} lcdc;
static void inline enable_irqs(int mask)
{
lcdc.irq_mask |= mask;
}
static void inline disable_irqs(int mask)
{
lcdc.irq_mask &= ~mask;
}
static void set_load_mode(enum lcdc_load_mode mode)
{
u32 l;
l = omap_readl(OMAP_LCDC_CONTROL);
l &= ~(3 << 20);
switch (mode) {
case OMAP_LCDC_LOAD_PALETTE:
l |= 1 << 20;
break;
case OMAP_LCDC_LOAD_FRAME:
l |= 2 << 20;
break;
case OMAP_LCDC_LOAD_PALETTE_AND_FRAME:
break;
default:
BUG();
}
omap_writel(l, OMAP_LCDC_CONTROL);
}
static void enable_controller(void)
{
u32 l;
l = omap_readl(OMAP_LCDC_CONTROL);
l |= OMAP_LCDC_CTRL_LCD_EN;
l &= ~OMAP_LCDC_IRQ_MASK;
l |= lcdc.irq_mask | OMAP_LCDC_IRQ_DONE; /* enabled IRQs */
omap_writel(l, OMAP_LCDC_CONTROL);
}
static void disable_controller_async(void)
{
u32 l;
u32 mask;
l = omap_readl(OMAP_LCDC_CONTROL);
mask = OMAP_LCDC_CTRL_LCD_EN | OMAP_LCDC_IRQ_MASK;
/*
* Preserve the DONE mask, since we still want to get the
* final DONE irq. It will be disabled in the IRQ handler.
*/
mask &= ~OMAP_LCDC_IRQ_DONE;
l &= ~mask;
omap_writel(l, OMAP_LCDC_CONTROL);
}
static void disable_controller(void)
{
init_completion(&lcdc.last_frame_complete);
disable_controller_async();
if (!wait_for_completion_timeout(&lcdc.last_frame_complete,
msecs_to_jiffies(500)))
dev_err(lcdc.fbdev->dev, "timeout waiting for FRAME DONE\n");
}
static void reset_controller(u32 status)
{
static unsigned long reset_count;
static unsigned long last_jiffies;
disable_controller_async();
reset_count++;
if (reset_count == 1 || time_after(jiffies, last_jiffies + HZ)) {
dev_err(lcdc.fbdev->dev,
"resetting (status %#010x,reset count %lu)\n",
status, reset_count);
last_jiffies = jiffies;
}
if (reset_count < 100) {
enable_controller();
} else {
reset_count = 0;
dev_err(lcdc.fbdev->dev,
"too many reset attempts, giving up.\n");
}
}
/*
* Configure the LCD DMA according to the current mode specified by parameters
* in lcdc.fbdev and fbdev->var.
*/
static void setup_lcd_dma(void)
{
static const int dma_elem_type[] = {
0,
OMAP_DMA_DATA_TYPE_S8,
OMAP_DMA_DATA_TYPE_S16,
0,
OMAP_DMA_DATA_TYPE_S32,
};
struct omapfb_plane_struct *plane = lcdc.fbdev->fb_info[0]->par;
struct fb_var_screeninfo *var = &lcdc.fbdev->fb_info[0]->var;
unsigned long src;
int esize, xelem, yelem;
src = lcdc.vram_phys + lcdc.frame_offset;
switch (var->rotate) {
case 0:
if (plane->info.mirror || (src & 3) ||
lcdc.color_mode == OMAPFB_COLOR_YUV420 ||
(lcdc.xres & 1))
esize = 2;
else
esize = 4;
xelem = lcdc.xres * lcdc.bpp / 8 / esize;
yelem = lcdc.yres;
break;
case 90:
case 180:
case 270:
if (cpu_is_omap15xx()) {
BUG();
}
esize = 2;
xelem = lcdc.yres * lcdc.bpp / 16;
yelem = lcdc.xres;
break;
default:
BUG();
return;
}
#ifdef VERBOSE
dev_dbg(lcdc.fbdev->dev,
"setup_dma: src %#010lx esize %d xelem %d yelem %d\n",
src, esize, xelem, yelem);
#endif
omap_set_lcd_dma_b1(src, xelem, yelem, dma_elem_type[esize]);
if (!cpu_is_omap15xx()) {
int bpp = lcdc.bpp;
/*
* YUV support is only for external mode when we have the
* YUV window embedded in a 16bpp frame buffer.
*/
if (lcdc.color_mode == OMAPFB_COLOR_YUV420)
bpp = 16;
/* Set virtual xres elem size */
omap_set_lcd_dma_b1_vxres(
lcdc.screen_width * bpp / 8 / esize);
/* Setup transformations */
omap_set_lcd_dma_b1_rotation(var->rotate);
omap_set_lcd_dma_b1_mirror(plane->info.mirror);
}
omap_setup_lcd_dma();
}
static irqreturn_t lcdc_irq_handler(int irq, void *dev_id)
{
u32 status;
status = omap_readl(OMAP_LCDC_STATUS);
if (status & (OMAP_LCDC_STAT_FUF | OMAP_LCDC_STAT_SYNC_LOST))
reset_controller(status);
else {
if (status & OMAP_LCDC_STAT_DONE) {
u32 l;
/*
* Disable IRQ_DONE. The status bit will be cleared
* only when the controller is reenabled and we don't
* want to get more interrupts.
*/
l = omap_readl(OMAP_LCDC_CONTROL);
l &= ~OMAP_LCDC_IRQ_DONE;
omap_writel(l, OMAP_LCDC_CONTROL);
complete(&lcdc.last_frame_complete);
}
if (status & OMAP_LCDC_STAT_LOADED_PALETTE) {
disable_controller_async();
complete(&lcdc.palette_load_complete);
}
}
/*
* Clear these interrupt status bits.
* Sync_lost, FUF bits were cleared by disabling the LCD controller
* LOADED_PALETTE can be cleared this way only in palette only
* load mode. In other load modes it's cleared by disabling the
* controller.
*/
status &= ~(OMAP_LCDC_STAT_VSYNC |
OMAP_LCDC_STAT_LOADED_PALETTE |
OMAP_LCDC_STAT_ABC |
OMAP_LCDC_STAT_LINE_INT);
omap_writel(status, OMAP_LCDC_STATUS);
return IRQ_HANDLED;
}
/*
* Change to a new video mode. We defer this to a later time to avoid any
* flicker and not to mess up the current LCD DMA context. For this we disable
* the LCD controller, which will generate a DONE irq after the last frame has
* been transferred. Then it'll be safe to reconfigure both the LCD controller
* as well as the LCD DMA.
*/
static int omap_lcdc_setup_plane(int plane, int channel_out,
unsigned long offset, int screen_width,
int pos_x, int pos_y, int width, int height,
int color_mode)
{
struct fb_var_screeninfo *var = &lcdc.fbdev->fb_info[0]->var;
struct lcd_panel *panel = lcdc.fbdev->panel;
int rot_x, rot_y;
if (var->rotate == 0) {
rot_x = panel->x_res;
rot_y = panel->y_res;
} else {
rot_x = panel->y_res;
rot_y = panel->x_res;
}
if (plane != 0 || channel_out != 0 || pos_x != 0 || pos_y != 0 ||
width > rot_x || height > rot_y) {
#ifdef VERBOSE
dev_dbg(lcdc.fbdev->dev,
"invalid plane params plane %d pos_x %d pos_y %d "
"w %d h %d\n", plane, pos_x, pos_y, width, height);
#endif
return -EINVAL;
}
lcdc.frame_offset = offset;
lcdc.xres = width;
lcdc.yres = height;
lcdc.screen_width = screen_width;
lcdc.color_mode = color_mode;
switch (color_mode) {
case OMAPFB_COLOR_CLUT_8BPP:
lcdc.bpp = 8;
lcdc.palette_code = 0x3000;
lcdc.palette_size = 512;
break;
case OMAPFB_COLOR_RGB565:
lcdc.bpp = 16;
lcdc.palette_code = 0x4000;
lcdc.palette_size = 32;
break;
case OMAPFB_COLOR_RGB444:
lcdc.bpp = 16;
lcdc.palette_code = 0x4000;
lcdc.palette_size = 32;
break;
case OMAPFB_COLOR_YUV420:
if (lcdc.ext_mode) {
lcdc.bpp = 12;
break;
}
/* fallthrough */
case OMAPFB_COLOR_YUV422:
if (lcdc.ext_mode) {
lcdc.bpp = 16;
break;
}
/* fallthrough */
default:
/* FIXME: other BPPs.
* bpp1: code 0, size 256
* bpp2: code 0x1000 size 256
* bpp4: code 0x2000 size 256
* bpp12: code 0x4000 size 32
*/
dev_dbg(lcdc.fbdev->dev, "invalid color mode %d\n", color_mode);
BUG();
return -1;
}
if (lcdc.ext_mode) {
setup_lcd_dma();
return 0;
}
if (lcdc.update_mode == OMAPFB_AUTO_UPDATE) {
disable_controller();
omap_stop_lcd_dma();
setup_lcd_dma();
enable_controller();
}
return 0;
}
static int omap_lcdc_enable_plane(int plane, int enable)
{
dev_dbg(lcdc.fbdev->dev,
"plane %d enable %d update_mode %d ext_mode %d\n",
plane, enable, lcdc.update_mode, lcdc.ext_mode);
if (plane != OMAPFB_PLANE_GFX)
return -EINVAL;
return 0;
}
/*
* Configure the LCD DMA for a palette load operation and do the palette
* downloading synchronously. We don't use the frame+palette load mode of
* the controller, since the palette can always be downloaded separately.
*/
static void load_palette(void)
{
u16 *palette;
palette = (u16 *)lcdc.palette_virt;
*(u16 *)palette &= 0x0fff;
*(u16 *)palette |= lcdc.palette_code;
omap_set_lcd_dma_b1(lcdc.palette_phys,
lcdc.palette_size / 4 + 1, 1, OMAP_DMA_DATA_TYPE_S32);
omap_set_lcd_dma_single_transfer(1);
omap_setup_lcd_dma();
init_completion(&lcdc.palette_load_complete);
enable_irqs(OMAP_LCDC_IRQ_LOADED_PALETTE);
set_load_mode(OMAP_LCDC_LOAD_PALETTE);
enable_controller();
if (!wait_for_completion_timeout(&lcdc.palette_load_complete,
msecs_to_jiffies(500)))
dev_err(lcdc.fbdev->dev, "timeout waiting for FRAME DONE\n");
/* The controller gets disabled in the irq handler */
disable_irqs(OMAP_LCDC_IRQ_LOADED_PALETTE);
omap_stop_lcd_dma();
omap_set_lcd_dma_single_transfer(lcdc.ext_mode);
}
/* Used only in internal controller mode */
static int omap_lcdc_setcolreg(u_int regno, u16 red, u16 green, u16 blue,
u16 transp, int update_hw_pal)
{
u16 *palette;
if (lcdc.color_mode != OMAPFB_COLOR_CLUT_8BPP || regno > 255)
return -EINVAL;
palette = (u16 *)lcdc.palette_virt;
palette[regno] &= ~0x0fff;
palette[regno] |= ((red >> 12) << 8) | ((green >> 12) << 4 ) |
(blue >> 12);
if (update_hw_pal) {
disable_controller();
omap_stop_lcd_dma();
load_palette();
setup_lcd_dma();
set_load_mode(OMAP_LCDC_LOAD_FRAME);
enable_controller();
}
return 0;
}
static void calc_ck_div(int is_tft, int pck, int *pck_div)
{
unsigned long lck;
pck = max(1, pck);
lck = clk_get_rate(lcdc.lcd_ck);
*pck_div = (lck + pck - 1) / pck;
if (is_tft)
*pck_div = max(2, *pck_div);
else
*pck_div = max(3, *pck_div);
if (*pck_div > 255) {
/* FIXME: try to adjust logic clock divider as well */
*pck_div = 255;
dev_warn(lcdc.fbdev->dev, "pixclock %d kHz too low.\n",
pck / 1000);
}
}
static void inline setup_regs(void)
{
u32 l;
struct lcd_panel *panel = lcdc.fbdev->panel;
int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
unsigned long lck;
int pcd;
l = omap_readl(OMAP_LCDC_CONTROL);
l &= ~OMAP_LCDC_CTRL_LCD_TFT;
l |= is_tft ? OMAP_LCDC_CTRL_LCD_TFT : 0;
#ifdef CONFIG_MACH_OMAP_PALMTE
/* FIXME:if (machine_is_omap_palmte()) { */
/* PalmTE uses alternate TFT setting in 8BPP mode */
l |= (is_tft && panel->bpp == 8) ? 0x810000 : 0;
/* } */
#endif
omap_writel(l, OMAP_LCDC_CONTROL);
l = omap_readl(OMAP_LCDC_TIMING2);
l &= ~(((1 << 6) - 1) << 20);
l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 20;
omap_writel(l, OMAP_LCDC_TIMING2);
l = panel->x_res - 1;
l |= (panel->hsw - 1) << 10;
l |= (panel->hfp - 1) << 16;
l |= (panel->hbp - 1) << 24;
omap_writel(l, OMAP_LCDC_TIMING0);
l = panel->y_res - 1;
l |= (panel->vsw - 1) << 10;
l |= panel->vfp << 16;
l |= panel->vbp << 24;
omap_writel(l, OMAP_LCDC_TIMING1);
l = omap_readl(OMAP_LCDC_TIMING2);
l &= ~0xff;
lck = clk_get_rate(lcdc.lcd_ck);
if (!panel->pcd)
calc_ck_div(is_tft, panel->pixel_clock * 1000, &pcd);
else {
dev_warn(lcdc.fbdev->dev,
"Pixel clock divider value is obsolete.\n"
"Try to set pixel_clock to %lu and pcd to 0 "
"in drivers/video/omap/lcd_%s.c and submit a patch.\n",
lck / panel->pcd / 1000, panel->name);
pcd = panel->pcd;
}
l |= pcd & 0xff;
l |= panel->acb << 8;
omap_writel(l, OMAP_LCDC_TIMING2);
/* update panel info with the exact clock */
panel->pixel_clock = lck / pcd / 1000;
}
/*
* Configure the LCD controller, download the color palette and start a looped
* DMA transfer of the frame image data. Called only in internal
* controller mode.
*/
static int omap_lcdc_set_update_mode(enum omapfb_update_mode mode)
{
int r = 0;
if (mode != lcdc.update_mode) {
switch (mode) {
case OMAPFB_AUTO_UPDATE:
setup_regs();
load_palette();
/* Setup and start LCD DMA */
setup_lcd_dma();
set_load_mode(OMAP_LCDC_LOAD_FRAME);
enable_irqs(OMAP_LCDC_IRQ_DONE);
/* This will start the actual DMA transfer */
enable_controller();
lcdc.update_mode = mode;
break;
case OMAPFB_UPDATE_DISABLED:
disable_controller();
omap_stop_lcd_dma();
lcdc.update_mode = mode;
break;
default:
r = -EINVAL;
}
}
return r;
}
static enum omapfb_update_mode omap_lcdc_get_update_mode(void)
{
return lcdc.update_mode;
}
/* PM code called only in internal controller mode */
static void omap_lcdc_suspend(void)
{
omap_lcdc_set_update_mode(OMAPFB_UPDATE_DISABLED);
}
static void omap_lcdc_resume(void)
{
omap_lcdc_set_update_mode(OMAPFB_AUTO_UPDATE);
}
static void omap_lcdc_get_caps(int plane, struct omapfb_caps *caps)
{
return;
}
int omap_lcdc_set_dma_callback(void (*callback)(void *data), void *data)
{
BUG_ON(callback == NULL);
if (lcdc.dma_callback)
return -EBUSY;
else {
lcdc.dma_callback = callback;
lcdc.dma_callback_data = data;
}
return 0;
}
EXPORT_SYMBOL(omap_lcdc_set_dma_callback);
void omap_lcdc_free_dma_callback(void)
{
lcdc.dma_callback = NULL;
}
EXPORT_SYMBOL(omap_lcdc_free_dma_callback);
static void lcdc_dma_handler(u16 status, void *data)
{
if (lcdc.dma_callback)
lcdc.dma_callback(lcdc.dma_callback_data);
}
static int alloc_palette_ram(void)
{
lcdc.palette_virt = dma_alloc_writecombine(lcdc.fbdev->dev,
MAX_PALETTE_SIZE, &lcdc.palette_phys, GFP_KERNEL);
if (lcdc.palette_virt == NULL) {
dev_err(lcdc.fbdev->dev, "failed to alloc palette memory\n");
return -ENOMEM;
}
memset(lcdc.palette_virt, 0, MAX_PALETTE_SIZE);
return 0;
}
static void free_palette_ram(void)
{
dma_free_writecombine(lcdc.fbdev->dev, MAX_PALETTE_SIZE,
lcdc.palette_virt, lcdc.palette_phys);
}
static int alloc_fbmem(struct omapfb_mem_region *region)
{
int bpp;
int frame_size;
struct lcd_panel *panel = lcdc.fbdev->panel;
bpp = panel->bpp;
if (bpp == 12)
bpp = 16;
frame_size = PAGE_ALIGN(panel->x_res * bpp / 8 * panel->y_res);
if (region->size > frame_size)
frame_size = region->size;
lcdc.vram_size = frame_size;
lcdc.vram_virt = dma_alloc_writecombine(lcdc.fbdev->dev,
lcdc.vram_size, &lcdc.vram_phys, GFP_KERNEL);
if (lcdc.vram_virt == NULL) {
dev_err(lcdc.fbdev->dev, "unable to allocate FB DMA memory\n");
return -ENOMEM;
}
region->size = frame_size;
region->paddr = lcdc.vram_phys;
region->vaddr = lcdc.vram_virt;
region->alloc = 1;
memset(lcdc.vram_virt, 0, lcdc.vram_size);
return 0;
}
static void free_fbmem(void)
{
dma_free_writecombine(lcdc.fbdev->dev, lcdc.vram_size,
lcdc.vram_virt, lcdc.vram_phys);
}
static int setup_fbmem(struct omapfb_mem_desc *req_md)
{
if (!req_md->region_cnt) {
dev_err(lcdc.fbdev->dev, "no memory regions defined\n");
return -EINVAL;
}
if (req_md->region_cnt > 1) {
dev_err(lcdc.fbdev->dev, "only one plane is supported\n");
req_md->region_cnt = 1;
}
return alloc_fbmem(&req_md->region[0]);
}
static int omap_lcdc_init(struct omapfb_device *fbdev, int ext_mode,
struct omapfb_mem_desc *req_vram)
{
int r;
u32 l;
int rate;
struct clk *tc_ck;
lcdc.irq_mask = 0;
lcdc.fbdev = fbdev;
lcdc.ext_mode = ext_mode;
l = 0;
omap_writel(l, OMAP_LCDC_CONTROL);
/* FIXME:
* According to errata some platforms have a clock rate limitiation
*/
lcdc.lcd_ck = clk_get(fbdev->dev, "lcd_ck");
if (IS_ERR(lcdc.lcd_ck)) {
dev_err(fbdev->dev, "unable to access LCD clock\n");
r = PTR_ERR(lcdc.lcd_ck);
goto fail0;
}
tc_ck = clk_get(fbdev->dev, "tc_ck");
if (IS_ERR(tc_ck)) {
dev_err(fbdev->dev, "unable to access TC clock\n");
r = PTR_ERR(tc_ck);
goto fail1;
}
rate = clk_get_rate(tc_ck);
clk_put(tc_ck);
if (machine_is_ams_delta())
rate /= 4;
if (machine_is_omap_h3())
rate /= 3;
r = clk_set_rate(lcdc.lcd_ck, rate);
if (r) {
dev_err(fbdev->dev, "failed to adjust LCD rate\n");
goto fail1;
}
clk_enable(lcdc.lcd_ck);
r = request_irq(OMAP_LCDC_IRQ, lcdc_irq_handler, 0, MODULE_NAME, fbdev);
if (r) {
dev_err(fbdev->dev, "unable to get IRQ\n");
goto fail2;
}
r = omap_request_lcd_dma(lcdc_dma_handler, NULL);
if (r) {
dev_err(fbdev->dev, "unable to get LCD DMA\n");
goto fail3;
}
omap_set_lcd_dma_single_transfer(ext_mode);
omap_set_lcd_dma_ext_controller(ext_mode);
if (!ext_mode)
if ((r = alloc_palette_ram()) < 0)
goto fail4;
if ((r = setup_fbmem(req_vram)) < 0)
goto fail5;
pr_info("omapfb: LCDC initialized\n");
return 0;
fail5:
if (!ext_mode)
free_palette_ram();
fail4:
omap_free_lcd_dma();
fail3:
free_irq(OMAP_LCDC_IRQ, lcdc.fbdev);
fail2:
clk_disable(lcdc.lcd_ck);
fail1:
clk_put(lcdc.lcd_ck);
fail0:
return r;
}
static void omap_lcdc_cleanup(void)
{
if (!lcdc.ext_mode)
free_palette_ram();
free_fbmem();
omap_free_lcd_dma();
free_irq(OMAP_LCDC_IRQ, lcdc.fbdev);
clk_disable(lcdc.lcd_ck);
clk_put(lcdc.lcd_ck);
}
const struct lcd_ctrl omap1_int_ctrl = {
.name = "internal",
.init = omap_lcdc_init,
.cleanup = omap_lcdc_cleanup,
.get_caps = omap_lcdc_get_caps,
.set_update_mode = omap_lcdc_set_update_mode,
.get_update_mode = omap_lcdc_get_update_mode,
.update_window = NULL,
.suspend = omap_lcdc_suspend,
.resume = omap_lcdc_resume,
.setup_plane = omap_lcdc_setup_plane,
.enable_plane = omap_lcdc_enable_plane,
.setcolreg = omap_lcdc_setcolreg,
};