mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-20 16:30:53 +00:00
49dd2c4928
When we use TID=N userspace mappings, we must ensure that kernel mappings have been destroyed when entering userspace. Using TID=1/TID=0 for kernel/user mappings and running userspace with PID=0 means that userspace can't access the kernel mappings, but the kernel can directly access userspace. The net is that we don't need to flush the TLB on privilege switches, but we do on guest context switches (which are far more infrequent). Guest boot time performance improvement: about 30%. Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
252 lines
6.8 KiB
C
252 lines
6.8 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright IBM Corp. 2007
|
|
*
|
|
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/highmem.h>
|
|
#include <asm/mmu-44x.h>
|
|
#include <asm/kvm_ppc.h>
|
|
|
|
#include "44x_tlb.h"
|
|
|
|
#define PPC44x_TLB_USER_PERM_MASK (PPC44x_TLB_UX|PPC44x_TLB_UR|PPC44x_TLB_UW)
|
|
#define PPC44x_TLB_SUPER_PERM_MASK (PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW)
|
|
|
|
static unsigned int kvmppc_tlb_44x_pos;
|
|
|
|
static u32 kvmppc_44x_tlb_shadow_attrib(u32 attrib, int usermode)
|
|
{
|
|
/* Mask off reserved bits. */
|
|
attrib &= PPC44x_TLB_PERM_MASK|PPC44x_TLB_ATTR_MASK;
|
|
|
|
if (!usermode) {
|
|
/* Guest is in supervisor mode, so we need to translate guest
|
|
* supervisor permissions into user permissions. */
|
|
attrib &= ~PPC44x_TLB_USER_PERM_MASK;
|
|
attrib |= (attrib & PPC44x_TLB_SUPER_PERM_MASK) << 3;
|
|
}
|
|
|
|
/* Make sure host can always access this memory. */
|
|
attrib |= PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW;
|
|
|
|
return attrib;
|
|
}
|
|
|
|
/* Search the guest TLB for a matching entry. */
|
|
int kvmppc_44x_tlb_index(struct kvm_vcpu *vcpu, gva_t eaddr, unsigned int pid,
|
|
unsigned int as)
|
|
{
|
|
int i;
|
|
|
|
/* XXX Replace loop with fancy data structures. */
|
|
for (i = 0; i < PPC44x_TLB_SIZE; i++) {
|
|
struct tlbe *tlbe = &vcpu->arch.guest_tlb[i];
|
|
unsigned int tid;
|
|
|
|
if (eaddr < get_tlb_eaddr(tlbe))
|
|
continue;
|
|
|
|
if (eaddr > get_tlb_end(tlbe))
|
|
continue;
|
|
|
|
tid = get_tlb_tid(tlbe);
|
|
if (tid && (tid != pid))
|
|
continue;
|
|
|
|
if (!get_tlb_v(tlbe))
|
|
continue;
|
|
|
|
if (get_tlb_ts(tlbe) != as)
|
|
continue;
|
|
|
|
return i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
struct tlbe *kvmppc_44x_itlb_search(struct kvm_vcpu *vcpu, gva_t eaddr)
|
|
{
|
|
unsigned int as = !!(vcpu->arch.msr & MSR_IS);
|
|
unsigned int index;
|
|
|
|
index = kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
|
|
if (index == -1)
|
|
return NULL;
|
|
return &vcpu->arch.guest_tlb[index];
|
|
}
|
|
|
|
struct tlbe *kvmppc_44x_dtlb_search(struct kvm_vcpu *vcpu, gva_t eaddr)
|
|
{
|
|
unsigned int as = !!(vcpu->arch.msr & MSR_DS);
|
|
unsigned int index;
|
|
|
|
index = kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
|
|
if (index == -1)
|
|
return NULL;
|
|
return &vcpu->arch.guest_tlb[index];
|
|
}
|
|
|
|
static int kvmppc_44x_tlbe_is_writable(struct tlbe *tlbe)
|
|
{
|
|
return tlbe->word2 & (PPC44x_TLB_SW|PPC44x_TLB_UW);
|
|
}
|
|
|
|
/* Must be called with mmap_sem locked for writing. */
|
|
static void kvmppc_44x_shadow_release(struct kvm_vcpu *vcpu,
|
|
unsigned int index)
|
|
{
|
|
struct tlbe *stlbe = &vcpu->arch.shadow_tlb[index];
|
|
struct page *page = vcpu->arch.shadow_pages[index];
|
|
|
|
if (get_tlb_v(stlbe)) {
|
|
if (kvmppc_44x_tlbe_is_writable(stlbe))
|
|
kvm_release_page_dirty(page);
|
|
else
|
|
kvm_release_page_clean(page);
|
|
}
|
|
}
|
|
|
|
void kvmppc_tlbe_set_modified(struct kvm_vcpu *vcpu, unsigned int i)
|
|
{
|
|
vcpu->arch.shadow_tlb_mod[i] = 1;
|
|
}
|
|
|
|
/* Caller must ensure that the specified guest TLB entry is safe to insert into
|
|
* the shadow TLB. */
|
|
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gfn_t gfn, u64 asid,
|
|
u32 flags)
|
|
{
|
|
struct page *new_page;
|
|
struct tlbe *stlbe;
|
|
hpa_t hpaddr;
|
|
unsigned int victim;
|
|
|
|
/* Future optimization: don't overwrite the TLB entry containing the
|
|
* current PC (or stack?). */
|
|
victim = kvmppc_tlb_44x_pos++;
|
|
if (kvmppc_tlb_44x_pos > tlb_44x_hwater)
|
|
kvmppc_tlb_44x_pos = 0;
|
|
stlbe = &vcpu->arch.shadow_tlb[victim];
|
|
|
|
/* Get reference to new page. */
|
|
down_read(¤t->mm->mmap_sem);
|
|
new_page = gfn_to_page(vcpu->kvm, gfn);
|
|
if (is_error_page(new_page)) {
|
|
printk(KERN_ERR "Couldn't get guest page for gfn %lx!\n", gfn);
|
|
kvm_release_page_clean(new_page);
|
|
up_read(¤t->mm->mmap_sem);
|
|
return;
|
|
}
|
|
hpaddr = page_to_phys(new_page);
|
|
|
|
/* Drop reference to old page. */
|
|
kvmppc_44x_shadow_release(vcpu, victim);
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
vcpu->arch.shadow_pages[victim] = new_page;
|
|
|
|
/* XXX Make sure (va, size) doesn't overlap any other
|
|
* entries. 440x6 user manual says the result would be
|
|
* "undefined." */
|
|
|
|
/* XXX what about AS? */
|
|
|
|
stlbe->tid = !(asid & 0xff);
|
|
|
|
/* Force TS=1 for all guest mappings. */
|
|
/* For now we hardcode 4KB mappings, but it will be important to
|
|
* use host large pages in the future. */
|
|
stlbe->word0 = (gvaddr & PAGE_MASK) | PPC44x_TLB_VALID | PPC44x_TLB_TS
|
|
| PPC44x_TLB_4K;
|
|
stlbe->word1 = (hpaddr & 0xfffffc00) | ((hpaddr >> 32) & 0xf);
|
|
stlbe->word2 = kvmppc_44x_tlb_shadow_attrib(flags,
|
|
vcpu->arch.msr & MSR_PR);
|
|
kvmppc_tlbe_set_modified(vcpu, victim);
|
|
|
|
KVMTRACE_5D(STLB_WRITE, vcpu, victim,
|
|
stlbe->tid, stlbe->word0, stlbe->word1, stlbe->word2,
|
|
handler);
|
|
}
|
|
|
|
void kvmppc_mmu_invalidate(struct kvm_vcpu *vcpu, gva_t eaddr,
|
|
gva_t eend, u32 asid)
|
|
{
|
|
unsigned int pid = !(asid & 0xff);
|
|
int i;
|
|
|
|
/* XXX Replace loop with fancy data structures. */
|
|
down_write(¤t->mm->mmap_sem);
|
|
for (i = 0; i <= tlb_44x_hwater; i++) {
|
|
struct tlbe *stlbe = &vcpu->arch.shadow_tlb[i];
|
|
unsigned int tid;
|
|
|
|
if (!get_tlb_v(stlbe))
|
|
continue;
|
|
|
|
if (eend < get_tlb_eaddr(stlbe))
|
|
continue;
|
|
|
|
if (eaddr > get_tlb_end(stlbe))
|
|
continue;
|
|
|
|
tid = get_tlb_tid(stlbe);
|
|
if (tid && (tid != pid))
|
|
continue;
|
|
|
|
kvmppc_44x_shadow_release(vcpu, i);
|
|
stlbe->word0 = 0;
|
|
kvmppc_tlbe_set_modified(vcpu, i);
|
|
KVMTRACE_5D(STLB_INVAL, vcpu, i,
|
|
stlbe->tid, stlbe->word0, stlbe->word1,
|
|
stlbe->word2, handler);
|
|
}
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
/* Invalidate all mappings on the privilege switch after PID has been changed.
|
|
* The guest always runs with PID=1, so we must clear the entire TLB when
|
|
* switching address spaces. */
|
|
void kvmppc_mmu_priv_switch(struct kvm_vcpu *vcpu, int usermode)
|
|
{
|
|
int i;
|
|
|
|
if (vcpu->arch.swap_pid) {
|
|
/* XXX Replace loop with fancy data structures. */
|
|
down_write(¤t->mm->mmap_sem);
|
|
for (i = 0; i <= tlb_44x_hwater; i++) {
|
|
struct tlbe *stlbe = &vcpu->arch.shadow_tlb[i];
|
|
|
|
/* Future optimization: clear only userspace mappings. */
|
|
kvmppc_44x_shadow_release(vcpu, i);
|
|
stlbe->word0 = 0;
|
|
kvmppc_tlbe_set_modified(vcpu, i);
|
|
KVMTRACE_5D(STLB_INVAL, vcpu, i,
|
|
stlbe->tid, stlbe->word0, stlbe->word1,
|
|
stlbe->word2, handler);
|
|
}
|
|
up_write(¤t->mm->mmap_sem);
|
|
vcpu->arch.swap_pid = 0;
|
|
}
|
|
|
|
vcpu->arch.shadow_pid = !usermode;
|
|
}
|